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Abstract

Expectation-Maximization (EM) is a popular tool for learning latent variable
models, but the vanilla batch EM does not scale to large data sets because the whole
data set is needed at every E-step. Stochastic Expectation Maximization (sEM)
reduces the cost of E-step by stochastic approximation. However, sEM has a slower
asymptotic convergence rate than batch EM, and requires a decreasing sequence of
step sizes, which is difficult to tune. In this paper, we propose a variance reduced
stochastic EM (sEM-vr) algorithm inspired by variance reduced stochastic gradient
descent algorithms. We show that sEM-vr has the same exponential asymptotic
convergence rate as batch EM. Moreover, sEM-vr only requires a constant step size
to achieve this rate, which alleviates the burden of parameter tuning. We compare
sEM-vr with batch EM, sEM and other algorithms on Gaussian mixture models and
probabilistic latent semantic analysis, and sEM-vr converges significantly faster
than these baselines.

1 Introduction

Latent variable models are an important class of models due to their wide applicability across machine
learning and statistics. Examples include factor analysis in psychology and the understanding of
human cognition [32], hidden Markov models for modelling sequences, e.g. speech and language
[29], and DNA [15], document and topic models [17, 4] and mixture models for density estimation
and clustering [26]. Expectation Maximization (EM) [12] is a basic tool for maximum likelihood
estimation for the parameters in latent variable models. It is an iterative algorithm with two steps:
an E-step which calculates the expectation of sufficient statistics under the latent variable posteriors
given the current parameters, and an M-step which updates the parameters given the expectations.

With the phenomenal growth in big data sets in recent years, the basic batch EM (bEM) algorithm
in [12] is quickly becoming infeasible because the whole data set is needed at every E-step. Cappé
and Moulines [6] proposed a stochastic EM (sEM) algorithm for exponential family models, which
reduces the time complexity for the E-step by approximating the full-batch expectation with an
exponential moving average over minibatches of data. sEM has been adopted in many applications
including natural language processing [24], topic modeling [16, 14] and hidden Markov models [5].
However, sEM has a slow asymptotic convergence rate due to the high variance of each update.
Unlike the original batch EM (bEM), which converges exponentially fast near a local optimum, the
distance towards a local optimum only decreases at the rate O(1/

√
T ) for sEM, where T is the
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number of iterations. Moreover, sEM requires a decreasing sequence of step sizes to converge. The
decay rate of step sizes is often difficult to tune.

Recently, there has been much progress in accelerating stochastic gradient descent (SGD) by reducing
the variance of the stochastic gradients, including SAG, SAGA and SVRG [22, 20, 11]. These
algorithms achieve better convergence rates by utilizing infrequently computed batch gradients as
control variates. Such ideas have also been brought into gradient-based Bayesian learning algorithms,
including stochastic variational inference [25], as well as stochastic gradient Markov-chain Monte-
Carlo [13, 8, 7] (SGMCMC).

In this paper, we develop a variance reduced stochastic EM algorithm (sEM-vr). In each epoch, that is,
a full pass through the data set, our algorithm computes the full batch expectation as a control variate,
and uses this to reduce the variance of minibatch updates in that epoch. Let E be the number of
epochs and M be the number of minibatch iterations per epoch. We show that near a local optimum,
our algorithm, with a constant step size, enjoys a convergence rate of O((M−1 logM)E/2) to the
optimum. Like bEM, our convergence rate is exponential with respect to the number of epochs,
and is asymptotically faster than sEM. We also show that our algorithm converges globally with a
constant step size, under stronger assumptions. Note that leveraging variance reduction ideas in sEM
is not straightforward, since sEM is not a stochastic gradient descent algorithm but rather a stochastic
approximation [21] algorithm. In particular, the proof techniques we utilize are different than those in
stochastic gradient descent algorithms. We demonstrate our algorithm on Gaussian mixture models
and probabilistic latent semantic analysis [18]. sEM-vr achieves significantly faster convergence
comparing with sEM, bEM, and other gradient-based and Bayesian algorithms.

2 Background

We review batch and stochastic EM algorithms in this section. Throughout the paper we focus on
exponential family models with tractable E- and M-steps, which stochastic EM [6] is designed for.

