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Abstract
One of the main difficulties in analyzing neural networks is the non-convexity
of the loss function which may have many bad local minima. In this paper, we
study the landscape of neural networks for binary classification tasks. Under mild
assumptions, we prove that after adding one special neuron with a skip connection
to the output, or one special neuron per layer, every local minimum is a global
minimum.

1 Introduction
Deep neural networks have recently achieved huge success in various machine learning tasks (see,
Krizhevsky et al. 2012; Goodfellow et al. 2013; Wan et al. 2013, for example). However, a theoretical
understanding of neural networks is largely lacking. One of the difficulties in analyzing neural
networks is the non-convexity of the loss function which allows the existence of many local minima
with large losses. This was long considered a bottleneck of neural networks, and one of the reasons
why convex formulations such as support vector machine (Cortes & Vapnik, 1995) were preferred
previously. Given the recent empirical success of the deep neural networks, an interesting question is
whether the non-convexity of the neural network is really an issue.
It has been widely conjectured that all local minima of the empirical loss lead to similar training
performance (LeCun et al., 2015; Choromanska et al., 2015). For example, prior works empirically
showed that neural networks with identical architectures but different initialization points can converge
to local minima with similar classification performance (Krizhevsky et al., 2012; He et al., 2016;
Huang & Liu, 2017). On the theoretical side, there have been many recent attempts to analyze the
landscape of the neural network loss functions. A few works have studied deep networks, but they
either require linear activation functions (Baldi & Hornik, 1989; Kawaguchi, 2016; Freeman &
Bruna, 2016; Hardt & Ma, 2017; Yun et al., 2017), or require assumptions such as independence
of ReLU activations (Choromanska et al., 2015) and significant overparametrization (Nguyen &
Hein, 2017a,b; Livni et al., 2014). There is a large body of works that study single-hidden-layer
neural networks and provide various conditions under which a local search algorithm can find a
global minimum (Du & Lee, 2018; Ge et al., 2018; Andoni et al., 2014; Sedghi & Anandkumar,
2014; Janzamin et al., 2015; Haeffele & Vidal, 2015; Gautier et al., 2016; Brutzkus & Globerson,
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2017; Soltanolkotabi, 2017; Soudry & Hoffer, 2017; Goel & Klivans, 2017; Du et al., 2017; Zhong
et al., 2017; Li & Yuan, 2017; Liang et al., 2018; Mei et al., 2018). It can be roughly divided into
two categories: non-global landscape analysis and global landscape analysis. For the first category,
the result do not apply to all local minima. One typical conclusion is about the local geometry, i.e.,
in a small neighborhood of the global minima no bad local minima exist (Zhong et al., 2017; Du
et al., 2017; Li & Yuan, 2017). Another typical conclusion is that a subset of local minima are global
minima (Haeffele et al., 2014; Haeffele & Vidal, 2015; Soudry & Carmon, 2016; Nguyen & Hein,
2017a,b). Shamir (2018) has shown that a subset of second-order local minima can perform nearly as
well as linear predictors. The presence of various conclusions reflects the difficulty of the problem:
while analyzing the global landscape seems hard, we may step back and analyze the local landscape
or a “majority” of the landscape. For the second category of global landscape analysis, the typical
result is that every local minimum is a global minimum. However, even for single-layer networks,
strong assumptions such as over-parameterization, very special neuron activation functions, fixed
second layer parameters and/or Gaussian data distribution are often needed in the existing works.
The presence of various strong assumptions also reflects the difficulty of the problem: even for
the single-hidden-layer nonlinear neural network, it seems hard to analyze the landscape, so it is
reasonable to make various assumptions.
One exception is the recent work Liang et al. (2018) which adopts a different path: instead of
simply making several assumptions to obtain positive results, it carefully studies the effect of various
conditions on the landscape of neural networks for binary classification. It gives both positive and
negative results on the existence of bad local minimum under different conditions. In particular, it
studies many common types of neuron activation functions and shows that for a class of neurons
there is no bad local minimum, and for other neurons there is. This clearly shows that the choice of
neurons can affect the landscape. Then a natural question is: while Liang et al. (2018) considers
some special types of data and a broad class of neurons, can we obtain results for more general data
when limiting to a smaller class of neurons?

