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1 Calculations required for the covariances of the local spectrum GP

1.1 Prior covariance of local spectrum: general case

The covariance of values of the local spectrum F. { f(t)} and F. { f(¢')} is given by:
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where (&) = F{K(t) = [ K (t)e~72m¢tdt is the Fourier transform of the kernel K.
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1.2 Prior covariance of local spectrum: spectral mixture case

Replacing the spectral mixture kernel Kgy(7) = Z?:l o2 exp (—7,7?) cos(2m6, T) in the above
expression, we have
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1.3 Covariance between the signal y and the local spectrum F.(£): general case
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1.4 Covariance between the signal y and the local spectrum 7. (¢): Gaussian mixture case
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now calculate K,z and replace for the above term
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2 Proposed model as the limit of the Lomb-Scargle method

Let us consider the model assumed by Lomb-Scargle (LS)

s
t) = Z a; cos(w;t) + b; sin(w;t) (12)
i=1
where {w;}?_, are fixed frequencies and the weights a = [a;]7_, and b = [b;]7_, are the free

parameters. We have used angular-frequency notation according to the original formulation of the LS
method, this can be converted to natural frequencies used in the rest of the paper by w = 27€.

We convert the expression in eq.(I2)) into a probabilistic model by equipping it with prior distribution
over the weights, this priori is chosen so that a and b are independent from one another and are both
normally distributed with zero mean and variance 32 = [%; ;]7,_,, that is

p(a,b) = p(a)p(b) = N(a;0,X)N (b;0,%) (13)



Accordingly, fs is a Gaussian process (GP), as it is a sum of basis functions with Gaussian weights.
The mean of fg is zero and its covariance is given by

S
K(t,t) =E[fs(t)fs(t)] = Y Eijcos(wit — w;t') (14)
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This is now a GP generative model for the latent function with a nonstationary covariance function
(not a function of ¢ — ¢') arising by the choice of a finite number of frequencies w € R. Considering
and infinite number of frequencies and replacing w; = w and w; = w’ for notational consistency with
the infinite-dimensional case, we have

K(t,t) = ] K(w,w") cos(w;it — w;t")dwdw’. (15)
R
To calculate the above expression explicitly, we choose covarianceﬂ as
K(w,w') = 028, e V@m0 =(W=0)? (16)

meaning that nonzero weights are only possible for frequencies sufficiently close to 6 and that the
weights for different frequencies are uncorrelated. Replacing K (w, w') into eq. (I3)), we obtain
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that is, the spectral mixture kernel considered above.

K(t,t)= exp(276?) exp (— ) cos(f(t —t')) (17)

Therefore, we have shown that when the model assumed by the Lomb-Scargle model is considered
with an infinite number of components, and a Gaussian prior over the weights as defined in eq. (16),
it converges to the generative model used in the proposed BNSE approach.
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