A Our Policy Model versus Pointer Network

In the first experiment of this section, we use the Traveling Salesman Problem (TSP) (a special
case of the VRP in which there is only a single route to optimize) as the test-bed to validate the
performance of the proposed method. We compare the route lengths of the TSP solutions obtained
by our framework with those given by the model of Bello et al. [4] for random instances with 20,
50, and 100 nodes. In the training phase, we generate 10° TSP instances for each problem size,
and use them in training for 20 epochs. 10 is chosen because we want to have a diverse set of
problem configurations; it can be larger or smaller, or we can generate the instances on-the-fly as
long as we make sure that the instance are drawn from the same probability distribution with the
same random seed. The city locations are chosen uniformly from the unit square [0, 1] x [0, 1]. We
use the same data distribution to produce instances for the testing phase. The decoding process starts
from a random TSP node and the termination criterion is that all cities are visited. We also use a
masking scheme to prohibit visiting nodes more than once.

Table [I| summarizes the results for different TSP sizes using the greedy decoder in which at every
decoding step, the city with the highest probability is chosen as the destination. The results are
averaged over 1000 instances. The first column is the average TSP tour length using our proposed
architecture, the second column is the result of our implementation of Bello et al. [4] with greedy
decoder, and the optimal tour lengths are reported in the last column. To obtain the optimal values,
we solved the TSP using the Concorde optimization software [1]. A comparison of the first two
columns suggests that there is almost no difference between the performance of our framework and
Pointer-RL. In fact, the RNN encoder of the Pointer Network learns to convey no information to the
next steps, i.e., hy = f(x+). On the other hand, our approach is around 60% faster in both training
and inference, since it has two fewer RNNs—one in the encoder of actor network and another in the
encoder of critic network. Table[T]also summarizes the training times for one epoch of the training
and the time-savings that we gain by eliminating the encoder RNNs.

Table 1: Average tour length for TSP and training time for one epoch (in minutes).

Average tour length Training time
Our Framework  Pointer-RL . Our Framework  Pointer-RL . .
Task (Greedy) (Greedy) Optimal (Greedy) (Greedy) % Time Saving
TSP20  3.97 3.96 3.84 22.18 50.33 55.9%
TSP50  6.08 6.05 5.70 54.10 147.25 63.3%
TSP100 8.44 8.45 777 122.10 300.73 59.4%

Based on the discussion in section[3.1] the main problem with applying Pointer Networks is mainly
computational, and in the next experiment of this section, we compare the learning process of our
model with that of Pointer Networks. We implemented a Pointer Network for VRP10, and as is
illustrated in Figure[6] its performance is much worse, and each training epoch takes around 2.5 x
longer to train.

Method
—— Ours Policy
Pointer Net

Average Tour Length

u u b wu wu
o N S o (==
1 1 1 1 1

»
©
|

Figure 6: Comparison with Pointer Network for VRP

12



B Capacitated VRP Baselines

In this Appendix, we briefly describe the algorithms and solvers that we used as benchmarks. More
details and examples of these algorithms can be found in Snyder and Shen [31]]. The first two baseline
approaches are well-known heuristics designed for VRP. Our third baseline is Google’s optimization
tools, which includes one of the best open-source VRP solvers. Finally, we compute the optimal
solutions for small VRP instances, so we can measure how far the solutions are from optimality.

B.1 Clarke-Wright Savings Heuristic

The Clarke-Wright savings heuristic [9]] is one of the best-known heuristics for the VRP. Let A =
{1,---, N} be the set of customer nodes, and 0 be the depot. The distance between nodes ¢ and
j is denoted by c;;, and co; is the distance of customer ¢ from the depot. Algorithm[jdescribes a
randomized version of the heuristic. The basic idea behind this algorithm is that it initially considers
a separate route for each customer node 7, and then reduces the total cost by iteratively merging the
routes. Merging two routes by adding the edge (¢, j) reduces the total distance by s;; = c;0+co; —c¢ij,
so the algorithm prefers mergers with the highest savings s;;.