2.1 EM Algorithm

The EM algorithm is designed for models with some observed variable x and hidden variable h.
We assume an exponential family joint distribution p(x, h; θ) = b(x, h) exp{η(θ)>φ(x, h)−A(θ)}
parameterized by θ. Given a data set of N (� 1) observations X = {xi}Ni=1, we want to obtain
a maximum likelihood estimation (MLE) of the parameter θ, by maximizing the log marginal
likelihood L(θ) :=

∑N
i=1 log p(xi; θ) =

∑N
i=1 log

∫
hi
p(xi, hi; θ)dθ, where the variables (xi, hi)

are i.i.d. given θ. Denote H = {hi}Ni=1. Batch expectation-maximization (bEM) [12] optimizes the
log marginal likelihood L(θ) by constructing a lower bound of it:

L(θ) ≥ Q(θ; θ̂)− Ep(H|X;θ̂)

[
log p(H|X, θ̂)

]
, (1)

Q(θ; θ̂) := Ep(H|X;θ̂) [log p(X,H; θ)] = N
(
η(θ)>F (θ̂)−A(θ)

)
+ constant, (2)

where we define F (θ̂) := 1
N

∑N
i=1 fi(θ̂) as the full-batch expected sufficient statistics, and where

fi(θ̂) := Ep(hi|xi;θ̂) [φ(xi, hi)] is the expected sufficient statistics conditioned on observed datum xi.

Let θ̂e be the estimated parameter at iteration or epoch e, where each epoch is a complete pass through
the data set. In the E-step, bEM tightens the bound in Eq. (1) by setting θ̂ = θ̂e, and computes the
expected sufficient statistics F (θ̂e). In the M-step, bEM finds a maximizer θ̂e+1 of the lower bound
with respect to θ, by solving the optimization problem argmaxθ{η(θ)>F (θ̂)−A(θ)}. The solution
is denoted as R(F (θ̂)), and is assumed to be tractable. In summary, the bEM updates can be written
simply as

E-step: compute F (θ̂e), M-step: let θ̂e+1 = R(F (θ̂e)). (3)

The algorithm is also applicable to maximum a posteriori (MAP) estimation of parameters, with a
conjugate prior p(θ;α) = exp{η(θ)>α−A(θ)} with the hyperparameter α. Instead of L(θ), MAP
maximizes L(θ) + log p(θ;α) ≥ Nη(θ)>

(
α/N + F (θ̂)

)
−NA(θ) + constant, and we still apply

Eq. (3), but with fi(θ̂) := α/N + Ep(hi|xi;θ̂) [φ(xi, hi)] instead.
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2.2 Stochastic EM Algorithm

When the data set is large, that is, N is large, computing F (θ̂t) in the E-step is too expensive because
it needs a full pass though the entire data set. Stochastic EM (sEM) [6] avoids this by maintaining an
exponentially moving average ŝt as an approximation of the full average F (θ̂t). At iteration t, sEM
picks a single random datum i, and updates:

E step: ŝt+1 = (1− ρt)ŝt + ρtfi(θ̂t), M step: θ̂t+1 = R(ŝt+1),

where (ρt) is a sequence of step sizes that satisfy
∑
t ρt = ∞ and

∑
t ρ

2
t < ∞. We deliberately

choose different iteration indices e and t for bEM and sEM to emphasize their different time
complexity per iteration. In practice, sEM can take a minibatch of data instead of a single datum per
iteration, but we stick to a single datum for cleaner presentation. The two sEM updates can be rolled
into a single update

ŝt+1 = (1− ρt)ŝt + ρtfi(ŝt). (4)

where for simplicity we have overloaded the notation with fi(s) := fi(R(s)). This first maps
s, which can be interpreted as the estimated mean parameter of the model, into the parameters
θ = R(s), before computing the required expected sufficient statistics fi(θ) under the posterior given
observation xi. Which of the two definitions should be clear from the type of its argument and we
feel this helps reduce notational burden on the reader. We similarly overload F (s) := F (R(s)) and
L(s) := L(R(s)) accordingly, so we can also write bEM updates (Eq. 3) as simply ŝe+1 = F (ŝe).
Intuitively, we want to find a stationary point s∗ under bEM iterations, i.e., s∗ = F (s∗). We can view
bEM as a fixed-point algorithm, and sEM as a Robbins-Monro [30] algorithm to solve the equation
s∗ = F (s∗).