1.1 Our Contributions

Given this context, our main result is quite surprising: for a neural network with a special type of
neurons, every local minimum is a global minimum of the loss function. Our result requires no
assumption on the network size, the specific type of the original neural network, etc., yet our result
applies to every local minimum. Besides the requirement on the neuron activation type, the major
trick is an associated regularizer. Our major results and their implications are as follows:

• We focus on the binary classification problem with a smooth hinge loss function. We prove the
following result: for any neural network, by adding a special neuron (e.g., exponential neuron) to
the network and adding a quadratic regularizer of this neuron, the new loss function has no bad
local minimum. In addition, every local minimum achieves the minimum misclassification error.

• In the main result, the augmented neuron can be viewed as a skip connection from the input to the
output layer. However, this skip connection is not critical, as the same result also holds if we add
one special neuron to each layer of a fully-connected feedforward neural network.

• To our knowledge, this is the first result that no spurious local minimum exists for a wide class
of deep nonlinear networks. Our result indicates that the class of “good neural networks” (neural
networks such that there is an associated loss function with no spurious local minima) contains
any network with one special neuron, thus this class is rather “dense” in the class of all neural
networks: the distance between any neural network and a good neural network is just a neuron
away.

The outline of the paper is as follows. In Section 2, we present several notations. In Section 3, we
present the main result and several extensions on the main results are presented in Section 4. We
present the proof idea of the main result in Section 5 and conclude this paper in Section 6. All proofs
are presented in Appendix.

2 Preliminaries
Feed-forward networks. Given an input vector of dimension d, we consider a neural network with
L layers of neurons for binary classification. We denote by Ml the number of neurons in the l-th layer
(note that M0 = d). We denote the neural activation function by σ. LetWl ∈ RMl−1×Ml denote the
weight matrix connecting the (l − 1)-th and l-th layer and bl denote the bias vector for neurons in
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the l-th layer. LetWL+1 ∈ RML and bL ∈ R denote the weight vector and bias scalar in the output
layer, respectively. Therefore, the output of the network f : Rd → R can be expressed by

f(x;θ) =W>
L+1σ

(
WLσ

(
...σ

(
W>

1 x+ b1
)
+ bL−1

)
+ bL

)
+ bL+1. (1)

Loss and error. We useD = {(xi, yi)}ni=1 to denote a dataset containing n samples, where xi ∈ Rd

and yi ∈ {−1, 1} denote the feature vector and the label of the i-th sample, respectively. Given a
neural network f(x;θ) parameterized by θ and a loss function ` : R→ R, in binary classification
tasks, we define the empirical loss Ln(θ) as the average loss of the network f on a sample in
the dataset and define the training error (also called the misclassification error) Rn(θ; f) as the
misclassification rate of the network f on the dataset D, i.e.,

Ln(θ) =

n∑
i=1

`(−yif(xi;θ)) and Rn(θ; f) =
1

n

n∑
i=1

I{yi 6= sgn(f(xi;θ))}. (2)

where I is the indicator function.
Tensors products. We use a⊗b to denote the tensor product of vectors a and b and use a⊗k to denote
the tensor product a⊗ ...⊗a where a appears k times. For an N -th order tensor T ∈ Rd1×d2×...×dN

and N vectors u1 ∈ Rd1 ,u2 ∈ Rd2 , ...,uN ∈ RdN , we define

T ⊗ u1...⊗ uN =
∑

i1∈[d1],...,iN∈[dN ]

T (i1, ..., iN )u1(i1)...uN (iN ),

where we use T (i1, ..., iN ) to denote the (i1, ..., iN )-th component of the tensor T , uk(ik) to denote
the ik-th component of the vector uk, k = 1, ..., N and [dk] to denote the set {1, ..., dk}.

3 Main Result

In this section, we first present several important conditions on the loss function and the dataset in
order to derive the main results. After that, we will present the main results.

3.1 Assumptions

In this subsection, we introduce two assumptions on the loss function and the dataset.

Assumption 1 (Loss function) Assume that the loss function ` : R → R is monotonically non-
decreasing and twice differentiable, i.e., ` ∈ C2. Assume that every critical point of the loss function
`(z) is also a global minimum and every global minimum z satisfies z < 0.

