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Abstract
Probability estimation is one of the fundamental tasks in statistics and machine
learning. However, standard methods for probability estimation on discrete objects
do not handle object structure in a satisfactory manner. In this paper, we derive a
general Bayesian network formulation for probability estimation on leaf-labeled
trees that enables flexible approximations which can generalize beyond observa-
tions. We show that efficient algorithms for learning Bayesian networks can be
easily extended to probability estimation on this challenging structured space. Ex-
periments on both synthetic and real data show that our methods greatly outperform
the current practice of using the empirical distribution, as well as a previous effort
for probability estimation on trees.

1 Introduction
Leaf-labeled trees, where labels are associated with the observed variables, are extensively used in
probabilistic graphical models. A typical example is the phylogenetic leaf-labeled tree, which is
the fundamental structure for modeling the evolutionary history of a family of genes [Felsenstein,
2003, Friedman et al., 2002]. Inferring a phylogenetic tree based on a set of DNA sequences under a
probabilistic model of nucleotide substitutions has been one of the central problems in computational
biology, with a wide range of applications from genomic epidemiology [Neher and Bedford, 2015]
to conservation genetics [DeSalle and Amato, 2004]. To account for the phylogenetic uncertainty,
Bayesian approaches are adopted [Huelsenbeck et al., 2001] and Markov chain Monte Carlo (MCMC)
[Yang and Rannala, 1997, Mau et al., 1999, Huelsenbeck and Ronquist, 2001] is commonly used to
sample from the posterior of phylogenetic trees. Posterior probabilities of phylogenetic trees are then
typically estimated with simple sample relative frequencies (SRF), based on those MCMC samples.

While classical, this empirical approach is unsatisfactory for tree posterior estimation due to the
combinatorially exploding size of tree space. Specifically, SRF does not support trees beyond
observed samples (i.e., simply sets the probabilities of unsampled trees to zero), and is prone to
unstable estimates for low-probability trees. As a result, reliable estimations using SRF usually
require impractically large sample sizes. Previous work [Höhna and Drummond, 2012, Larget,
2013] attempted to remedy these problems by harnessing the similarity among trees and proposed
several probability estimators using MCMC samples based on conditional independence of separated
subtrees. Although these estimators do extend to unsampled trees, the conditional independence
assumption therein is often too strong to provide accurate approximations for posteriors inferred from
real data [Whidden and Matsen, 2015].

In this paper, we present a general framework for tree probability estimation given a collection of
trees (e.g., MCMC samples) by introducing a novel structure called subsplit Bayesian networks
(SBNs). This structure provides rich distributions over the entire tree space and hence differs from
existing applications of Bayesian networks in phylogenetic inference [e.g. Strimmer and Moulton,
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2000, Höhna et al., 2014] to compute tree likelihood. Moreover, SBNs relax the conditional clade
independence assumption and allow easy adjustment for a variety of flexible dependence structures
between subtrees. They also allow many efficient learning algorithms for Bayesian networks to be
easily extended to tree probability estimation. Inspired by weight sharing used in convolutional neural
networks [LeCun et al., 1998], we propose conditional probability sharing for learning SBNs, which
greatly reduces the number of free parameters by exploiting the similarity of local structures among
trees. Although initially proposed for rooted trees, we show that SBNs can be naturally generalized
to unrooted trees, which leads to a missing data problem that can be efficiently solved through
expectation maximization. Finally, we demonstrate that SBN estimators greatly outperform other tree
probability estimators on both synthetic data and a benchmark of challenging phylogenetic posterior
estimation problems. The SBN framework also works for general leaf-labeled trees, however for ease
of presentation, we restrict to leaf-labeled bifurcating trees in this paper.
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Figure 1: A rooted tree and its clade de-
composition. Each clade corresponds
to the set of offspring leaves (e.g.,
C2 = {O1, O2, O3, O4, O5} and C3 =
{O6, O7, O8}).