We introduce two hyper-parameters, R and M, which we refer to as the randomization depth and
randomization iteration, respectively. When M = R = 1, this algorithm is equivalent to the original
Clarke-Wright savings heuristic, in which case, the feasible merger with the highest savings will be
selected. By allowing M, R > 1, we introduce randomization, which can improve the performance
of the algorithm further. In particular, Algorithmchooses randomly from the r € {1,--- , R} best
feasible mergers. Then, for each r, it solves the problem m € {1,---, M} times, and returns the
solution with the shortest total distance.

Algorithm 1 Randomized Clarke-Wright Savings Heuristic

1: compute savings s;;, where

8ij = Cijo + Coj — Cij ih,jEN,i#]
S =0 ieN
2: forr=1,--- ,Rdo
3: form=1,--- ,Mdo
4: place each 7 € A in its own route
5: repeat
6: find k feasible mergers (3, j) with the highest s;; > 0, satisfying the following conditions:
i) ¢ and j are in different routes
ii) both ¢ and j are adjacent to the depot
iii) combined demand of routes containing ¢ and j is < vehicle capacity
7: choose a random (4, j) from the feasible mergers, and combine the associated routes by
replacing (¢, 0) and (0, j) with (¢, j)
8: until no feasible merger is left
9:  end for
10: end for

11: Return: route with the shortest length

B.2 Sweep Heuristic

The sweep heuristic [38] solves the VRP by breaking it into multiple TSPs. By rotating an arc
emanating from the depot, it groups the nodes into several clusters, while ensuring that the total
demand of each cluster is not violating the vehicle capacity. Each cluster corresponds to a TSP that
can be solved by using an exact or approximate algorithm. In our experiments, we use dynamic
programming to find the optimal TSP tour. After solving TSPs, the VRP solution can be obtained by
combining the TSP tours. Algorithm [2]shows the pseudo-code of this algorithm.

B.3 Google’s OR-Tools

Google Optimization Tools (OR-Tools) [16] is an open-source solver for combinatorial optimization
problems. OR-Tools contains one of the best available VRP solvers, which has implemented many

13



Algorithm 2 Randomized Sweep Algorithm

1: for each ¢ € NV, compute angle «;, respective to depot location
2: | + vehicle capacity

3: forr=1,--- ,Rdo

4:  select a random angle o

5.k < 0; initialize cluster Sy < ()

6:  repeat

7 increase « until it equal to some «;
8 if demand d; > [ then

9: k+—k+1

10: S+ 0

11: l + vehicle capacity
12: end if

13: Si < SpU{i}

14: l+1—d;

15:  until no unclustered node is left

16:  solve a TSP for each S},

17:  merge TSP tours to produce a VRP route
18: end for

19: Return: route with the shortest length

heuristics (e.g., Clarke-Wright savings heuristic [9], Sweep heuristic [38]], Christofides’ heuristic [§]]
and a few others) for finding an initial solution and metaheuristics (e.g. Guided Local Search [36],
Tabu Search [14] and Simulated Annealing [22]]) for escaping from local minima in the search for
the best solution. The default version of the OR-Tools VRP solver does not exactly match the VRP
studied in this paper, but with a few adjustments, we can use it as our baseline. The first limitation
is that OR-Tools only accepts integer locations for the customers and depot while our problem is
defined on the unit square. To handle this issue, we scale up the problem by multiplying all locations
by 10* (meaning that we will have 4 decimal digits of precision), so the redefined problem is now in
[0,10%] x [0, 10%]. After solving the problem, we scale down the solutions and tours to get the results
for the original problem. The second difference is that OR-Tools is defined for a VRP with multiple
vehicles, each of which can have at most one tour. One can verify that by setting a large number of
vehicles (10 in our experiments), it is mathematically equivalent to our version of the VRP.

B.4 Optimal Solution

We use a mixed integer formulation for the VRP [33]] and the Gurobi optimization solver [[17] to
obtain the optimal VRP tours. VRP has an exponential number of constraints, and of course, it
requires careful tricks for even small problems. In our implementation, we start off with a relaxation
of the capacity constraints and solve the resulting problem to obtain a lower bound on the optimal
objective value. Then we check the generated tours and add the capacity constraint as lazy-constraints
if a specific subtour’s demand has violated the vehicle capacity, or the subtour does not include the
depot. With this approach, we were able to find the optimal solutions for VRP10 and VRP20, but this
method is intractable for larger VRPs; for example, on a single instance of VRP50, the solution has
6.7% optimality gap after 10000 seconds.