A simple example of the loss function satisfying Assumption 1 is the polynomial hinge loss, i.e.,
`(z) = [max{z+1, 0}]p, p ≥ 3. It is always zero for z ≤ −1 and behaves like a polynomial function
in the region z > −1. Note that the condition that every global minimum of the loss function `(z) is
negative is not needed to prove the result that every local minimum of the empirical loss is globally
minimal, but is necessary to prove that the global minimizer of the empirical loss is also the minimizer
of the misclassification rate.

Assumption 2 (Realizability) Assume that there exists a set of parameters θ such that the neural
network f(·;θ) is able to correctly classify all samples in the dataset D.

By Assumption 2, we assume that the dataset is realizable by the neural architecture f . We note that
this assumption is consistent with previous empirical observations (Zhang et al., 2016; Krizhevsky
et al., 2012; He et al., 2016) showing that at the end of the training process, neural networks usually
achieve zero misclassification rates on the training sets. However, as we will show later, if the loss
function ` is convex, then we can prove the main result even without Assumption 2.

3.2 Main Result

In this subsection, we first introduce several notations and next present the main result of the paper.
Given a neural architecture f(·;θ) defined on a d-dimensional Euclidean space and parameterized by
a set of parameters θ, we define a new architecture f̃ by adding the output of an exponential neuron
to the output of the network f , i.e.,

f̃(x, θ̃) = f(x;θ) + a exp
(
w>x+ b

)
, (3)
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where the vector θ̃ = (θ, a,w, b) denote the parametrization of the network f̃ . For this designed
model, we define the empirical loss function as follows,

L̃n(θ̃) =

n∑
i=1

`
(
−yif̃(x; θ̃)

)
+
λa2

2
, (4)

where the scalar λ is a positive real number, i.e., λ > 0. Different from the empirical loss function
Ln, the loss L̃n has an additional regularizer on the parameter a, since we aim to eliminate the impact
of the exponential neuron on the output of the network f̃ at every local minimum of L̃n. As we will
show later, the exponential neuron is inactive at every local minimum of the empirical loss L̃n. Now
we present the following theorem to show that every local minimum of the loss function L̃n is also a
global minimum.
Remark: Instead of viewing the exponential term in Equation (3) as a neuron, one can also equiva-
lently think of modifying the loss function to be

L̃n(θ̃) =

n∑
i=1

`
(
−yi(f(xi;θ) + a exp(w>xi + b))

)
+
λa2

2
.

Then, one can interpret Equation (3) and (4) as maintaining the original neural architecture and
slightly modifying the loss function.

Theorem 1 Suppose that Assumption 1 and 2 hold. Then both of the following statements are true:

(i) The empirical loss function L̃n(θ̃) has at least one local minimum.

(ii) Assume that θ̃∗ = (θ∗, a∗,w∗, b∗) is a local minimum of the empirical loss function L̃n(θ̃),
then θ̃∗ is a global minimum of L̃n(θ̃). Furthermore, θ∗ achieves the minimum loss value
and the minimum misclassification rate on the dataset D, i.e., θ∗ ∈ argminθ Ln(θ) and
θ∗ ∈ argminθ Rn(θ; f).

Remarks: (i) Theorem 1 shows that every local minimum θ̃∗ of the empirical loss L̃n is also a
global minimum and shows that θ∗ achieves the minimum training error and the minimum loss value
on the original loss function Ln at the same time. (ii) Since we do not require the explicit form
of the neural architecture f , Theorem 1 applies to the neural architectures widely used in practice
such as convolutional neural network (Krizhevsky et al., 2012), deep residual networks (He et al.,
2016), etc. This further indicates that the result holds for any real neural activation functions such as
rectified linear unit (ReLU), leaky rectified linear unit (Leaky ReLU), etc. (iii) As we will show in
the following corollary, at every local minimum θ̃∗, the exponential neuron is inactive. Therefore, at
every local minimum θ̃∗ = (θ∗, a∗,w∗, b∗), the neural network f̃ with an augmented exponential
neuron is equivalent to the original neural network f .