Because of the cheap updates, sEM can converge faster than bEM on large data sets in the beginning.
However, due to the variance of the estimator ŝt, sEM has a slower asymptotic convergence rate than
bEM for finite data sets. Specifically, let s∗ = F (s∗) be a stationary point, Cappe and Monlines [6]
showed that E ‖ŝT − s∗‖2 = O(ρT ) for sEM, which is at best O(T−1) since

∑
t ρt = ∞. In

contrast, Dempster et al. [12] showed that bEM converges as ‖ŝE − s∗‖2 ≤ (1− λ)−2E ‖ŝ0 − s∗‖,
where 1 − λ ∈ [0, 1) is a constant that is defined in Sec. 3.3. As long as the data set is finite, the
exponential rate of bEM is faster than sEM. 2 Moreover, sEM needs a decreasing sequence of step
sizes to converge, whose decay rate is difficult to tune.

3 Variance Reduced Stochastic Expectation Maximization

In this section, we describe a variance reduced stochastic EM algorithm (sEM-vr), and develop the
theory for its convergence. sEM-vr enjoys an exponential convergence rate with a constant step size.

3.1 Algorithm Description

We run the algorithm for E epochs and M minibatch iterations per epoch, so that there are T := ME
iterations in total. For simplicity we choose M = N and use minibatches of size 1, though our
analysis is not limited to this case. Each epoch has the same time complexity as bEM. We index
iteration t in epoch e as e, t. Let ŝe,t be the estimated sufficient statistics at iteration e, t. Starting
from the initial estimate ŝ0,0, sEM-vr performs the following updates in epoch e,

Stochastic EM with Variance Reduction
1. Compute F (ŝe,0), and save F (ŝe,0) as well as ŝe,0
2. For each iteration t = 1, . . . ,M , randomly sample a datum i, and update

ŝe,t+1 = (1− ρ)ŝe,t + ρ [fi(ŝe,t)− fi(ŝe,0) + F (ŝe,0)] . (5)

3. Let ŝe+1,0 = ŝe,M .

Let Ee,t and Vare,t be the expectation and variance over the random index i in iteration e, t. Comparing
Eq. (5) with Eq. (4), we observe that the sEM and sEM-vr updates have the same expectation

2Without affecting the convergence rates, we slightly adjust the convergence theorems in [6, 12] to view
them in a uniformed way, see Appendix A for details.

3



Et [ŝt+1] = (1 − ρ)ŝt + ρF (ŝt). However their variances are different: sEM has Vart [ŝt+1] =
ρ2tVart[fi(ŝt)], while sEM-vr has Vare,t [ŝe,t+1] = ρ2Vare,t [fi(ŝe,t)− fi(ŝe,0)]. If the algorithm
converges, i.e., the sequence (ŝe,t) converges to a point s∗, and fi(·) is continuous, the variance
of sEM-vr will converge to zero, while that of sEM will remain positive. Therefore, sEM-vr has
asymptotically smaller variance than sEM, and we will see that this leads to better asymptotic
convergence rates.

The time complexity of sEM-vr per epoch is the same as bEM and sEM, with a constant factor up
to 3, for computing fi(ŝe,t), fi(ŝe,0) and F (ŝe,0). The space complexity also has a constant factor
up to 3, for storing ŝe,0 and F (ŝe,0) along with ŝe,t. In practice, the difference is less than 3 times
because the time and space costs for other aspects of the methods are the same, e.g. data storage.

3.2 Related Works

A possible alternative to sEM is Titterington’s online algorithm [33], which replaces the exact M-step
with a gradient ascent step to optimize Q(θ; θ̂), where the gradient is multiplied with the inverse
Fisher information of p(x, h; θ). Titterington’s algorithm is locally equivalent to sEM [6]. However,
as argued by Cappé and Moulines [6], Titterington’s algorithm has several issues, including the Fisher
information being expensive to compute in high dimensions, the need for explicit matrix inversion,
and that the updated parameters are not guaranteed to be valid. Moreover, leveraging variance reduced
stochastic gradient algorithms [20, 22, 11] for Titterington’s algorithm is not straightforward as the
Fisher information matrix changes with θ. Zhu et al. has proposed a variance reduced stochastic
gradient EM algorithm [39]. There are also some theoretical analysis of EM algorithm for high
dimensional data [3, 35].

