
A Omitted proofs

A.1 Proof of Theorem 2

Intuitively, our construction works as follows: Each output of the network will be a tentmap evaluated
on one of the inputs. This will fill the output space in such a way that voxels within the unit cube of a
certain size are all assigned equal mass.

Before we begin, we will define the tentmap formally, and make a few observations about it.
Definition 2. The k-piece tentmap tk is the piecewise affine function from [0, 1] to [0, 1] defined as

tk(x) =

{
kx− bkxc for bkxc even,
1− kx+ bkxc for bkxc odd.

We first note that tk can be implemented by a k-node, 2-layer network as

tk(x) = σ(kx) +

k−1∑
i=1

2(−1)iσ(kx− i).

To see this, note that σ is only nonzero when its argument is positive, and in this case it is equal to its
input, so the sum can be rewritten (for x ∈ [0, 1]) as

tk(x) = kx+

bkxc∑
i=1

2(−1)i(kx− i).

For bkxc even, we cancel out adjacent pairs of the sum to −1, leaving us with kx + bkxc
2 (−2) =

kx − bkxc. For bkxc odd, we cancel out adjacent pairs leaving out the first term, leaving us with
kx− 2(kx− 1)− bkxc−1

2 (−2) = 1− kx+ bkxc.
We also see the identity [see Telgarsky, 2016, Lemma 3.11]

tj(tk(x)) = tjk(x)

since along each interval [i/k, (i+ 1)/k], we get a copy of tj or its reflection.

The construction at the heart of Theorem 2 uses iterated tentmaps to transfer an n-dimensional
distribution on the unit cube onto a space-filling curve on the unit cube in d dimensions. To this end,
we will prove a lemma justifying that this sort of space filling curve gives a bound in Wasserstein
distance.
Lemma 5. Let f : [0, 1]n → [0, 1]d be the map which takes (x1, x2, . . . , xn) to the point(

t1(x1), tk(x1), tk2(x1), . . . , tkd1−1(x1), t1(x2), . . . , tkd2−1(x2), t1(xn), . . . , tkdn−1(xn)
)
,

where k, d1, d2, . . . , dn are positive integers with
∑n
i=1 di = d. Then

W
(
f#U([0, 1]n), U([0, 1]d)

)
≤
√
d

k
.

Proof. Call a subinterval in [0, 1] a ki-interval if it is of the form

Iia = (ak−i, (a+ 1)k−i)

Where a is an integer. We claim that the function f maps each input box of the form

Id1a1 × · · · × I
dn
an

to a subset of a distinct output box of the form

I1
b1 × · · · × I

1
bn .

To see this, we must show now that any two points in the same input box in [0, 1]n map to the
same output box in [0, 1]d, but that points from different boxes in [0, 1]n map to different boxes
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in [0, 1]d. For an input box parameterized by (ai)
n
i=1, we note that tke maps a kdi-interval Idiai

to a kdi−e-interval for all 0 ≤ e < di and to the interval [0, 1] for e = di. Thus, for two points
x, y ∈ [0, 1]n, if xi, yi fall in the same interval Idiai , then for each coordinate j corresponding to
coordinate i, the jth coordinate of f(x) and f(y) will fall in the same interval I1

bj
. If xi and yi fall

in different intervals, then there will be a j corresponding to i such that the jth component of f(x)
and f(y) fall in different k-intervals. Specifically, if Ieai contains both xi and yi but no ke+1 interval
contains both, then f(x)j and f(y)j will fall in different k-intervals where j is the eth component of
the output corresponding to i.

Since there are kd boxes of both the input and the output space, we see that there must be a 1-to-1
mapping from the boxes in [0, 1]n, to the boxes in [0, 1]d containing their images under f . Since both
types of boxes have measure k−d in the uniform measures on their respective unit cubes, there exists
a coupling π ∈ Π(f#U([0, 1]n), U([0, 1]d)) such that π is supported on pairs (x, y) belonging to
the same box of the latter type. Then, since |x− y| ≤

√
d
k for any two points in a cube of side length

k−1, it suffices to choose any π which arbitrarily associates points in the same cube, and the desired
bound on Wasserstein distance follows.

Now that we see how the tentmap-based function f can achieve a low Wasserstein distance, the proof
of Theorem 2 follows by writing f as a ReLU network.