Corollary 1 Under the conditions of Theorem 1, if θ̃∗ = (θ∗, a∗,w∗, b∗) is a local minimum of the
empirical loss function L̃n(θ̃), then two neural networks f(·;θ∗) and f̃(·; θ̃∗) are equivalent, i.e.,
f(x;θ∗) = f̃(x; θ̃∗), ∀x ∈ Rd.
Corollary 1 shows that at every local minimum, the exponential neuron does not contribute to
the output of the neural network f̃ . However, this does not imply that the exponential neuron is
unnecessary, since several previous results (Safran & Shamir, 2018; Liang et al., 2018) have already
shown that the loss surface of pure ReLU neural networks are guaranteed to have bad local minima.
Furthermore, to prove the main result under any dataset, the regularizer is also necessary, since Liang
et al. (2018) has already shown that even with an augmented exponential neuron, the empirical loss
without the regularizer still have bad local minima under some datasets.

4 Extensions
4.1 Eliminating the Skip Connection
As noted in the previous section, the exponential term in Equation (3) can be viewed as a skip
connection or a modification to the loss function. Our analysis also works under other architectures
as well. When the exponential term is viewed as a skip connection, the network architecture is as
shown in Fig. 1(a). This architecture is different from the canonical feedforward neural architectures
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as there is a direct path from the input layer to the output layer. In this subsection, we will show
that the main result still holds if the model f̃ is defined as a feedforward neural network shown in
Fig. 1(b), where each layer of the network f is augmented by an additional exponential neuron. This
is a standard fully connected neural network except for one special neuron at each layer.

. . .. . .

f̃(x; ✓̃)f̃(x; ✓̃)

xx

. . .. . .

f̃(x; ✓̃)f̃(x; ✓̃)

xx

. . .. . .

. . .. . .

. . .. . .

. . .. . .

. . .. . .

. . .. . .

(a)(a) (b)(b)

Figure 1: (a) The neural architecture considered
in Theorem 1. (b) The neural architecture con-
sidered in Theorem 2. The blue and red circles
denote the neurons σ in the original network and
the augmented exponential neurons, respectively.

Notations. Given a fully-connected feedforward neu-
ral network f(·;θ) defined by Equation (1), we de-
fine a new fully connected feedforward neural net-
work f̃ by adding an additional exponential neu-
ron to each layer of the network f . We use the
vector θ̃ = (θ,θexp) to denote the parameteriza-
tion of the network f̃ , where θexp denotes the vec-
tor consisting of all augmented weights and biases.
Let W̃l ∈ R(Ml−1+1)×(Ml+1) and b̃l ∈ RMl+1

denote the weight matrix and the bias vector in
the l-th layer of the network f̃ , respectively. Let
W̃L+1 ∈ R(ML+1) and b̃L+1 ∈ R denote the weight
vector and the bias scalar in the output layer of the
network f̃ , respectively. Without the loss of general-
ity, we assume that the (Ml +1)-th neuron in the l-th
layer is the augmented exponential neuron. Thus, the
output of the network f̃ is expressed by

f̃(x;θ) = W̃>
L+1σ̃L+1

(
W̃Lσ̃L

(
...σ̃1

(
W̃>

1 x+ b̃1

)
+ b̃L−1

)
+ b̃L

)
+ b̃L+1, (5)

where σ̃l : RMl−1+1 → RMl+1 is a vector-valued activation function with the first Ml components
being the activation functions σ in the network f and with the last component being the exponential
function, i.e., σ̃l(z) = (σ(z), ..., σ(z), exp(z)). Furthermore, we use the w̃l to denote the vector in
the (Ml−1 + 1)-th row of the matrix W̃l. In other words, the components of the vector w̃l are the
weights on the edges connecting the exponential neuron in the (l − 1)-th layer and the neurons in the
l-th layer. For this feedforward network, we define an empirical loss function as

L̃n(θ̃) =

n∑
i=1

`(−yif̃(xi; θ̃)) +
λ

2

L+1∑
l=2

‖w̃l‖2L2L (6)

where ‖a‖p denotes the p-norm of a vector a and λ is a positive real number, i.e., λ > 0. Similar to
the empirical loss discussed in the previous section, we add a regularizer to eliminate the impacts
of all exponential neurons on the output of the network. Similarly, we can prove that at every local
minimum of L̃n, all exponential neurons are inactive. Now we present the following theorem to show
that if the set of parameters θ̃∗ = (θ∗,θ∗exp) is a local minimum of the empirical loss function L̃n(θ̃),
then θ̃∗ is a global minimum and θ∗ is a global minimum of both minimization problems minθ Ln(θ)
and minθ Rn(θ; f). This means that the neural network f(·;θ∗) simultaneously achieves the globally
minimal loss value and misclassification rate on the dataset D.