Instead of performing point estimation of parameters, Bayesian inference algorithms, including
variational inference (VI) and Markov-chain Monte-Carlo (MCMC), can also be adopted, to infer
the posterior distribution of parameters. Variance reducing techniques have also been applied to
these settings, including smoothed stochastic variational inference (SSVI) [25] and variance reduced
stochastic gradient MCMC (VRSGMCMC) algorithms [13, 8, 7]. However, convergence guarantees
for SSVI have not been developed, while VRSGMCMC algorithms are typically much slower than
sEM-vr due to the intrinsic randomness of MCMC. For example, the time complexity to converge to
an ε-precision in terms of the 2-Wasserstein distance of the true posterior and the MCMC distribution
isO(N+κ3/2

√
d/ε), where κ is a condition number and d is the dimensionality of the parameters [7].

3.3 Local Convergence Rate

We analyze the local convergence rate of a sequence {ŝe,t} of sEM-vr iterates to a stationary point s∗
with s∗ = F (s∗). Let θ∗ := R(s∗) be the natural parameter corresponding to the mean parameter s∗.

Theorem 1. If

(a) The Hessian∇2L(θ∗) is negative definite, i.e., θ∗ is a strict local maximum of L(θ∗).
(b) ∀i, fi(s) is Lf -Lipschitz continuous, and F (s) is βf -smooth.
(c) ∀e, t, ‖ŝe,t − s∗‖ < λ/βf , where 1− λ is the maximum eigenvalue of J∗ := ∂F (s∗)/∂s∗.

Then, for any step size ρ ≤ λ/(32L2
f ), we have

E ‖ŝE,0 − s∗‖2 ≤
[
exp (−Mλρ/4) + 32L2

fρ/λ
]E ‖ŝ0,0 − s∗‖2 . (6)

In particular, if ρ = ρ∗ := 4 log(M/κ2)/(λM), where κ2 := 128L2
f/λ

2, then we have

E ‖ŝE,0 − s∗‖2 ≤
[(

1 + log(M/κ2)
)
κ2/M

]E ‖ŝ0,0 − s∗‖2 . (7)

Remarks. Assumption (a) follows directly from the original EM paper (Theorem 4) [12]. [12]
analyzed the convergence only in an infinitesimal neighbourhood of s∗, while Assumption (c) gives
an explicit radius of convergence. Assumption (b) is new and required to control the variance and
radius of convergence. Note also that we analyse the convergence of the mean parameters, while
[12] analysed that for parameters. However they are equivalent if R(s) is Lipschitz continuous. In
Appendix A.1 we show that negative definite ∇2L(θ∗) in Assumption (a) implies that λ > 0 in
Assumption (c).
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Proof. We first analyze the convergence behavior at a specific epoch e, and omit the epoch index e

for concise notations. We further denote ∆t := ŝt − s∗ for any t. By Eq. (5),

Et ‖∆t+1‖2 = Et ‖(1− ρ)ŝt + ρF (ŝt)− s∗ + ρ [fi(ŝt)− fi(ŝ0)− F (ŝt) + F (ŝ0)]‖2

= ‖(1− ρ)ŝt + ρF (ŝt)− s∗‖2 + ρ2Et ‖fi(ŝt)− fi(ŝ0)− F (ŝt) + F (ŝ0)‖2 , (8)

where the second equality is due to Et [fi(ŝe,t)− fi(ŝe,0) + F (ŝe,0)] = F (ŝe,t). We have

‖(1− ρ)ŝt + ρF (ŝt)− s∗‖2 = ‖(1− ρ)∆t + ρ(F (ŝt)− s∗) + ρJ∗∆t − ρJ∗∆t‖2

≤
[
‖(1− ρ)∆t + ρJ∗∆t‖+ ρ ‖F (ŝt)− s∗ − J∗∆t‖

]2
≤
[
(1− ρλ) ‖∆t‖+ (ρ/2)βf ‖∆t‖2

]2
= [1− ρ (λ− βf ‖∆t‖ /2)]