Proof of Theorem 2. Our network is designed as follows: Each layer of the network has two types
of nodes: d are “carry-forward nodes” which copy forward the value of a specific output once it is
generated by a layer, and the remainder are “space-filling nodes”, which compute high-frequency tent
maps. We first set aside the d nodes in each layer (a total of dL nodes) to use as carry-forward nodes
and use xl,i,carry to denote the carry-forward node in layer l for output i. The remaining N − dL
space-filling nodes each correspond to a specific input component. We will call nl,i the number of
space-filling nodes corresponding to input i in layer l. We use xl,i,j,space to denote the input of the
jth node corresponding to input i in layer l.

We define the weights of the nodes such that the pre-ReLU activation of the jth node corresponding
to input i in layer l is

xl,i,1,space := nl,itkl,i(xi)− (j − 1),

where kl,i =
∏l−1
m=1 nm,i.

We see by induction on l that it is possible to have the activations thus: For l = 1, we have kl,i = 1,
so the tent map we are replicating is the identity, and all the activations are affine functions of the
input:

x1,i,j,space = nl,i(xi)− (j − 1).

For l > 1, we have (using the inductive hypothesis and the sum form of the tentmap) the tentmap tnl,i

as an affine combination of the post-ReLU activations of the previous layer evaluated on tkl,i(xi).
Thus, using the product rule, we can obtain the value

tnl,i
(tkl,i(xi)) = tkl+1,i

(xi)

as an affine combination of layer l. And since this value can be computed in layer l, so can the affine
transformations

nl+1,itkl+1,i
(xi)− (j − 1) = xl,i,j,space

for any value of nl+1,i and j.

Now that we have established how the space-filling nodes implement the tentmap function, we specify
how these tentmaps feed in to the output. For input vector (x1, x2, . . . , xn) the output vector will be
of the form(

t1(x1), tk(x1), tk2(x1), . . . , tkdd/ne−1(x1), t1(x2), . . . , t1(xn), . . . , tkbd/nc−1(xn)
)
,

where k is an whole number depending on N,L, n, d. The d outputs are split evenly among the n
inputs, with each output manifesting as a tentmap evaluated on its designated input. Each input has
at most d dne and at least b dnc output nodes taking the form of a tentmap of that input. Note that we
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allow the trivial tentmap t1, which is just the identity on [0, 1], and our construction has each input
xi with exactly one output of the form t1(xi). Our goal is to make k as large as possible with the
limited number of carry-forward nodes and layers available, and then to prove that the Wasserstein
accuracy of this construction decreases quickly with k.

We split the N − dL space-filling nodes among the inputs in proportion with the number of outputs
that input is responsible for. Thus, each output should get at least bN−dLd c nodes. Furthermore, each
output that computes a nontrivial tentmap of its input is associated with a run of b L

d d−n
n e
c layers over

which to distribute these nodes, so that the nodes for a certain input don’t go over the total number of
layers. With this in place, using the construction described above, we can guarantee a k value of

k =

 bN−dLd c
b L
d d−n

n e
c


⌊

L

d d−n
n
e

⌋
,

or to lower bound this with a more manageable expression,

k ≥

bN−dLd c
L

d d−n
n e

bnL
d c

≥

⌊(
d− n
n

)
N − dL+ d

dL

⌋bnL
d c

.

Thus, we have the Wasserstein distance upper bound

W (f#U([0, 1]n), U([0, 1]d)) ≤
√
d

⌊(
d− n
n

)
N − dL+ d

dL

⌋−bnL
d c

.

A.2 Proof of Lemma 1

A concurrent proof of this theorem appears in Zhang et al. [2018], based on tropical geometry. Our
proof is based on a lemma about how many different orthants an n0-dimensional hyperplane can
intersect, which turns out to be exponential in n0. We then inductively track how many affine pieces
exist in each layer of the network.

Proof. The proof requires a lemma:

Lemma 6. A k-dimensional hyperplane P in Rn intersects at most
k∑
j=0

(
n

j

)
orthants.

This lemma follows from [Anthony and Bartlett, 2009, Lemma 3.3]. We assume without loss
of generality that our plane is not parallel to any unit vector in Rn. We then consider the k + 1
dimensional space containing P and the origin as a copy of Rk, and we project the n unit vectors
of the ambient Rn into this copy of Rk+1. Applying [Anthony and Bartlett, 2009, Lemma 3.3], the
perpendicular spaces of the vector projections split the copy of Rk+1 into 2

∑k
j=0

(
n
j

)
connected

components. These perpendicular spaces correspond to the separating planes of the orthants in Rn,
and since P touches half of the connected components, it intersects

∑k
j=0

(
n
j

)
orthants in total.