Theorem 2 Suppose that Assumption 1 and 2 hold. Suppose that the activation function σ is
differentiable. Assume that θ̃∗ = (θ∗,θ∗exp) is a local minimum of the empirical loss function
L̃n(θ̃), then θ̃∗ is a global minimum of L̃n(θ̃). Furthermore, θ∗ achieves the minimum loss value
and the minimum misclassification rate on the dataset D, i.e., θ∗ ∈ argminθ Ln(θ) and θ∗ ∈
argminθ Rn(θ; f).
Remarks: (i) This theorem is not a direct corollary of the result in the previous section, but the
proof ideas are similar. (ii) Due to the assumption on the differentiability of the activation function σ,
Theorem 2 does not apply to the neural networks consisting of non-smooth neurons such as ReLUs,
Leaky ReLUs, etc. (iii) Similar to Corollary 1, we will present the following corollary to show that at
every local minimum θ̃∗ = (θ∗,θ∗exp), the neural network f̃ with augmented exponential neurons is
equivalent to the original neural network f .

Corollary 2 Under the conditions in Theorem 2, if θ̃∗ = (θ∗,θ∗exp) is a local minimum of the
empirical loss function L̃n(θ̃), then two neural networks f(·;θ∗) and f̃(·; θ̃∗) are equivalent, i.e.,
f(x;θ∗) = f̃(x; θ̃∗),∀x ∈ Rd.
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Corollary 2 further shows that even if we add an exponential neuron to each layer of the original
network f , at every local minimum of the empirical loss, all exponential neurons are inactive.

4.2 Neurons

In this subsection, we will show that even if the exponential neuron is replaced by a monomial neuron,
the main result still holds under additional assumptions. Similar to the case where exponential
neurons are used, given a neural network f(x;θ), we define a new neural network f̃ by adding the
output of a monomial neuron of degree p to the output of the original model f , i.e.,

f̃(x; θ̃) = f(x;θ) + a
(
w>x+ b

)p
. (7)

In addition, the empirical loss function L̃n is exactly the same as the loss function defined by
Equation (4). Next, we will present the following theorem to show that if all samples in the dataset D
can be correctly classified by a polynomial of degree t and the degree of the augmented monomial is
not smaller than t (i.e., p ≥ t), then every local minimum of the empirical loss function L̃n(θ̃) is also
a global minimum. We note that the degree of a monomial is the sum of powers of all variables in
this monomial and the degree of a polynomial is the maximum degree of its monomial.

Proposition 1 Suppose that Assumptions 1 and 2 hold. Assume that all samples in the dataset D
can be correctly classified by a polynomial of degree t and p ≥ t. Assume that θ̃∗ = (θ∗, a∗,w∗, b∗)

is a local minimum of the empirical loss function L̃n(θ̃), then θ̃∗ is a global minimum of L̃n(θ̃).
Furthermore, θ∗ is a global minimizer of both problems minθ Ln(θ) and minRn(θ; f).

Remarks: (i) We note that, similar to Theorem 1, Proposition 1 applies to all neural architectures
and all neural activation functions defined on R, as we do not require the explicit form of the neural
network f . (ii) It follows from the Lagrangian interpolating polynomial and Assumption 2 that for a
dataset consisted of n different samples, there always exists a polynomial P of degree smaller n such
that the polynomial P can correctly classify all points in the dataset. This indicates that Proposition 1
always holds if p ≥ n. (iii) Similar to Corollary 1 and 2, we can show that at every local minimum
θ̃∗ = (θ∗, a∗,w∗, b∗), the neural network f̃ with an augmented monomial neuron is equivalent to
the original neural network f .