A leaf-labeled bifurcating tree is a binary tree (rooted or
unrooted) with labeled leaves (e.g., leaf nodes associated
with observed variables or a set of labels); we refer to it as
a tree for short. Recently, several probability estimators on
tree spaces have been proposed that exploit the similarity
of clades, a local structure of trees, to generalize beyond
observed trees. Let X = {O1, . . . , ON} be a set of N
labeled leaves. A cladeX of X is a nonempty subset of X .
Given a rooted tree T on X , one can find its unique clade
decomposition as follows. Start from the root, which has
a trivial clade that contains all the leaves C1. This clade
first splits into two subclades C2, C3. The splitting pro-
cess continues recursively onto each successive subclade
until there are no subclades to split. Finally, we obtain a
collection of nontrivial clades TC . As for the tree in Figure 1, TC = {C2, C3, C4, C5, C6, C7}. This
way, T is represented uniquely as a set of clades TC . Therefore, distributions over the tree space can
be specified as distributions over the space of sets of clades. Again, for Figure 1:

p(T ) = p(TC) = p(C2, C3, C4, C5, C6, C7) (1)

The clade decomposition representation enables distributions that reflect the similarity of trees through
the local clade structure. However, a full parameterization of this approach over all rooted trees on X
using rules of conditional probability is intractable even for a moderate N . Larget [2013], building on
work of Höhna and Drummond [2012], introduced the Conditional Clade Distribution (CCD) which
assumes that given the existence of an edge in a tree, clades that further refine opposite sides of the
edge are independent (see the Supplementary Material (SM) for a more detailed discussion). CCD
greatly reduces the number of parameters. For example, (1) has the following CCD approximation

pccd(T ) = p(C2, C3)p(C4, C5|C2)p(C6|C5)p(C7|C3)

However, CCD also introduces strong bias which makes it insufficient to capture the complexity of
inferred posterior distributions on real data (see Figure 5). In particular, certain clades may depend
on their sisters. This motivates a more flexible set of approximate distributions.

3 A Subsplit Bayesian Network Formulation
In addition to the clade decomposition representation, a rooted tree T can also be uniquely represented
as a set of subsplits. Let � be a total order on clades (e.g., lexicographical order). A subsplit (Y, Z)
of a clade X is an ordered pair of disjoint subclades of X such that Y ∪ Z = X and Y � Z. For
example, the tree in Figure 1 corresponds to the following set of nontrivial subsplits

TS = {(C2, C3), (C4, C5), ({O3}, C6), (C7, {O8})}

with lexicographical order on clades. Moreover, this set-of-subsplits representation of trees inspires a
natural probabilistic Bayesian network formulation as follows (Figure 2):
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Figure 2: The subsplit Bayesian network formulation. Left: A general Bayes net for rooted trees.
Each node represents a subsplit-valued or singleton-clade-valued random variable. The solid full and
complete binary tree network is B∗X . Middle/Right: Examples of rooted trees with 4 leaves. Note
that the solid dark nets that represent the true splitting processes of the trees may have dynamical
structures. By allowing singleton clades continue to split (the dashed gray nets) until depth of 3, both
nets grow into the full and complete binary tree of depth 3.

Definition 1. A subsplit Bayesian network (SBN) BX on a leaf set X of sizeN is a Bayesian network
whose nodes take on subsplit values or singleton clade values of X and: i) has depth N − 1 (the root
counts as depth 1); ii) The root node takes on subsplits of the entire leaf set X ; iii) contains a full and
complete binary tree network B∗X as a subnetwork.

Note that B∗X itself is an SBN and is contained in all SBNs; therefore, B∗X is the minimum SBN on X .
Moreover, B∗X induces a natural indexing procedure for the nodes of all SBNs on X : starting from
the root node, which is denoted as S1, for any i, we denote the two children of Si as S2i and S2i+1,
respectively, until a leaf node is reached. We call the parent nodes in B∗X the natural parents.
Definition 2. We say a subsplit (Y,Z) is compatible with a clade X if Y ∪ Z = X . Moreover, a
singleton clade {W} is said to be compatible with itself. With natural indexing, we say a full SBN
assignment {Si = si}i≥1 is compatible if for any interior node assignment si = (Yi, Zi) (or {Wi}),
s2i, s2i+1 are compatible with Yi, Zi (or {Wi}), respectively. Consider a parent-child pair in an
SBN, Si and Sπi , where πi denotes the index set of the parent nodes of Si. We say an assignment
Si = si, Sπi = sπi is compatible if it can be extended to a compatible assignment of the SBN.
Lemma 1. Given an SBN BX , each rooted tree T on X can be uniquely represented as a compatible
assignment of BX .