With this lemma, we can now prove the theorem. We proceed by induction on L. In the L = 0 case,
there are no nonlinearities in this network, and so f is affine on its entire input.

In the inductive case, we consider f computed by an L+ 1 layer ReLU network. Let g : Rn0 → RnL

represent the function computed by the first L− 1 hidden layers of f , outputting the last hidden layer
of f . That is, g = AL ◦ σnL−1

◦ · · · ◦ σn2
◦A2 ◦ σn1

◦A1. By the inductive hypothesis, Rn0 can be
partitioned into

NA(g) ≤
L−1∏
i=1

 n0∑
j=0

(
ni
j

)
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convex parts S1, · · ·SNA(g) such that g is affine on each. For any of these convex regions Sk, the
image of g(Sk) is a convex set in RnL . Consider the partition of Rn0 obtained by dividing each Sk
into subpieces according to the orthant of a points image under g. Because each orthant is convex, the
preimage of each orthant under the restriction of g to Sk (which is affine) is also convex. Moreover,
the function f = AL+1 ◦ σnL

◦ g is affine on each of these subpieces, because g is affine on the
subpieces and σnL

is affine on each orthant (and AL+1 is affine). Finally, since g(Sk) is an affine
image of a subset of Rn0 , it lies in a n0-dimensional hyperplane in RnL , which can intersect at most∑n0

j=0

(
nL

j

)
orthants. Thus, the subdivision step divides each Sk into at most

∑n0

j=0

(
nL

j

)
subpieces.

We therefore get

NA(f) ≤ NA(g)

n0∑
j=0

(
nL
j

)
≤

L∏
i=1

 n0∑
j=0

(
ni
j

) .

We also note the upper bound on the sum
n0∑
j=0

(
ni
j

)
≤
(
ni + n0

n0

)
≤ (ni + n0)n0

n0!
≤
(
e
ni + n0

n0

)n0

.

If we substitute this in above, we get the bound

NA(f) ≤
L∏
i=1

(
e
ni + n0

n0

)n0

and since (keeping the total number of nodes fixed) this product is maximized when all layers have
the same number of nodes, we get

NA(f) ≤
L∏
i=1

(
e
N

n0L
+ e

)n0

=

(
e
N

n0L
+ e

)n0L

.

This proves the claim.

A.3 Proof of Theorem 3

The proof of this theorem comes in a few parts:

• We introduce a new notation to capture the idea of a Wasserstein distance between a
distribution and a set.

• We prove a lemma about how distances between certain well-behaved distributions and
hyperplanes can be lower bounded.

• We break the range of f and the target distribution up into a collection of hyperplanes and
distributions that can be handled by the lemma.

First, let us specify our idea of a Wasserstein distance between a distribution and a set:
Definition 3. For a distribution µ and a closed, convex set S on Rd, we define the Wasserstein
distance of the distribution from the set as

W (µ, S) := inf
π∈Π(µ,S)

∫
|x− y|dπ(x, y) = inf

ν∈ΠS

W (µ, ν)

where Π(µ, S) is the set of joint distributions having µ as left marginal and right marginal supported
on S, and where ΠS is the set of all distributions supported on S.

We can immediately note that an alternative way to view this definition is

W (µ, S) =

∫
d(x, S)dµ(x),

where d(x, S) := infy∈S |x−y| represents the distance of x from S. To see this, we claim that there is
an optimal coupling π∗ ∈ Π(µ, S) which attains the minimum

∫
d(x, y) dπ∗(x, y) = W (UB , S) and
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Figure 2: Diagram of example B (the ball in blue) and R∗ (the rectangle in red). Here n = 1 and
d = 2.

which is supported on (x, y) pairs where y is the unique (since S is closed and convex) closest point
in S to x. To see why such a coupling is optimal, note that for any other distribution π ∈ Π(µ, S),∫

|x− y|dπ(x, y) ≥
∫

inf
y∈S
|x− y|dπ(x, y) =

∫
|x− y|dπ∗(x, y).

With this new definition, we move on to a lemma which lower bounds the Wasserstein distance
between a uniform distribution on an arbitrary bounded measurable set and a hyperplane:

Lemma 7. Let B ⊆ B0 ⊆ Rd where B0 is a ball of radius l, and B has measure m(B). Let S be
an n-dimensional hyperplane in Rd. Then the Wasserstein distance between the uniform distribution
on B and the plane S has the following lower bound:

W (UB , S) ≥ d− n
d− n+ 1

·

(
Γ(d−n2 + 1)Γ(n2 + 1)

π
d
2

l−nm(B)

)1/(d−n)

Proof. Using our new Wasserstein distance definition, we see that

W (UB , S) =
1

m(B)

∫
B

d(x, S)dx, (3)

where m(B) represents the Lebesgue measure of B.