4.3 Allowing Random Labels

In previous subsections, we assume the realizability of the dataset by the neural network which
implies that the label of a given feature vector is unique. It does not cover the case where the
dataset contains two samples with the same feature vector but with different labels (for example, the
same image can be labeled differently by two different people). Clearly, in this case, no model can
correctly classify all samples in this dataset. Another simple example of this case is the mixture of
two Gaussians where the data samples are drawn from each of the two Gaussian distributions with
certain probability.
In this subsection, we will show that under this broader setting that one feature vector may correspond
to two different labels, with a slightly stronger assumption on the convexity of the loss `, the same
result still holds. The formal statement is present by the following proposition.

Proposition 2 Suppose that Assumption 1 holds and the loss function ` is convex. Assume that θ̃∗ =
(θ∗, a∗,w∗, b∗) is a local minimum of the empirical loss function L̃n(θ̃), then θ̃∗ is a global minimum
of L̃n(θ̃). Furthermore, θ∗ achieves the minimum loss value and the minimum misclassification rate
on the dataset D, i.e., θ∗ ∈ argminθ Ln(θ) and θ∗ ∈ argminθ Rn(θ; f).

Remark: The differences of Proposition 2 and Theorem 1 can be understood in the following ways.
First, as stated previously, Proposition 2 allows a feature vector to have two different labels, but
Theorem 1 does not. Second, the minimum misclassification rate under the conditions in Theorem 1
must be zero, while in Proposition 2, the minimum misclassification rate can be nonzero.

4.4 High-order Stationary Points

In this subsection, we characterize the high-order stationary points of the empirical loss L̃n shown in
Section 3.2. We first introduce the definition of the high-order stationary point and next show that
every stationary point of the loss L̃n with a sufficiently high order is also a global minimum.
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Definition 1 (k-th order stationary point) A critical point θ0 of a function L(θ) is a k-th order
stationary point, if there exists positive constant C, ε > 0 such that for every θ with ‖θ − θ0‖2 ≤ ε,
L(θ) ≥ L(θ0)− C‖θ − θ0‖k+1

2 .

Next, we will show that if a polynomial of degree p can correctly classify all points in the dataset,
then every stationary point of the order at least 2p is a global minimum and the set of parameters
corresponding to this stationary point achieves the minimum training error.

Proposition 3 Suppose that Assumptions 1 and 2 hold. Assume that all samples in the dataset can be
correctly classified by a polynomial of degree p. Assume that θ̃∗ = (θ∗, a∗,w∗, b∗) is a k-th order
stationary point of the empirical loss function L̃n(θ̃) and k ≥ 2p, then θ̃∗ is a global minimum of
L̃n(θ̃). Furthermore, the neural network f(·;θ∗) achieves the minimum misclassification rate on the
dataset D, i.e., θ∗ ∈ argminθ Rn(θ; f).

One implication of Proposition 3 is that if a dataset is linearly separable, then every second order
stationary point of the empirical loss function is a global minimum and, at this stationary point, the
neural network achieves zero training error. When the dataset is not linearly separable, our result
only covers fourth or higher order stationary point of the empirical loss.

5 Proof Idea

In this section, we provide overviews of the proof of Theorem 1.

5.1 Important Lemmas

In this subsection, we present two important lemmas where the proof of Theorem 1 is based.

Lemma 1 Under Assumption 1 and λ > 0, if θ̃∗ = (θ∗, a∗,w∗, b∗) is a local minimum of L̃n, then
(i) a∗ = 0, (ii) for any integer p ≥ 0, the following equation holds for all unit vector u : ‖u‖2 = 1,

n∑
i=1

`′ (−yif(xi;θ∗)) yiew
∗>xi+b∗(u>xi)

p = 0. (8)

Lemma 2 For any integer k ≥ 0 and any sequence {ci}ni=1, if
∑n

i=1 ci(u
>xi)

k = 0 holds for all
unit vector u : ‖u‖2 = 1, then the k-th order tensor Tk =

∑n
i=1 cix

⊗k
i is a k-th order zero tensor.

5.2 Proof Sketch of Lemma 1

Proof sketch of Lemma 1(i): To prove a∗ = 0, we only need to check the first order conditions
of local minima. By assumption that θ̃∗ = (θ∗, a∗,w∗, b∗) is a local minimum of L̃n, then the
derivative of L̃n with respect to a and b at the point θ̃∗ are all zeros, i.e.,

∇aL̃n(θ̃)
∣∣∣
θ̃=θ̃∗

= −
n∑

i=1

`′
(
−yif(xi;θ∗)− yia∗ew

∗>xi+b∗
)
yi exp(w

∗>xi + b∗) + λa∗ = 0,

∇bL̃n(θ̃)
∣∣∣
θ̃=θ̃∗

= −a∗
n∑

i=1

`′
(
−yif(xi;θ∗)− yia∗ew

∗>xi+b∗
)
yi exp(w

∗>xi + b∗) = 0.