A proof of Lemma 1 is provided in the SM. Unlike in phylogenies, nodes in SBNs take on subsplit
(or singleton clade) values that represent the local topological structure of trees. By including the
true splitting processes (e.g., TS ) of the trees while allowing singleton clades continue to split (“fake”
split) until the whole network reaches depth N − 1 (see Figure 2), each SBN on X has a fixed
structure which contains the full and complete binary tree as a subnetwork. Note that those fake
splits are all deterministically assigned, which means the corresponding conditional probabilities
are all one. Therefore, the estimated probabilities of rooted trees only depend on their true splitting
processes. With SBNs, we can easily construct a family of flexible approximate distributions on the
tree space. For example, using the minimum SBN, (1) can be estimated as

p(C2, C3)p(C4, C5|C2, C3)p(C6|C4, C5)p(C7|C2, C3)

This approximation implicitly assumes that given the existence of a subsplit, subsplits that further
refine opposite sides of this subsplit are independent. Note that CCD can be viewed as a simplification
where the conditional probabilities are further approximated as follows
p(C4, C5|C2, C3) ≈ p(C4, C5|C2), p(C6|C4, C5) ≈ p(C6|C5), p(C7|C2, C3) ≈ p(C7|C3)

By including the sister clades in the conditional subsplit probabilities, SBNs relax the conditional
clade independence assumption made in CCD and allows for more flexible dependent structures
between local components (e.g., subsplits in sister-clades). Moreover, one can add more complicated
dependencies between nodes (e.g., dashed arrows in Figure 2(a)) and hence easily adjust SBN
formulation to provide a wide range of flexible approximate distributions. For general SBNs, the
estimated tree probabilities take the following form:

psbn(T ) = p(S1)
∏
i>1

p(Si|Sπi). (2)
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In addition to the superior flexibility, another benefit of the SBN formulation is that these approximate
distributions are all naturally normalized if the conditional probability distributions (CPDs) are
consistent, as defined next:
Definition 3. We say the conditional probability p(Si|Sπi) is consistent if p(Si = si|Sπi = sπi) = 0
for any incompatible assignment Si = si, Sπi = sπi .
Proposition 1. If ∀i > 1, p(Si|Sπi) is consistent, then

∑
T psbn(T ) = 1.

With Lemma 1, the proof is standard and is given in the SM. Furthermore, the SBN formulation also
allows us to easily extend many efficient algorithms for learning Bayesian networks to SBNs for tree
probability estimation, as we see next.

4 Learning Subsplit Bayesian Networks
4.1 Rooted Trees
Suppose we have a sample of rooted trees D = {Tk}Kk=1 (e.g., from a phylogenetic MCMC run
given DNA sequences). As before, each sampled tree can be represented as a collection of subsplits
Tk = {Si = si,k, i ≥ 1}, k = 1, . . . ,K and therefore has the following SBN likelihood

L(Tk) = p(S1 = s1,k)
∏
i>1

p(Si = si,k|Sπi = sπi,k).

Maximum Likelihood In this complete data scenario, we can simply use maximum likelihood to
learn the parameters of SBNs. Denote the set of all observed subsplits of node Si as Ci, i ≥ 1 and
the set of all observed subsplits of the parent nodes of Si as Cπi , i > 1. Assuming that trees are
independently sampled, the complete data log-likelihood is

logL(D) =
K∑
k=1

(
log p(S1 = s1,k) +

∑
i>1

log p(Si = si,k|Sπi = sπi,k)

)
=
∑
s1∈C1

ms1 log p(S1 = s1) +
∑
i>1

∑
si∈Ci
ti∈Cπi

msi,ti log p(Si = si|Sπi = ti) (3)

where ms1 =
∑K
k=1 I(s1,k = s1), msi,ti =

∑K
k=1 I(si,k = si, sπi,k = ti), i > 1 are the frequency

counts of the root splits and parent-child subsplit pairs for each interior node respectively, and I(·) is
the indicator function. The maximum likelihood estimates of CPDs have the following simple closed
form expressions in terms of relative frequencies:

p̂ML(S1 = s1) =
ms1∑
s∈C1

ms
=
ms1

K
, p̂ML(Si = si|Sπi = ti) =

msi,ti∑
s∈Ci ms,ti

.