We will now lower bound the integral over B on the right hand side. We know B is contained in
B0 of radius l (centered at x0, say), and the orthogonal projection ProjS(B) of B onto the plane S
is, therefore contained in R1 := ProjS(B0), which is a ball of radius l on the space S (centered at
ProjS(x0)). In the orthogonal complement space to S, define R2 ⊂ S⊥ as the ball which is centered
on S and has radius r such that m(R1) ·m(R2) = m(B) and define R∗ to be the Cartesian product
of these balls in d-dimensional space, so that

m(R∗) = m(R1 ×R2) = m(R1) ·m(R2) = m(B). (4)

We will see that this R∗ can replace B in Equation 3 to provide the desired lower bound for the
expression. From m(B) = m(R∗), we get

m(R∗ \B) = m(R∗ ∪B)−m(B) = m(R∗ ∪B)−m(R∗) = m(B \R∗).

Since ProjS(B) ⊆ R1, we have B ⊆ R1 × S⊥, and since R∗ consists of all points in R1 × S⊥ with
distance ≤ r from S, for any x ∈ B \R∗, we have d(x, S) ≥ r. On the other hand, d(x, S) ≤ r for
x ∈ R∗ \B (since all elements of R∗ are within r of S). Thus, we get a lower bound on the integral
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from Equation 3 ∫
B

d(x, S)dx =

∫
B∩R∗

d(x, S)dx+

∫
B\R∗

d(x, S)dx

≥
∫
B∩R∗

d(x, S)dx+ r ·m(B \R∗)

=

∫
B∩R∗

d(x, S)dx+ r ·m(R∗ \B)

≥
∫
B∩R∗

d(x, S)dx+

∫
R∗\B

d(x, S)dx

=

∫
R∗
d(x, S)dx,

and so

W (UB , S) ≥ 1

m(B)

∫
R∗
d(x, S)dx. (5)

(Note that we haven’t given up much at this point; if our only restriction on B was that its orthogonal
projection was bounded by l, then we could have R∗ = B and the above inequality would be tight.
As it is, if l is much greater than r, then B may share much overlap with R∗ anyway.)

We can decompose the above integral over R∗ in Equation 5 into the components parallel and
perpendicular to S: ∫

R∗
d(x, S)dx = m(R1) ·

∫
R2

d(x, S)dx. (6)

The integral
∫
R2
d(x, S)dx is equivalent to the rotationally symmetric integral around the origin∫

R2

d(x, S)dx =

∫
Br

|x|dx, (7)

where Br is the origin-centered ball of radius r in (d − n) dimensions. Intuitively, in a high
dimensional space, most of the volume of a ball lies near its edge, so we can expect this integral to
come out to about r times the volume of the ball. We can evaluate the integral precisely by subtracting
out
∫
Br
r− |x|dx and using the general formula that the volume of a cone (with (d−n)-dimensional

base) is 1
d−n+1 that of the cylinder with the same base and height:∫

Br

|x|dx =

∫
Br

rdx−
∫
Br

r−|x|dx = r ·m(Br)−r ·
1

d− n+ 1
m(Br) = r ·m(Br) ·

d− n
d− n+ 1

.

(8)
Putting together Equations (6) to (8), we get the integral from Equation 5 in terms of r, m(B), d, and
n: ∫

R∗
d(x, S)dx = r ·m(R1) ·m(R2)

d− n
d− n+ 1

= r ·m(B) · d− n
d− n+ 1

.

All we need to complete the bound is to compute r. Recall we have R1 as an n-dimensional ball of
radius l parallel to S, and R2 is a (d− n)-dimensional ball of radius r orthogonal to S and centered
on S. We use the fact that m(R1) ·m(R2) = m(B) to get(

π
d−n

2

Γ(d−n2 + 1)
rd−n

)(
π

n
2

Γ(n2 + 1)
ln

)
= m(B),

which after solving for r gives

r =

(
Γ(d−n2 + 1)Γ(n2 + 1)

π
d
2

l−nm(B)

)1/(d−n)

.
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Substituting this value for r in Equation 5 gives

W (UB , S) ≥ 1

m(B)

∫
R∗
d(x, S)dx

≥ d− n
d− n+ 1

·

(
Γ(d−n2 + 1)Γ(n2 + 1)

π
d
2

l−nm(B)

)1/(d−n)

,

as desired.