2 ‖∆t‖2

≤ (1− ρλ/2)
2 ‖∆t‖2 ≤ (1− ρλ/2) ‖∆t‖2 , (9)

where the second line utilizes triangular inequality, the third line utilizes ‖(1− ρ)I + ρJ∗‖ ≤
1 − ρ + ρ(1 − λ) = 1 − ρλ,where ‖·‖ is the `2 operator norm, and the smoothness in (b), which
implies ‖F (ŝt)− s∗ − J∗(ŝt − s∗)‖ ≤ (βf/2) ‖ŝt − s∗‖2. The last line utilizes (c).

By (b), F is Lf -Lipschitz and ∀i, fi − F is 2Lf -Lipschitz continuous. Therefore

Et ‖fi(ŝt)− fi(ŝ0)− F (ŝt) + F (ŝ0)‖2 ≤ 4L2
f ‖ŝt − ŝ0‖

2 ≤ 8L2
f (‖∆t‖2 + ‖∆0‖2). (10)

Combining Eq. (8, 9, 10), and utilizing our assumption ρ ≤ λ/(32L2
f ), we have

E ‖∆t+1‖2 ≤
(
1− ρλ/2 + 8ρ2L2

f

)
‖∆t‖2 + 8ρ2L2

f ‖∆0‖2 ≤ (1− ρλ/4) ‖∆t‖2 + 8ρ2L2
f ‖∆0‖2 .

We get Eq. (6, 7) by analyzing the sequence at+1 ≤ (1 − ερ)at + cρ2a0, where at = E ‖∆t‖2,
ε = λ/4 and c = 8L2

f . The analysis is in Appendix B.

Comparison with bEM: As mentioned in Sec. 2.2, bEM has E ‖ŝE − s∗‖2 ≤ (1−λ)2E ‖ŝ0 − s∗‖2.
The distance decreases exponentially for both bEM and sEM-vr, but at different speeds. If M is large,
sEM-vr (Eq. 7) converges much faster than bEM because

(
1 + log(M/κ2)

)
κ2/M � (1 − λ)2,

thanks to its cheap stochastic updates.

Comparison with sEM: As mentioned in Sec. 2.2, sEM has E ‖ŝT − s∗‖2 = O(T−1), which is
not exponential, and is asymptotically slower than sEM-vr. The key difference is we can bound the
variance term for sEM-vr by ‖ŝt − ŝ0‖2 in Eq. (10), so the variance goes to zero as (ŝe,t) converges.
The advantage of sEM-vr over sEM is especially significant when E is large. Moreover, sEM requires
a decreasing sequence of step sizes to converge [6], which is more difficult to tune comparing with
the constant step size of sEM-vr.

3.4 Global Convergence

Theorem 1 only considers the case near a local maximum of the log marginal likelihood. We now
show that under stronger assumptions, there exists a constant step size, such that sEM-vr can globally
converge to a stationary point s∗ = F (s∗), one with ∇L(s∗) = 0 [12].

Theorem 2. Suppose

(a) The natural parameter function η(θ) is Lη-Lipschitz, and fi(s) is Lf -Lipschitz for all i,
(b) for any x and h, log p(x, h; θ) is γ-strongly-concave w.r.t. θ.

Then for any constant step size ρ < γ/ (M(M − 1)LηLf ), sEM-vr converges to a stationary point,
starting from any valid sufficient statistics vector ŝ0,0.

A sufficient condition for (b) is the exponential family is canonical, i.e., η(θ) = θ, and we want the
MAP estimation instead of MLE, where the prior log p(θ) is γ-strongly-concave. We leave the proof
in Appendix C. The idea is first show that sEM-vr is a generalized EM (GEM) algorithm [36], which
improves E[Q(θ; θ̂)] after each epoch, and then apply Wu’s convergence theorem for GEM [36].
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Figure 1: Toy Gaussian Mixture. Left:
log10 E ‖µ̂t − µ∗‖

2, Right: log10 Vart[µ̂t]/ρ2t , X-
axis: number of epochs.