From the above equations, it is not difficult to see that a∗ satisfies λa∗2 = 0 or, equivalently, a∗ = 0.
We note that the main observation we are using here is that the derivative of the exponential neuron is
itself. Therefore, it is not difficult to see that the same proof holds for all neuron activation function
σ satisfying σ′(z) = cσ(z),∀z ∈ R for some constant c. In fact, with a small modification of
the proof, we can show that the same proof works for all neuron activation functions satisfying
σ(z) = (c1z + c0)σ

′(z),∀z ∈ R for some constants c0 and c1. This further indicates that the same
proof holds for the monomial neurons and thus the proof of Proposition 1 follows directly from the
proof of Theorem 1.
Proof sketch of Lemma 1(ii): The main idea of the proof is to use the high order information
of the local minimum to derive Equation (8). Due to the assumption that θ̃ = (θ∗, a∗,w∗, b∗)

is a local minimum of the empirical loss function L̃n, there exists a bounded local region such
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that the parameters θ̃∗ achieve the minimum loss value in this region, i.e., ∃δ ∈ (0, 1) such that
L̃n(θ̃

∗ + ∆) ≥ L̃n(θ̃
∗) for ∀∆ : ‖∆‖2 ≤ δ.

Now, we use δa, δw to denote the perturbations on the parameters a and w, respectively. Next, we
consider the loss value at the point θ̃∗+∆ = (θ∗, a∗+ δa,w

∗+δw, b
∗), where we set |δa| = e−1/ε

and δw = εu for an arbitrary unit vector u : ‖u‖2 = 1. Therefore, as ε goes to zero, the perturbation
magnitude ‖∆‖2 also goes to zero and this indicates that there exists an ε0 ∈ (0, 1) such that
L̃n(θ̃

∗ + ∆) ≥ L̃n(θ̃
∗) for ∀ε ∈ [0, ε0). By the result a∗ = 0, shown in Lemma 1(i), the output of

the model f̃ under parameters θ̃∗ + ∆ can be expressed by

f̃(x; θ̃∗ + ∆) = f(x;θ∗) + δa exp(δ
>
wx) exp(w

∗>x+ b∗).

For simplicity of notation, let g(x; θ̃∗, δw) = exp(δ>wx) exp(w
∗>x+ b∗). From the second order

Taylor expansion with Lagrangian remainder and the assumption that ` is twice differentiable, it
follows that there exists a constant C(θ̃∗,D) depending only on the local minimizer θ̃ and the dataset
D such that the following inequality holds for every sample in the dataset and every ε ∈ [0, ε0),

`(−yif̃(xi; θ̃∗ + ∆)) ≤ `(−yif(xi;θ∗)) + `′(−yif(xi;θ∗))(−yi)δag(xi; θ̃∗, δw) + C(θ̃∗,D)δ2a.

Summing the above inequality over all samples in the dataset and recalling that L̃n(θ̃
∗+∆) ≥ L̃n(θ̃

∗)
holds for all ε ∈ [0, ε0), we obtain

−sgn(δa)
n∑

i=1

`′(−yif(xi;θ∗))yi exp(εu>xi) exp(w∗>xi+b∗)+[nC(θ̃∗,D)+λ/2] exp(−1/ε) ≥ 0.

Finally, we complete the proof by induction. Specifically, for the base hypothesis where p = 0, we
can take the limit on the both sides of the above inequality as ε→ 0, using the property that δa can
be either positive or negative and thus establish the base case where p = 0. For the higher order case,
we can first assume that Equation (8) holds for p = 0, ..., k and then subtract these equations from
the above inequality. After taking the limit on the both sides of the inequality as ε→ 0, we can prove
that Equation (8) holds for p = k + 1. Therefore, by induction, we can prove that Equation (8) holds
for any non-negative integer p.