Now that we have this lemma regarding distance to hyperplanes, we prove the theorem by applying
the lemma to the planes on which the range of our piecewise affine function lies.

Proof of Theorem 3. We first note that since P can be any distribution on Rn, f#P can be any
distribution on the range of f . Therefore, it suffices to lower bound the Wasserstein distance between
the distribution UB and the range of f .

Since f is piecewise affine, its range is a subset of the union of NA(f) n-dimensional hyperplanes in
Rd, which we name S1, · · · , SNA(f). We call the union of these planes S, and we note that

W (UB ,Range f) ≥W (UB , S),

since any distribution supported on Range f is supported on its superset S.

The Wasserstein distance of UB to this set S is lower bounded by the integral of d(x, S) over UB ,
since this lower bounds the integral for any π ∈ Π(UB , S). In fact, this is an equality, since the
following correspondence gives us a π that achieves this minimum: For each i, let Bi ⊆ B consist of
all y that are nearer to Si than any other Sj choosing the smaller index in case of ties. That is,

Bi = {x ∈ B : i = arg min
j

d(x, Sj)}.

This makes each Bi a measurable set such that for x ∈ Bi, we have

inf
y∈S
|x− y| = d(x, Si),

and by choosing π ∈ Π(UB , S) supported on (x, y) pairs where y is the closest point in S to x,
(choosing the minimum index when ambiguity arises), we get

W (UB , S) = inf
π∈Π(UB ,S)

∫
|x− y|dπ(x, y)

=

∫
d(x, S)dUB(x)

=
1

m(B)

∑
i

∫
Bi

d(x, Si)dy.

As we noted, these integrals can be expressed in terms of the Wasserstein distances of the uniform
distributions on the Bi to their respective Si:

W (UB , S) =
1

m(B)

∑
i

m(Bi) ·W (UBi
, Si).

We apply the lemma to lower bound this integral for each i, whereby

W (UB , S) ≥ 1

m(B)

∑
i

m(Bi) ·
d− n

d− n+ 1
·

(
Γ(d−n2 + 1)Γ(n2 + 1)

π
d
2

l−nm(Bi)

)1/(d−n)

.
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Since the summand is convex in m(Bi), Jensen’s inequality inequality allows replacing m(Bi) with
m(B)/NA, thus

≥ 1

m(B)

∑
i

m(B)

NA
· d− n
d− n+ 1

·

(
Γ(d−n2 + 1)Γ(n2 + 1)

π
d
2

l−n
m(B)

NA

)1/(d−n)

= NA
1

NA
· d− n
d− n+ 1

·

(
Γ(d−n2 + 1)Γ(n2 + 1)

π
d
2

l−n
m(B)

NA

)1/(d−n)

=
d− n

d− n+ 1
·

(
Γ(d−n2 + 1)Γ(n2 + 1)

π
d
2

l−n
m(B)

NA

)1/(d−n)

,

which is of the desired form.

A.4 Proof of Theorem 5

Proof. We will approximate xk inductively by multiplying the approximation for xk−1 with x. We
will ensure that we approximate each xk to within ε

(2M)n−k (assuming M is at least 1). If we
approximate the multiplication by x function to within ε

2(2M)n−k , and consider that multiplication by
x is M -Lipschitz, then using Lemma 8, we have that if xk−1 is approximated to within ε

(2M)n−k+1

then xk will be approximated to within

M
ε

(2M)n−k+1
+

ε

2(2M)n−k
=

ε

(2M)n−k
.

By induction, this construction will indeed approximate all xk to within our specified accuracy.
Analyzing the size of this network, we see that the network module computing xk−1 · x = xk will
require

O(ln(2(2M)n−k/ε) + ln(Mk)) = O((n− k) ln(2M) + (n− k) + ln(1/ε) + k ln(M))

nodes. Summing this over k = 1 to n− 1 produces poly(n, ln(M), ln(1/ε)).

A.5 Proof of Theorem 6

Proof. As mentioned before, Φ has the series representation

Φ(z) =
1

2
+

1√
2π

∞∑
k=0

(−1)kz2k+1

k!(2k + 1)2k
.