C Extended Results of the VRP Experiment

In this section, we present more detailed results for the VRP, including a comparison with baselines
and an illustration of the solutions generated. We demonstrate the flexibility of the framework to
incorporate split deliveries, as an option, to further improve the solution quality. We also illustrate
with an example that our proposed framework can be applied to more challenging VRPs with the
stochastic elements.

14



C.1 Implementation Details

For the embedding, we use 1-dimensional convolution layers for the embedding, in which the in-width
is the input length, the number of filters is D, and the number of in-channels is the number of elements
of . We find that training without an embedding layer always yields an inferior solution. One
possible explanation is that the policy is able to extract useful features from the high-dimensional
input representations much more efficiently. Recall that our embedding is an affine transformation, so
it does not necessarily keep the embedded input distances proportional to the original 2-dimensional
Euclidean distances.

We use one layer of LSTM RNN in the decoder with a state size of 128. Each customer location is
also embedded into a vector of size 128, shared among the inputs. We employ similar embeddings
for the dynamic elements; the demand di and the remaining vehicle load after visiting node ¢, l; — di,
are mapped to a vector in a 128-dimensional vector space and used in the attention layer. In the
critic network, first, we use the output probabilities of the actor network to compute a weighted sum
of the embedded inputs, and then, it has two hidden layers: one dense layer with ReLU activation
and another linear one with a single output. The variables in both actor and critic network are
initialized with Xavier initialization [[13l]. For training both networks, we use the REINFORCE
Algorithm and Adam optimizer [20] with learning rate 10~%. The batch size N is 128, and we clip
the gradients when their norm is greater than 2. We use dropout with probability 0.1 in the decoder
LSTM. Moreover, we tried the entropy regularizer 37, 27], which has been shown to be useful in
preventing the algorithm from getting stuck in local optima, but it does not show any improvement in
our experiments; therefore, we do not use it in the results reported in this paper.

On a single GPU K80, every 100 training steps of the VRP with 20 customer nodes takes approxi-
mately 35 seconds. Training for 20 epochs requires about 13.5 hours. The TensorFlow implementation
of our code is available at https://github. com/0ptMLGroup/VRP-RL.

C.2 Flexibility to VRPs with Split Demands

In the classical VRP that we studied in Section[d] each customer is required to be visited exactly
once. On the contrary to what is usually assumed in the classical VRP, one can relax this constraint
to obtain savings by allowing split deliveries [2]. In this section, we show that this relaxation is
straightforward by slightly modifying the masking scheme. Basically, we omit the condition (iii) from
the masking introduced in Section[d} and use the new masking with the exactly similar model; we
want to emphasize that we do not re-train the policy model and use the variables trained previously,
so this property is achieved at no extra cost.

Figure[7]shows the improvement by relaxing these constraints, where we label our relaxed method
with “RL-SD”. Other heuristics does not have such option and they are reported for the original
(not relaxed) problem. In parts [7a]and [7b] we illustrate the “optimality” gap for VRP10 and VRP20,
respectively. What we refer to optimality in this section (and other places in this paper) is the optimal
objective value of the non-relaxed problem. Of course, the relaxed problem would have a lower
optimal objective value. That is why RL-SD obtains negative values in these plots. We see that
RL-SD can effectively use split delivery to obtain solutions that are around 5 — 10% shorter than the
“optimal” tours. Similar to[3] parts[7c|and[7d|show the winning percentage of the algorithms in rows
in comparison to the ones in columns. We observe that the winning percentage of RL-SD methods
significantly improves after allowing the split demands. For example in VRP50 and VRP100, RL-
SD-Greedy is providing competitive results with OR-Tools, or RL-SD-BS(10) outperforms OR-Tools
in roughly 67% of the instances, while this number was around 61% before relaxation.