Conditional Probability Sharing We can use the similarity of local structures to further reduce
the number of SBN parameters and achieve better generalization, similar to weight sharing for
convolutional nets. Indeed, different trees do share lots of local structures, such as subsplits and
clades. As a result, the representations of the trees in an SBN could have the same parent-child
subsplit pairs, taken by different nodes (see Figure D.1 in SM). Instead of assigning independent
sets of parameters for those pairs at different locations, we can use one set of parameters for each of
those shared pairs, regardless of their locations in SBNs. We call this specific setting of parameters in
SBNs conditional probability sharing (see more on parameter sharing in SM). Compared to standard
Bayes nets, this index-free parameterization only needs CPDs for each observed parent-child subsplit
pair, dramatically reducing the number of parameters in the model.

Now denote the set of all observed splits of S1 as Cr, and the set of all observed parent-child subsplit
pairs as Cch|pa. The log-likelihood logL(D) in (3) can be rewritten into

logL(D) =
∑
s1∈Cr

ms1 log p(S1 = s1) +
∑

s|t∈Cch|pa

ms,t log p(s|t)

wherems,t =
∑K
k=1

∑
i>1 I(si,k = s, sπi,k = t) is the frequency count of the corresponding subsplit

pair s|t ∈ Cch|pa. Similarly, we have the maximum likelihood estimates of the CPDs for those parent-
child subsplit pairs:

p̂ML(s|t) = ms,t∑
sms,t

, s|t ∈ Cch|pa. (4)
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Figure 3: SBNs for unrooted trees. Left: A simple four taxon unrooted tree example. It has five
edges, 1, 2, 3, 4, 5, that can be rooted on to make (compatible) rooted trees. Middle(left): Two rooted
trees when rooting on edges 1 and 3. Middle(right): The corresponding SBN representations for the
two rooted trees. Right: An integrated SBN for the unrooted tree with unobserved root node S1.

The main computation is devoted to the collection of the frequency counts ms1 and ms,t which
requires iterating over all sampled trees and for each tree, looping over all the edges. Thus the overall
computational complexity is O(KN).

4.2 Unrooted Trees
Unrooted trees are commonly used to express undirected relationships between observed variables,
and are the most common tree type in phylogenetics. The SBN framework can be easily generalized
to unrooted trees because each unrooted tree can be transformed into a rooted tree by placing the
root on one of its edges. Since there are multiple possible root placements, each unrooted tree has
multiple representations in terms of SBN assignments for the corresponding rooted trees. Unrooted
trees, therefore, can be represented using the same SBNs for rooted trees, with root node S1 being
unobserved1 (Figure 3). Marginalizing out the unobserved node S1, we obtain SBN probability
estimates for unrooted trees (denoted by T u in the sequel):

psbn(T
u) =

∑
S1∼Tu

p(S1)
∏
i>1

p(Si|Sπi) (5)

where ∼ means all root splits that are compatible with T u. Similar to the SBN approximations for the
rooted trees, (5) provides a natural probability distribution over unrooted trees (see a proof in SM).
Proposition 2. Suppose that the conditional probability distributions p(Si|Sπi), i > 1 are consistent,
then (5) is a probability distribution over unrooted trees with leaf set X , that is,

∑
Tu psbn(T

u) = 1.

As before, assume that we have a sample of unrooted treesDu = {T u
k }Kk=1. Each pair of the unrooted

tree and rooting edge corresponds to a rooted tree that can be represented as: (T u
k , e) = {Si =

sei,k, i ≥ 1}, e ∈ E(T u
k ), 1 ≤ k ≤ K where E(T u

k ) denotes the edges of T u
k and sei,k denotes all the

resulting subsplits when T u
k is rooted on edge e. The SBN likelihood for the unrooted tree T u

k is

L(T u
k ) =

∑
e∈E(Tu

k )

p(S1 = se1,k)
∏
i>1

p(Si = sei,k|Sπi = seπi,k).

The lost information on the root node S1 means the SBN likelihood for unrooted trees can no longer
be factorized. We, therefore, propose the following two algorithms to handle this challenge.

Maximum Lower Bound Estimates A simple strategy is to construct tractable lower bounds via
variational approximations [Wainwright and Jordan, 2008]

LBq(T
u) :=

∑
S1∼Tu

q(S1)

(
log

p(S1)
∏
i>1 p(Si|Sπi)
q(S1)

)
≤ logL(T u) (6)

where q is a probability distribution on S1 ∼ T u. In particular, taking q to be uniform on the 2N − 3
tree edges together with conditional probability sharing gives the simple average (SA) lower bound
of the data log-likelihood

LBSA(Du) :=

( ∑
s1∈Cr

mu
s1 log p(S1 = s1) +

∑
s|t∈Cch|pa

mu
s,t log p(s|t)

)
+K log(2N − 3)

1The subsplits S2, S3, . . . are well defined once the split in S1 (or equivalently the root) is given.
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Algorithm 1 Expectation Maximization for SBN

Input: Data Du = {T u
k }Kk=1, regularization coeff α.