5.3 Proof Sketch of Lemma 2
The proof of Lemma 2 follows directly from the results in reference (Zhang et al., 2012). It is easy to
check that, for every sequence {ci}ni=1 and every non-negative integer k ≥ 0, the k-th order tensor
Tk =

∑n
i=1 cix

⊗k
i is a symmetric tensor. From Theorem 1 in (Zhang et al., 2012), it directly follows

that
max

u1,...,uk:‖u1‖2=...=‖uk‖2=1
|Tk(u1, ...,uk)| = max

u:‖u‖2=1
|Tk(u, ...,u)|.

Furthermore, by assumption that Tk(u, ...,u) =
∑n

i=1 ci(u
>xi)

k = 0 holds for all ‖u‖2 = 1, then

max
u1,...,uk:‖u1‖2=...=‖uk‖2=1

|Tk(u1, ...,uk)| = 0,

and this is equivalent to Tk = 0⊗kd , where 0d is the zero vector in the d-dimensional space.

5.4 Proof Sketch of Theorem 1
For every dataset D satisfying Assumption 2, by the Lagrangian interpolating polynomial, there
always exists a polynomial P (x) =

∑
j cjπj(x) defined on Rd such that it can correctly classify all

samples in the dataset with margin at least one, i.e., yiP (xi) ≥ 1,∀i ∈ [n], where πj denotes the j-th
monomial in the polynomial P (x). Therefore, from Lemma 1 and 2, it follows that

n∑
i=1

`′(−yif(xi;θ∗))ew
∗>xi+b∗yiP (xi) =

∑
j

cj

n∑
i=1

`′(−yif(xi;θ∗))yiew
∗>xi+b∗πj(xi) = 0.

Since yiP (xi) ≥ 1 and ew
∗>xi+b∗ > 0 hold for ∀i ∈ [n] and the loss function ` is a non-decreasing

function, i.e., `′(z) ≥ 0,∀z ∈ R, then `′(−yif(xi;θ∗)) = 0 holds for all i ∈ [n]. In addition, from
the assumption that every critical point of the loss function ` is a global minimum, it follows that
zi = −yif(xi;θ∗) achieves the global minimum of the loss function ` and this further indicates that

8



θ∗ is a global minimum of the empirical loss Ln(θ). Furthermore, since at every local minimum,
the exponential neuron is inactive, a∗ = 0, then the set of parameters θ̃∗ is a global minimum
of the loss function L̃n(θ̃). Finally, since every critical point of the loss function `(z) satisfies
z < 0, then for every sample, `′(−yif(xi;θ∗)) = 0 indicates that yif(xi;θ∗) > 0, or, equivalently,
yi = sgn(f(xi;θ∗)). Therefore, the set of parameters θ∗ also minimizes the training error. In
summary, the set of parameters θ̃∗ = (θ∗, a∗,w∗, b∗) minimizes the loss function L̃n(θ̃) and the set
of parameters θ∗ simultaneously minimizes the empirical loss function Ln(θ) and the training error
Rn(θ; f).

6 Conclusions and Discussions
One of the difficulties in analyzing neural networks is the non-convexity of the loss functions which
allows the existence of many spurious minima with large loss values. In this paper, we prove that for
any neural network, by adding a special neuron and an associated regularizer, the new loss function
has no spurious local minimum. In addition, we prove that, at every local minimum of this new loss
function, the exponential neuron is inactive and this means that the augmented neuron and regularizer
improve the landscape of the loss surface without affecting the representing power of the original
neural network. We also extend the main result in a few ways. First, while adding a special neuron
makes the network different from a classical neural network architecture, the same result also holds
for a standard fully connected network with one special neuron added to each layer. Second, the same
result holds if we change the exponential neuron to a polynomial neuron with a degree dependent on
the data. Third, the same result holds even if one feature vector corresponds to both labels.
This paper is an effort in designing neural networks that are “good”. Here “good” can mean various
things such as nice landscape, stronger representation power or better generalization, and in this
paper we focus on the landscape –in particular, the very specific property “every local minimum is
a global minimum”. While our results enhance the understanding of the landscape, the practical
implications are not straightforward to see since we did not consider other aspects such as algorithms
and generalization. It is an interesting direction to improve the landscape results by considering other
aspects, such as studying when a specific algorithm will converge to local minima and thus global
minima.
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