C.3 Summary of Comparison with Baselines

Table 2] provides the average and the standard deviation of tour lengths for different VRPs. We also
test the RL approach using the split delivery option where the customer demands can be satisfied in
more than one subtours (labeled with “RL-SD”, at the end of the table). We observe that the average
total length of the solutions found by our method using various decoders outperforms the heuristic
algorithms and OR-Tools. We also see that using the beam search decoder significantly improves
the solution while only adding a small computational cost in run-time. Also allowing split delivery
enables our RL-based methods to improve the total tour length by a factor of around 0.6% on average.
We also present the solution time comparisons in this table, where all the times are reported on a

15


https://github.com/OptMLGroup/VRP-RL

60 S 4 60
= =
= g 5
§ 50 § 50 .
j% j%
2 40 o a 40 Ld
k=) e k=) e
Naany ~ [ ]
= 30 = 30 R .
S s s
%020 H %0 20 e
= 10 = 10
= E
Z 0 — Z 0 L 1 1
o jon
? -10 ? -10
Y ES YA S5 883 f RSt A SF 5%
S »5 I ¢ »w T T T 3 g 5 T ¢ w ZTF 5 IS
Sy @ £ ¥ S/ 5 T EH Sy v £ ¥ &£ 9 5 T &
57 9F F oL & 5 57 9F F g & 5 2
T Q T s T E K T A {7 2 T s g
Q B3 Q£ F 5 &% £ 40O 9 » 9 5 F 5& & 4 O
F L PEE R &5 £ F L P e E R & =
e~ o & @ e~ S il
fast & fa~d &
@) (@)
(b) Comparison for VRP20
. N
S A e S S
&S S SO
ENY Y YIRS VIS
SIS SN S S S
RL-SD-Greedy RL-SD-Greedy 27.5120.3100.0{100.0{100.0{ 99.9 1 99.9199.9 | 50.9
RL-SD-BS(5) RL-SD-BS() | 723 36.4[100.0[100.0[100.0[99.9[ 99.9[ 99.9 ] 63.5
RL-SD-BS(10) RL-SD-BS(10) 79.7(61.7 100.0{100.0{100.0{100.0{100.0{100.0| 68.6
CW-Greedy CW-Greedy 0.0 [ 0.0 | 0.0 0.0 | 0.0 |65.2]65.2]65.2| 0.0
CW-Rnd(5,5) CW-Rnd(5,5) 0.0 | 0.0 | 0.0 |192.6 32.7(82.0(82.0(82.0| 0.7
CW-Rnd(10,10) b 4 |197.5 CW-Rnd(10,10) | 0.0 | 0.0 | 0.0 [97.2]65.8 85.4(85.4(85.4| 0.8
SW-Basic 1.2 06| 04 |31.1[15.5(13.2 SW-Basic 0.1 [0.1[0.0[34.8]18.0]14.6 0.0 ] 0.0 ] 0.0
SW-Rnd(5) 1.2 (0.6 | 04 [31.1)15.5]13.2 SW-Rnd(5) 0.1 [ 0.1 [ 0.0 [34.8]18.0]14.6| 0.0 0.0 | 0.0
SW-Rnd(10) 1.2 06| 04 |31.1[15.5[13.2 SW-Rnd(10) 0.1 [ 0.1 0.0 [34.8/18.0]14.6] 0.0 | 0.0 0.0
OR-Tools 53.2139.5(34.0]199.0196.5]95.3 OR-Tools 49.1(36.5 [ 31.4 {100.0] 99.3 | 99.2 100.(]'100.0 100.0)

(c) Comparison for VRP50

(d) Comparison for VRP100

Figure 7: Parts and show the “optimality” gap (in percent) using different algorithms/solvers
for VRP10 and VRP20. Parts[3c|and [3d] give the proportion of the samples (in percent) for which the
algorithms in the rows outperform those in the columns; for example, RL-BS(5) is provides shorter
tours compared to RL-greedy in 82.1% of the VRP50 instances.

single core Intel 2.6 GHz CPU. It is worthwhile to mention that, unlike other RL areas, our findings
are not affected by the training seed. This is because during the training, we generate 10 problem
instances, which is quite adequate to cover various realizations of the problem, and changing the
random seed does not significantly change the training and testing instances.