Initialize p̂EM,(0) (e.g., via p̂SA) and n = 0. Set equivalent counts m̃u
s1 , m̃

u
s,t for regularization.

repeat
E-step. ∀ 1 ≤ k ≤ K, compute q(n)k (S1) =

p(Tu
k ,S1|p̂EM,(n))∑

S1∼Tu
k
p(Tu

k ,S1|p̂EM,(n))

M-step. Compute the expected frequency counts with conditional probability sharing and update
the CPDs by maximizing the regularized Q score

p̂
EM,(n+1)

(S1 = s1) =
mu,(n)
s1

+ αm̃u
s1

K + α
∑
s1∈Cr

m̃u
s1

, s1 ∈ Cr, m
u,(n)
s1

=
K∑
k=1

∑
e∈E(Tu

k
)

q
(n)
k (S1 = s1)I(s

e
i,k = s1)

p̂
EM,(n+1)

(s|t) =
m

u,(n)
s,t + αm̃u

s,t∑
s(m

u,(n)
s,t + αm̃u

s,t)
, s|t ∈ Cch|pa, m

u,(n)
s,t =

K∑
k=1

∑
e∈E(Tu

k
)

q
(n)
k (S1 = s

e
1,k)

∑
i>1

I(sei,k = s, s
e
πi,k

= t)

n← n+ 1
until convergence.

where

mu
s1 =

K∑
k=1

∑
e∈E(Tu

k )

1

2N − 3
I(se1,k = s1), mu

s,t =

K∑
k=1

∑
e∈E(Tu

k )

1

2N − 3

∑
i>1

I(sei,k = s, seπi,k = t).

The maximum SA lower bound estimates are then

p̂SA(S1 = s1) =
mu
s1∑

s∈Cr m
u
s

=
mu
s1

K
, s1 ∈ Cr, p̂SA(s|t) =

mu
s,t∑

sm
u
s,t

, s|t ∈ Cch|pa.

Expectation Maximization The maximum lower bound approximations can be improved upon by
adapting the variational distribution q, instead of using a fixed one. This, together with conditional
probability sharing, leads to an extension of the expectation maximization (EM) algorithm for learning
SBNs, which also allows us use of the Bayesian formulation. Specifically, at the E-step of the n-th
iteration, an adaptive lower bound is constructed through (6) using the conditional probabilities of
the missing root node

q
(n)
k (S1) = p(S1|T u

k , p̂
EM,(n)), k = 1, . . . ,K

given p̂EM,(n), the current estimate of the CPDs. The lower bound contains a constant term that only
depends on the current estimates, and a score function for the CPDs p

Q(n)(Du; p) =

K∑
k=1

Q(n)(T u
k ; p) =

K∑
k=1

∑
S1∼Tu

k

q
(n)
k (S1)

(
log p(S1) +

∑
i>1

log p(Si|Sπi)
)

which is then optimized at the M-step. This variational perspective of the EM algorithm was found
and discussed by Neal and Hinton [1998]. The following theorem guarantees that maximizing (or
improving) the Q score is sufficient to improve the objective likelihood.
Theorem 1. Let T u be an unrooted tree. ∀p,

Q(n)(T u; p)−Q(n)(T u; p̂EM,(n)) ≤ logL(T u; p)− logL(T u; p̂EM,(n)).

When data is insufficient or the number of parameters is large, the EM approach also easily incorpo-
rates regularization [Dempster et al., 1977]. Taking conjugate Dirichlet priors [Buntine, 1991], the
regularized score function is

Q(n)(Du; p) +
∑
s1∈Cr

αm̃u
s1 log p(S1 = s1) +

∑
s|t∈Cch|pa

αm̃u
s,t log p(s|t)

where m̃u
s1 , m̃

u
s,t are the equivalent sample counts and α is the global regularization coefficient.