Data set D V |I|
NIPS [1] 1.5k 12k 1.93m
NYTimes [1] 0.3m 102k 99m
Wiki [38] 3.6m 8k 524m
PubMed [1] 8.1m 141k 731m

Table 1: Statistics of datasets for pLSA.
k=thousands, m=millions.

4 Applications and Experiments

We demonstrate the application of sEM-vr on a toy Gaussian mixture model and probabilistic latent
semantic analysis.

4.1 Toy Gaussian Mixture

We fit a mixture of two Gaussians, p(x|µ) = 0.2N (µ, 1) + 0.8N (−µ, 1), with a single unknown
parameter µ. Let X = {xi}Ni=1 be the data set, and hi ∈ {1, 2} be the cluster assignment
of xi. We write hik := I(hi = k) as a shortcut, where I(·) is the indicator function. The
joint likelihood is p(X,H|µ) ∝ exp{

∑
i

∑
k hik logN (xi;µk, 1)} ∝ exp{

∑
i η(µ)>φ(xi, hi)},

where the natural parameter η(µ) = (µ,−µ,−µ2/2, µ2/2) and the sufficient statistics φ(xi, hi) =
(xihi1, xihi2, hi1, hi2). Let γik(µ) = p(hi = k|xi, µ) ∝ πiN (xi;µk, 1) for k ∈ {1, 2} be
the posterior probabilities. The expected sufficient statistics fi(µ) = Ep(hi,xi|µ)φ(xi, hi) =
(xiγi1(µ), xiγi2(µ), γi1(µ), γi2(µ)), and F (µ) = 1/N

∑
i fi(µ). The mapping from sufficient

statistics to parameters is R(s) = (s1 − s2)/(s3 − s4). bEM, sEM, and sEM-vr updates are then
defined respectively as Eq. (3), Eq. (4), and Eq. (5).

We construct a dataset of N = 10, 000 samples drawn from the model with µ = 0.5, and run bEM
until convergence (to double precision) to obtain the MLE µ∗. We then measure the convergence of
E ‖µ̂t − µ∗‖2 as well as the variance term Vart[µ̂t]/ρ2t for bEM, sEM, and sEM-vr with respective to
the number of epochs. Vart[µ̂t] is always quadratic with respect to the step size ρt, so we divide it by
ρ2t to cancel the effect of the step size, and just study the intrinsic variance. We tune the step size
manually, and set ρt = 3/(t+ 10) for sEM and ρ = 0.003 for sEM-vr.

The result is shown as Fig. 1. sEM converges faster than bEM in the first 8 epochs, and then it
is outperformed by bEM, because sEM is asymptotically slower, as mentioned in Sec. 2.2. The
convergence curve of sEM-vr exhibits a staircase pattern. In the beginning of each epoch it converges
very fast because ‖ŝe,t − ŝe,0‖ is small, so the variance is small. The variance then becomes larger
and the convergence slows down. Then we start a new epoch and compute a new F (ŝe,0), so that the
convergence is fast again. On the other hand, the variance of sEM remains constant.

4.2 Probabilistic Latent Semantic Analysis

4.2.1 Model and Algorithm

Probabilistic Latent Semantic Analysis (pLSA) [18] represents text documents as mixtures of topics.
pLSA takes a list I of tokens, where each token i is represented by a pair of document and word IDs
(di, vi), that indicates for the presence of a word vi in document di. Denote [n] = {1, . . . , n}, we
have di ∈ [D] and vi ∈ [V ]. pLSA assigns a latent topic zi ∈ [K] for each token, and defines the joint
likelihood as p(I, Z|θ,φ) =

∏
i∈I Cat(zi; θdi)Cat(vi;φzi), with the parameters θ = {θd}Dd=1 and

φ = {φk}Kk=1. We have priors p(θd) = Dir(θd;K,α′) and p(φk) = Dir(φk;V, β′), where Dir(K,α)
is a K-dimensional symmetric Dirichlet distribution with the concentration parameter α, and find
an MAP estimation argmaxθ,φ log

∑
Z p(W,Z|θ,φ) + log p(θ) + log p(φ). Only the updates are

presented here and the derivation is in Appendix D. Let γik(θ,φ) := p(zi = k|vi,θ,φ) ∝ θdi,kφk,vi
be the posterior topic assignment of the token vi, bEM updates γdk(θ,φ) =

∑
i∈Id γik(θ,φ), and

6



γkv(θ,φ) =
∑
i∈Iv γik(θ,φ) in E-step, where Id = {(di, vi)|di = d} and Iv = {(di, vi)|vi = v}.