C.4 Sample VRP Solutions

Figure[§]illustrates sample VRP20 and VRP50 instances decoded by the trained model. The greedy
and beam-search decoders were used to produce the figures in the top and bottom rows, respectively.
It is evident that these solutions are not optimal. For example, in part (a), one of the routes crosses
itself, which is never optimal in Euclidean VRP instances. Another similar suboptimality is evident
in part (c) to make the total distance shorter. However, the figures illustrate how well the policy
model has understood the problem structure. It tries to satisfy demands at nearby customer nodes
until the vehicle load is small. Then, it automatically comprehends that visiting further nodes is not
the best decision, so it returns to the depot and starts a new tour. One interesting behavior that the
algorithm has learned can be seen in part (c)), in which the solution reduces the cost by making a
partial delivery; in this example, we observe that the red and blue tours share a customer node with
demand 8, each satisfying a portion of its demand; in this way, we are able to meet all demands
without needing to initiate a new tour. We also observe how using the beam-search decoder produces
further improvements; for example, as seen in parts (b)—(c), it reduces the number of times when a
tour crosses itself; or it reduces the number of tours required to satisfy all demands as is illustrated in

(®).
Tables 3] and [4] present the RL solutions using the greedy and beam search decoders for two sample

VRP10 instances with a vehicle capacity of 20. We have 10 customers indexed O - - - 9 and the location
with the index 10 corresponds to the depot. The first line specifies the customer locations as well

16



Table 2: Average tour length, standard deviations of the tours and the average solution time (in
seconds) using different baselines over a test set of size 1000.

Baseline VRP10, Cap20 VRP20, Cap30 VRP50, Cap40 VRP100, Cap50
mean  std time mean  std time mean  std time mean  std time
RL-Greedy 484 085 0.049 659 0.89 0.105 11.39 131 0.156 17.23 197 0.321
RL-BS(5) 472 083 0.061 645 0.87 0.135 11.22 129 0208 17.04 193 0.390
RL-BS(10) 468 0.82 0.072 640 086 0.162 11.15 128 0232 1696 192 0.445
CW-Greedy 5.06 085 0.002 722 090 0.011 12.85 133 0.052 19.72 192 0.186

CW-Rnd(5,5) 486 0.82 0016 6.89 0.84 0.053 1235 127 0217 19.09 185 0.735
CW-Rnd(10,10) 4.80 0.82 0.079 6.81 0.82 0.256 1225 125 0903 1896 1.85 3.171

SW-Basic 542 095 0.001 759 093 0.006 1361 123 0.096 21.01 151 1.341
SW-Rnd(5) 507 087 0.004 7.17 0.85 0.029 13.09 1.12 0472 2047 141 632
SW-Rnd(10) 500 087 0.008 7.08 084 0062 1296 1.12 0988 2033 139 12443
OR-Tools 4.67 081 0.004 643 086 0.010 1131 129 0.053 17.16 1.88 0.231
Optimal 455 078 0.029 6.10 0.79 102.8 — —

RL-SD-Greedy  4.80 0.83 0.059 6.51 084 0.107 1132 127 0.176 17.12 190 0.310
RL-SD-BS(5) 469 0.80 0063 640 0.85 0.145 11.14 125 0226 1694 188 0.401
RL-SD-BS(10)  4.65 0.79 0.074 634 080 0.155 11.08 124 0.250 16.86 1.87 0477

00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
X X X
Path length = 5.72 Path length = 6.36 Path length = 10.72
1.0 5“ " 1.0
/ 1
0.8 | 2 \31 / 0.8
0.6 \ B 0.6
> 6 >
0.4 i 2/{ 3’25 0.4
0.2 0.2
8
0.0{ 8—2 0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
X X
Path length = 5.62 Path length = 6.06 Path length = 10.70
(a) Example 1: VRP20; (b) Example 2: VRP20; (c) Example 3: VRP50;
capacity 30 capacity 30 capacity 40

Figure 8: Sample decoded solutions for VRP20 and VRP50 using greedy (in top row) and beam-search
(bottom row) decoder. The numbers inside the nodes are the demand values.

17



as their demands and the depot location. The solution in the second line is the tour found by the
greedy decoder. In the third and fourth line, we observe how increasing the beam width helps in
improving the solution quality. Finally, we present the optimal solution in the last row. In Table
M we illustrate an example where our method has discovered a solution by splitting the demands
which is, in fact, considerably shorter than the optimal solution found by solving the mixed integer
programming model.