We then simply maximize the regularized score in the same manner at the M-step. Similarly, this
guarantees that the regularized log-likelihood is increasing at each iteration. We summarize the EM
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Figure 4: Performance on a challenging tree probability estimation problem with simulated data.
Left: The KL divergence of CCD and sbn-em estimates over a wide range of degree of diffusion β
and sample size K. Right: A comparison among different methods for a fixed K, as a function of β
and for a fixed β, as a function of K. Error bar shows one standard deviation over 10 runs.

approach in Algorithm 1. The computational complexities of maximum lower bound estimate and
each EM iteration are both O(KN), the same as CCD and SBNs for rooted trees. See more detailed
derivation and proofs in the SM. In practice, EM usually takes several iterations to converge and
hence could be more expensive than other methods. However, the gain in approximation makes it a
worthwhile trade-off (Table 1). We use the maximum SA lower bound algorithm (sbn-sa), the EM
algorithm (sbn-em) and EM with regularization (sbn-em-α) in the experiment section.

5 Experiments
We compare sbn-sa, sbn-em, sbn-em-α to the classical sample relative frequency (SRF) method
and CCD on a synthetic data set and on estimating phylogenetic tree posteriors for a number of
real data sets. For all SBN algorithms, we use the simplest SBN, B∗X , which we find provide
sufficiently accurate approximation in the tree probability estimation tasks investigated in our ex-
periments. For sbn-em-α, we use the sample frequency counts of the root splits and parent-child
subsplit pairs as the equivalent sample counts (see Algorithm 1). The code is made available at
https://github.com/zcrabbit/sbn.
Simulated Scenarios To empirically explore the behavior of SBN algorithms relative to SRF and
CCD, we first conduct experiments on a simulated setup. We choose a tractable but challenging
tree space, the space of unrooted trees with 8 leaves, which contains 10395 unique trees. The trees
are given an arbitrary order. To test the approximation performance on targets of different degrees
of diffusion, we generate target distributions by drawing samples from the Dirichlet distributions
Dir(β1) of order 10395 with a variety of βs. The target distribution becomes more diffuse as β
increases. Simulated data sets are then obtained by sampling from the unrooted tree space according
to these target distributions with different sample sizes K. The resulting probability estimation
is challenging in that the target probabilities of the trees are assigned regardless of the similarity
among them. For sbn-em-α, we adjust the regularization coefficient using α = 50

K for different
sample sizes. Since the target distributions are known, we use KL divergence from the estimated
distributions to the target distributions to measure the approximation accuracy of different methods.
We vary β and K to control the difficulty of the learning task, and average over 10 independent
runs for each configuration. Figure 4 shows the empirical approximation performance of different
methods. We see that the learning rate of CCD slows down very quickly as the data size increases,
implying that the conditional clade independence assumption could be too strong to provide flexible
approximations. On the other hand, sbn-em keeps learning efficiently from the data when more
samples are available. While all methods tend to perform worse as β increases and perform better as
K increases, SBN algorithms performs consistently much better than CCD. Compared to sbn-sa,
sbn-em usually greatly improves the approximation with the price of additional computation. When
the degree of diffusion is large or the sample size is small, sbn-em-α gives much better performance
than the others, showing that regularization indeed improves generalization. See the SM for a runtime
comparison of different methods with varying K and β.
Real Data Phylogenetic Posterior Estimation We now investigate the performance on large un-
rooted tree space posterior estimation using 8 real datasets commonly used to benchmark phylogenetic
MCMC methods [Lakner et al., 2008, Höhna and Drummond, 2012, Larget, 2013, Whidden and
Matsen, 2015] (Table 1). For each of these data sets, 10 single-chain MrBayes [Ronquist et al., 2012]
replicates are run for one billion iterations and sampled every 1000 iterations, using the simple Jukes
and Cantor [1969] substitution model. We discard the first 25% as burn-in for a total of 7.5 million
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Figure 5: Comparison on DS1, a data set with multiple posterior modes. Left/Middle: Ground
truth posterior probabilities vs CCD and sbn-em estimates. Right: Approximation performance as a
function of sample size. One standard deviation error bar over 10 replicates.

Table 1: Data sets used for phylogenetic posterior estimation, and approximation accuracy results of
different methods across datasets. Sampled trees column shows the numbers of unique trees in the
standard run samples. The results are averaged over 10 replicates.