M-step is θdk = (γdk+α)/(
∑
k γdk+Kα), and φkv = (γkv+β)/(

∑
v γkv+V β), where α = α′−1

and β = β′ − 1. We distinguish (γik, γdk, γvk) and (I, Id, Iv) by indices for simplicity.

sEM approximates the full batch expected sufficient statistics γdk and γkv with exponential moving av-
erages ŝt,d,k and ŝt,k,v at iteration t, and updates ŝt+1,d,k = (1−ρt)ŝt,d,k+ρt

|I|
|Î|

∑
i∈Îd γik(θ̂t, φ̂t),

and ŝt+1,k,v = (1 − ρt)ŝt,k,v + ρt
|I|
|Î|

∑
i∈Îv γik(θ̂t, φ̂t), where we sample a minibatch Î ⊂ I of

tokens per iteration, Îd, Îv are defined in the same way as Id, Iv. θ̂t and φ̂t are computed in the
M-step with ŝt,d,k and ŝt,k,v . This sEM algorithm is known as SCVB0 [16].

sEM-vr updates as ŝe,t+1,d,k = (1 − ρ)ŝe,t,d,k + ρ |I||Î|
∑
i∈Îd(γik(θ̂e,t, φ̂e,t) − γik(θ̂e,0, φ̂e,0)) +

ργdk(θ̂e,0, φ̂e,0), and ŝe,t+1,k,v = (1− ρ)ŝe,t,k,v + ρ |I||Î|
∑
i∈Îv (γik(θ̂e,t, φ̂e,t)− γik(θ̂e,0, φ̂e,0)) +

ργkv(θ̂e,0, φ̂e,0), where γdk(θ̂e,0, φ̂e,0) and γkv(θ̂e,0, φ̂e,0) is computed by bEM per epoch. We
have pseudocode for sEM and sEM-vr in Appendix D.

If θ is integrated out instead of maximized, we recover an MAP estimation [14] of latent Dirichlet
allocation (LDA) [4]. Many existing algorithms for LDA actually optimize the pLSA objective as
an approximation of the LDA objective, including CVB0 [2, 31, 19], SCVB0 [16], BP-LDA [10],
ESCA [37], and WarpLDA [9]. This approximation works well in practice when the number of topics
is small [2]. We have more discussions in Appendix D.1.

4.2.2 Experimental Settings

We compare sEM-vr with bEM and sEM (SCVB0), which is the start-of-the-art algorithm for pLSA,
on four datasets listed in Table 1. We also compare with two gradient based algorithms, stochastic
mirror descent (SMD) [10] and reparameterized stochastic gradient descent (RSGD) as well as their
variants with SVRG-style [20] variance reduction, denoted as SMD-vr and RSGD-vr, despite their
convergence properties are unknown. Both SMD and RSGD replace the M-step with a stochastic
gradient step. SMD updates as θdk ∝ θdk exp{ρ∇θdkQ} and φkv ∝ φkv exp{ρ∇φkvQ}, where Q
is defined as Eq. (1). RSGD adopts the reparameterization θdk = expλdk∑

k expλdk
and φkv = exp τkv∑

v exp τkv
,

and directly optimize Q w.r.t. λ and τ by stochastic gradient descent. Derivations of SMD and RSGD
are in Appendix D.6. All the algorithms are implemented in C++, and are highly-optimized and
parallelized. The testing machine has two 12-core Xeon E5-2692v2 CPUs and 64GB main memory.