C.5 Attention Mechanism Visualization

In order to illustrate how the attention mechanism is working, we relocated customer node 0 to
different locations and observed how it affects the selected action. Figure Q]illustrates the attention in
initial decoding step for a VRP10 instance drawn in part (a). Specifically, in this experiment, we let
the coordinates of node 0 equal {0.1 x (¢,7),V4,j € {1,---,9}}. In parts (b)-(d), the small bottom
left square corresponds to the case where node 0 is located at [0.1,0.1] and the others have a similar
interpretation. Each small square is associated with a color ranging from black to white, representing
the probability of selecting the corresponding node at the initial decoding step. In part (b), we observe
that if we relocate node O to the bottom-left of the plane, there is a positive probability of directly
going to this node; otherwise, as seen in parts (c) and (d), either node 2 or 9 will be chosen with high
probability. We do not display the probabilities of the other points since there is a near-0 probability
of choosing them, irrespective of the location of node 0. A video demonstration of the decoding
process and attention mechanism is available online at https://youtu.be/qGKt0bB01pO0,

00 02 04 06 08 10

(a) VRP10 instance. (b) Point 0. (c) Point 2. (d) Point 9.

Figure 9: Illustration of attention mechanism at decoding step 0. The problem instance is illustrated
in part (a) where the nodes are labeled with a sequential number; labels 0-9 are the customer nodes
and 10 is the depot. We place node 0 at different locations and observe how it affects the probability
distribution of choosing the first action, as illustrated in parts (b)—(d).

C.6 Experiment on Stochastic VRP

Next, we design a simulated experiment to illustrate the performance of the framework on the
stochastic VRP (SVRP). A major difficulty of planning in these systems is that the schedules are
not defined in beforehand, and one needs to deal with various customer/demand realizations on the
fly. Unlike the majority of the previous literature which only considers one stochastic element (e.g.,
customer locations are fixed, but the demands can change), we allow the customers and their demands
to be stochastic, which makes the problem intractable for many classical algorithms. (See the review
of SVRP by Ritzinger et al. [29]].) We consider an instance of the SVRP in which customers with
random demands arrive at the system according to a Poisson process; without loss of generality we
assume the process has rate 1. Similar to previous experiments, we choose each new customer’s
location uniformly on the unit square and its demand to a discrete number in {1, - ,9}. We fix the
depot position to [0.5,0.5]. A vehicle is required to satisfy as much demand as possible in a time
horizon with length 100 time units. To make the system stable, we assume that each customer cancels
its demand after having gone unanswered for 5 time units. The vehicle moves with speed 0.1 per time
unit. Obviously, this is a continuous-time system, but we view it as a discrete-time MDP where the
vehicle can make decisions at either the times of customer arrivals or after the time when the vehicle
reaches a node.

The network and its hyper-parameters in this experiment are the same as in the previous experiments.
One major difference is the RL training method, where we use asynchronous advantage actor-critic
(A3C) [27] with one-step reward accumulation. The main reason for choosing this training method
is that REINFORCE is not an efficient algorithm in dealing with the long trajectories. The details

18


https://youtu.be/qGKt0bB01p0

Table 3: Solutions found for a sample VRP10 instance. We use different decoders for producing
these solutions; the optimal route is also presented in the last row.

Sample instance for VRP10:

Customer locations: [[0.411, 0.559], [0.874, 0.302], [0.029, 0.127], [0.188, 0.979], [0.812, 0.330],
[0.999, 0.505], [0.926, 0.705], [0.508, 0.739], [0.424, 0.201], [0.314, 0.140]]

Customer demands: [2,4,5,9,5, 3,8, 2, 3, 2]

Depot location: [0.890, 0.252]

Greedy decoder:
Tour Length: 5.305
Tour: 10 =5—-6—+4—+1—-10—-7—-3—-0—-8—-9—=-10—-2—10

BS decoder with width 5:

Beam tour lengths: [5.305, 5.379, 4.807, 5.018, 4.880]

Best beam: 2, Best tour length: 4.807

Best tour: 10 5 —+6—44—-1-10—->7—-3—-0—-10—-8—-2—-9—10

BS decoder with width 10:

Beam tour lengths: [5.305, 5.379, 4.807, 5.0184, 4.880, 4.800, 5.091, 4.757, 4.8034, 4.764]
Best beam: 7, Best tour length: 4.757

Besttours: 10 »5—-6—-1—-10—-7—-3—-0—-4—->10—-8—-2—-9—-10

Optimal:
Optimal tour length: 4.546
Optimal tour: 10 -1 —=+10—+2—-3—-8—=+9—=210-0—-4—=25—-6—=7—10

Table 4: Solutions found for a sample VRP10 instance where by splitting the demands, our method
significantly improves upon the “optimal” (of which no split demand is allowed).