DATA SET REFERENCE (#TAXA, #SITES) TREE SPACE
SIZE

SAMPLED
TREES

KL DIVERGENCE TO GROUND TRUTH

SRF CCD SBN-SA SBN-EM SBN-EM-α

DS1 HEDGES ET AL. [1990] (27, 1949) 5.84×1032 1228 0.0155 0.6027 0.0687 0.0136 0.0130
DS2 GAREY ET AL. [1996] (29, 2520) 1.58×1035 7 0.0122 0.0218 0.0218 0.0199 0.0128
DS3 YANG AND YODER [2003] (36, 1812) 4.89×1047 43 0.3539 0.2074 0.1152 0.1243 0.0882
DS4 HENK ET AL. [2003] (41, 1137) 1.01×1057 828 0.5322 0.1952 0.1021 0.0763 0.0637
DS5 LAKNER ET AL. [2008] (50, 378) 2.84×1074 33752 11.5746 1.3272 0.8952 0.8599 0.8218
DS6 ZHANG AND BLACKWELL [2001] (50, 1133) 2.84×1074 35407 10.0159 0.4526 0.2613 0.3016 0.2786
DS7 YODER AND YANG [2004] (59, 1824) 4.36×1092 1125 1.2765 0.3292 0.2341 0.0483 0.0399
DS8 ROSSMAN ET AL. [2001] (64, 1008) 1.04×10103 3067 2.1653 0.4149 0.2212 0.1415 0.1236

posterior samples per data set. These extremely long “golden runs” form the ground truth to which
we will compare various posterior estimates based on standard runs. For these standard runs, we run
MrBayes on each data set with 10 replicates of 4 chains and 8 runs until the runs have ASDSF (the
standard convergence criteria used in MrBayes) less than 0.01 or a maximum of 100 million iterations.
This conservative setting has been shown to find all posterior modes on these data sets [Whidden and
Matsen, 2015]. We collect the posterior samples every 100 iterations of these runs and discard the
first 25% as burn-in. We apply SBN algorithms, SRF and CCD to the posterior samples in each of the
10 replicates for each data set. For sbn-em-α, we use α = 0.0001 to give some weak regularization2.
We use KL divergence to the ground truth to measure the performance of all methods.

Previous work [Whidden and Matsen, 2015] has observed that conditional clade independence does
not hold in multimodal distributions. Figure 5 shows a comparison on a typical data set, DS1, that
has such a “peaky” distribution. We see that CCD underestimates the probability of trees within the
subpeak and overestimate the probability of trees between peaks. In contrast, sbn-em significantly
removes these biases, especially for trees in the 95% credible set.

When applied to a broad range of data sets, we find that SBNs consistently outperform other
methods (Table 1). Due to its inability to generalize beyond observed samples, SRF is worse
than generalizing probability estimators except for an exceedingly simple posterior with only 7
sampled trees (DS2). CCD is, again, comparatively much worse than SBN algorithms. With weak
regularization, sbn-em-α gives the best performance in most cases.

To illustrate the efficiency of the algorithms on training data size, we perform an additional study on
DS1 with increasing sample sizes and summarize the results in the right panel of Figure 5. As before,
we see that CCD slows down quickly while SBN algorithms, especially fully-capable SBN estimators
sbn-em and sbn-em-α, keep learning efficiently as the sample size increases. Moreover, SBN
algorithms tend to provide much better approximation than SRF when fewer samples are available,
which is important in practice where large samples are expensive to obtain.

2The same α is used for the real datasets since the sample sizes are roughly the same, although the number
of unique trees are quite different.
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6 Conclusion
We have proposed a general framework for tree probability estimation based on subsplit Bayesian
networks. SBNs allow us to exploit the similarity among trees to provide a wide range of flexible
probability estimators that generalize beyond observations. Moreover, they also allow many efficient
Bayesian network learning algorithms to be extended to tree probability estimation with ease. We
report promising numerical results demonstrating the importance of being both flexible and generaliz-
ing when estimating probabilities on trees. Although we present SBNs in the context of leaf-labeled
bifurcating trees, it can be easily adapted for general leaf-labeled trees by allowing partitions other
than subsplits (bipartitions) of the clades in parent nodes. We leave for future work investigating
the performance of more complicated SBNs for general trees, structure learning of SBNs, deeper
examination of the effect of parameter sharing, and further applications of SBNs to other probabilistic
learning problems in tree spaces, such as designing more efficient tree proposals for MCMC transition
kernels and providing flexible and tractable distributions for variational inference.
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