We assess the convergence of algorithms by the training objective log p(W |θ, φ) + log p(θ|α′) +
log p(φ|β′), i.e., logarithm of unnormalized posterior distribution p(θ, φ|W,α′, β′). For each dataset
and the number of topics K ∈ {50, 100}, we first select the hyperparameters by a grid search
Kα ∈ {0.1, 1, 10, 100} and β ∈ {0.01, 0.1, 1}.3 Then, we do another grid search to choose the
step size. For sEM-vr, we choose ρ ∈ {0.01, 0.02, 0.05, 0.1, 0.2}, and for all other stochastic
algorithms, we set ρt = a/(t + t0)κ, and choose a ∈ {10−7, . . . , 100}, t0 ∈ {10, 100, 1000} and
κ ∈ {0.5, 0.75, 1}.4 Finally, we repeat 5 runs with difference random seeds for each algorithm with
its best step size. E is 20 for NIPS and NYTimes, and 5 for Wiki and PubMed. M is 50 for NIPS
and 500 for all the other datasets.

4.2.3 Results for pLSA

We plot the training objective against running time as first and second row of Fig. 2. We find that
gradient-based algorithms and bEM are not competitive with sEM and sEM-vr, so we only report
their results on NIPS, to make the distinction sEM and sEM-vr more clear. Full results and more
explanations of the slow convergence of gradient-based algorithms are available in Appendix D.6.
Due to the reduced variance, sEM-vr consistently converges faster to better training objective than
sEM and bEM on all the datasets, while the constant step size of sEM-vr is easier to tune than the
decreasing sequence of step sizes for sEM.

3We find that all the algorithms have the same best hyperparameter configuration.
4We have tried constant step sizes for SMD-vr and RSGD-vr but found it worse than decreasing step sizes.
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Figure 2: pLSA and LDA convergence results. X-axis is running time in seconds. First and second
row: pLSA with K = 50 and K = 100, y-axis is the training objective. Third row: LDA with
K = 10, y-axis is the testing perplexity.

4.3 Results for LDA

As discussed in Sec. 4.2.1, algorithms for pLSA also work well as approximate training algorithms
for LDA, if the number of topics is small. Therefore, we also evaluate our sEM-vr algorithm for
LDA, with a small number of K = 10 topics. The training algorithm is exactly the same, but the
evaluation metric is different. We hold out a small testing set, and report the testing perplexity,
computed by the left-to-right algorithm [34] on the testing set. We compare with a state-of-the-art
algorithm, Gibbs online expectation maximization (GOEM) [14], which outperforms a wide range of
algorithms including SVI [17], hybrid variational-Gibbs [27], and SGRLD [28]. We also compare
with stochastic variational inference (SVI) [17] and its variance reduced variant SSVI [25].

The third row of Fig. 2 shows the results. We observed that sEM-vr converges the fastest on all the
datasets except NIPS, where sEM converges faster due to its cheaper iterations. sEM-vr always gets
better results than sEM in the end. GOEM converges slower due to its high Monte-Carlo variance.
SVI and SSVI converge slower due to their inexact mean field assumption and expensive iterations,
including an inner loop for inferring the local latent variables and frequent evaluation of the expensive
digamma function. For a larger number of topics, such as 100, we find that GOEM performs the
best since it does not approximate LDA as pLSA, and does not make mean field assumptions as SVI
and SSVI. Extending our algorithm to variational EM and Monte-Carlo EM, when the E-step is not
tractable, is an interesting future direction.

5 Conclusions and Discussions

We propose a variance reduced stochastic EM (sEM-vr) algorithm. sEM-vr achieves a(
1 + log(M/κ2)

)−E
local convergence rate, which is faster than both the (1 − λ)−2E rate of

batch EM and O(T−1) rate of plain stochastic EM (sEM). Unlike sEM, which requires a decreasing
sequence of step sizes to converge, sEM-vr only requires a constant step size to achieve this local
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convergence rate as well as global convergence, under stronger assumptions. We compare sEM-vr
against bEM, sEM and other gradient and Bayesian algorithms, on GMM and pLSA tasks, and find
that sEM-vr converges significantly faster than these alternatives.

An interesting future direction is leveraging recent progress on variance reduced stochastic gradient
descent for non-convex optimization [23] to relax our assumptions on strongly-log-concavity, and
extend sEM-vr to stochastic control variates, which works better on very large data sets. Extending
our work to variational EM and Monte-Carlo EM is also interesting.
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