Sample instance for VRP10:

Customer locations: [[0.253, 0.720], [0.289, 0.725], [0.132, 0.131], [0.050, 0.609], [0.780, 0.549],
[0.014, 0.920], [0.624, 0.655], [0.707, 0.311], [0.396, 0.749], [0.468, 0.579]]

Customer demands: [5,6,3,1,9,8,9,8,7,7]

Depot location: [0.204, 0.091]

Greedy decoder:
Tour Length: 5.420
Tour: 10 -7—+4—-+9—-10—-6—-9—-8—-10—-1—-0—-5—-3—-10—-2—10

BS decoder with width 5:

Beam tour lengths: [5.697, 5.731, 5.420, 5.386, 5.582]

Best beam: 3, Best tour length: 5.386

Besttour: 100 -7—+4—-6—-10—-46—-8—49—-10—-1—-0—-5—-3—-10—-2—10

BS decoder with width 10:

Beam tour lengths: [5.697, 5.731, 5.420, 5.386, 5.362, 5.694, 5.582, 5.444, 5.333, 5.650 ]
Best beam: 8 , Best tour length: 5.333

Besttours: 10 7 —+4—+9—-10—-59—-6—-8—-10—-1—-0—-5—-3—-10—2—10

Optimal:
Optimal tour length: 6.037
Optimal tour: 10 +5—-+7—-10—-+9—-10—-2—-10—-8—-10—-1—-3—24—-6—10

of the training method are described in Appendix [D] The other difference is that instead of using
masking, at every time step, the input to the network is a set of available locations which consists of
the customers with positive demand, the depot, and the vehicle’s current location; the latter decision
allows the vehicle to stop at its current position, if necessary. We also add the time-in-system of
customers as a dynamic element to the attention mechanism; it will allow the training process to learn
customer abandonment behavior.

We compare our results with three other strategies: (i) Random, in which the next destination is
randomly selected from the available nodes and it is providing a “lower bound” on the performance;
(ii) Largest-Demand, in which the customer with maximum demand will be chosen as the next
destination; and (iii) Max-Reachable, in which the vehicle chooses the node with the highest demand
while making sure that the demand will remain valid until the vehicle reaches the node. In all
strategies, we force the vehicle to route to the depot and refill when its load is zero. Even though

19



simple, these baselines are common in many applications. Implementing and comparing the results
with more intricate SVRP baselines is an important future direction.

Table [5] summarizes the average demand satisfied, and the percentage of the total demand that
this represents, under the various strategies, averaged over 100 test instances. We observe that
A3C outperforms the other strategies. Even though A3C does not know any information about the
problem structure, it is able to perform better than the Max-Reachable strategy, which uses customer
abandonment information.

Table 5: Satisfied demand under different strategies.

Largest- Max-
Demand Reachable A3C

Avg. Dem. 24.83 75.11 88.60 112.21
% satisfied  5.4% 16.6% 19.6% 28.8%

Method Random

D Training Policy Gradient Methods

We utilize the REINFORCE method, similar to Bello et al. [4] for solving the TSP and VRP, and
A3C [27] for the SVRP. In this Appendix, we explain the details of the algorithms.

Let us consider a family of problems, denoted by M, and a probability distribution over them,
denoted by ® . During the training, the problem instances are generated according to distribution
® (. We also use the same distribution in the inference to produce test examples.

REINFORCE Algorithm for VRP Algorithm [3| summarizes the REINFORCE algorithm. We
have two neural networks with weight vectors 6 and ¢ associated with the actor and critic, respectively.
We draw N sample problems from M and use Monte Carlo simulation to produce feasible sequences
with respect to the current policy myg. We adopt the superscript n to refer to the variables of the
nth instance. After termination of the decoding in all N problems, we compute the corresponding
rewards as well as the policy gradient in step 14 to update the actor network. In this step, V (X{'; ¢)
is the the reward approximation for instance problem n that will be calculated from the critic network.
We also update the critic network in step 15 in the direction of reducing the difference between the
expected rewards with the observed ones during Monte Carlo roll-outs.

Algorithm 3 REINFORCE Algorithm

1: initialize the actor network with random weights # and critic network with random weights ¢
2. for iteration =1,2,--- do

3 reset gradients: df < 0, d¢ < 0

4:  sample N instances according to ®

5 forn=1,--- ,Ndo

6 initialize step counter ¢ <— 0

7

8

repeat
: choose ¥} | according to the distribution 7 (-|Y;", X7*; )
9: observe new state X, |
10: t—t+1
11: until termination condition is satisfied
12: compute reward R" = R(Y™, X{)
13:  end for

14 df— LN (R* —V(Xy;0)) Volog P(Y™Xy36)
I5: dp 5 3,0, Vo (R = V(X§;0))°

16:  update 6 using df and ¢ using de.

17: end for

Asynchronous Advantage Actor-Critic for SVRP The Asynchronous Advantage Actor-Critic
(A3C) method proposed in [27] is a policy gradient approach that has been shown to achieve super-
human performance playing Atari games. In this paper, we utilize this algorithm for training the

20



Algorithm 4 Asynchronous Advantage Actor-Critic (A3C)

1: initialize the actor network with random weights 6° and critic network with random weights ¢°
in the master thread.

2: initialize N thread-specific actor and critic networks with weights 6™ and ¢™ associated with
thread n.

3: repeat
4:  for each thread n do
5: sample a instance problem from & », with initial state X
6: initialize step counter t" < 0
7: while episode not finished do
8: choose y7', ; according to m(-|Y;", X[*;0™)
9: observe new state X7, ;;
10: observe one-step reward Ry = R(Y;", X[")
11: let A7 = (R} + V(X7 150™) — V(X[ 9™))
12: d6® < df° + AV, log (Y |V, X3 0™)
13: dg® « d¢® + V4 (A7)?
14: th—t"+1
15: end while
16:  end for

17:  periodically update #° using d9° and ¢ using d¢”
18: 0™« 6°, ¢" «— @O

19:  reset gradients: d6° < 0, d¢® « 0

20: until training is finished

policy in the SVRP. In this architecture, we have a central network with weights 69, ¢° associated
with the actor and critic, respectively. In addition, N agents are running in parallel threads, each
having their own set of local network parameters; we denote by 6", ¢" the actor and critic weights
of thread n. (We will use superscript n to denote the operations running on thread n.) Each agent
interacts with its own copy of the VRP at the same time as the other agents are interacting with
theirs; at each time-step, the vehicle chooses the next point to visit and receives some reward (or
cost) and then goes to the next time-step. In the SVRP that we consider in this paper, R; is the
number of demands satisfied at time ¢. We note that the system is basically a continuous-time MDP,
but in this algorithm, we consider it as a discrete-time MDP running on the times of system state
changes {7y : t = 0, - - - }; for this reason, we normalize the reward R; with the duration from the
previous time step, e.g., the reward is R; /(¢ — 7¢—1). The goal of each agent is to gather independent
experiences from the other agents and send the gradient updates to the central network located in the
main thread. In this approach, we periodically update the central network weights by accumulated
gradients and send the updated weight to all threads. This asynchronous update procedure leads to a
smooth training since the gradients are calculated from independent VRP instances.

Both actor and critic networks in this experiment are exactly the same as the ones that we employed
for the classical VRP. For training the central network, we use RMSProp optimizer with learning rate
107°.

21



	Our Policy Model versus Pointer Network
	Capacitated VRP Baselines
	Clarke-Wright Savings Heuristic
	Sweep Heuristic
	Google's OR-Tools
	Optimal Solution

	Extended Results of the VRP Experiment
	Implementation Details
	Flexibility to VRPs with Split Demands
	Summary of Comparison with Baselines
	Sample VRP Solutions
	Attention Mechanism Visualization
	Experiment on Stochastic VRP

	Training Policy Gradient Methods