We consider the truncated sum

Φn(z) =
1

2
+

1√
2π

n∑
k=0

(−1)kz2k+1

k!(2k + 1)2k
,

where we set n = max{2eM2 − 1, log2(2/ε)}. This guarantees that for x ∈ [−M,M ], the error
incurred by truncating the sum is

|Φ(z)− Φn(z)| = 1√
2π

∣∣∣∣∣∣
∞∑

k=n+1

(−1)kz2k+1

k!(2k + 1)2k

∣∣∣∣∣∣
≤

∞∑
k=n+1

|M |2k+1

k!
. ∵ Stirling’s inequality

≤
∞∑

k=n+1

M2k+1

√
2πkk+ 1

2 e−k

=

∞∑
k=n+1

1√
2πe

(
eM2

k

)k+ 1
2

.
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Since we chose n+ 1 ≥ 2eM2, we have

≤
∞∑

k=n+1

(
1

2

)k
= 2−n,

and since we chose n ≥ log2(2/ε),

≤ ε

2
.

So the total error we get by omitting these terms is no more than ε
2 . We approximate each z2k+1 to

within ε/(2n+ 2), and then multiply each xi by its Maclaurin coefficient. Since each coefficient is no
more than 1 in absolute value, the errors in each of the Maclaurin terms is no more than ε/(2n+ 2).
We can therefore add all n+1 of these Maclaurin terms and get an error less than ε

2 from the truncated
series f̃ , and a total error no more than ε from the function Φ in the interval [−M,M ]. Applying
Theorem 5, approximating the xi to this accuracy requires

poly(2n+ 1, ln(M), ln(1/ε)) = poly(M, ln(1/ε))

nodes. Take M sufficiently large that 1− Φ(M/2) < ε, which can be done with M = O(log(1/ε)).
Then, add a component to the neural network that interpolates between this approximation on
[−M,M ] and 1 for z > M/2 and 0 for x < −M/2. This guarantees the network is accurate for all
values of z. Note that we can guarantee the range of this approximation falls in [0, 1], by adding a
gadget that clamps the output to this interval.

A.6 Proof of Lemma 3

Proof. We construct a ReLU/Step network which contains t copies of the neural network approxi-
mating f , as well 3t+ 3 nodes called xi,low, xi,mid, xi,high for i in {0, . . . , t}. The network assigns
the initial values

x0,low := a, x0,high := a,

and for all values of i, we compute

xi,mid :=
xi,low + xi,low

2
.

Let y ∈ [c, d] be the input to our network for computing f−1. For 0 ≤ i < t, we let xi,mid be the
input to the ith copy of the network computing f , and call the output node of this copy yi,mid, and we
correspondingly call. If yi ≥ y (which we test using a step function activation), set

xi+1,low := xi,low, xi+1,high := xi,mid,

and otherwise, set
xi+1,low := xi,mid, xi+1,high := xi,high.

We set the network output to be xt,mid.

By induction on the construction of these values, if f̃ is the approximation of f given by the provided
network, then the interval [f̃(xi,low), f̃(xi,high)] contains y for each i. This implies that x = f−1(y)

is in the interval [f−1(f̃(xt,low)), f
−1(f̃(xt,high))], since f is increasing. Moreover, since f−1 is

L-Lipschitz and f̃ is accurate to within ε, the endpoints of this interval are within εL of xt,low and
xt,high, so we know that the above interval is contained in

[xt,low − εL, xt,high + εL].

So x is contained in this interval, but xt,mid is the midpoint of this interval, so the maximum possible
distance between x and xt,mid is half the length of the interval, which is (b− a)2t+1 + εL.
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A.7 Proof of Theorem 9

Proof. Applying Theorem 8 with ε = ε1 (to be specified later), we approximate the inverse CDF
of the normal distribution on [Φ(− ln(1/ε21)),Φ(ln(1/ε21))]. On the intervals [0,Φ(− ln(1/ε21))] and
[Φ(ln(1/ε21)), 1], we set the output of the network to − ln(1/ε21) and ln(1/ε21) respectively (using
step function activations to test if the input is in this range). Finally, we append a gadget computing
the function x 7→ max(− ln(1/ε21),min(x, ln(1/ε21))), so that the output of our network f lies in
the range [− ln(1/ε21), ln(1/ε21)]. We now look to lower bound the Wasserstein for this generative
network f .

W (f#U([0, 1]),N ) = inf
π∈Π
|x− y|dπ(x, y).

We consider a coupling between f#U([0, 1]) and N with pairs of the form (f(x),Φ−1(x)), where
x ∼ U([0, 1]):

≤
∫ 1

0

|f(x)− Φ−1(x)|dx.

We now split this integral into three parts

=

∫
A

|f(x)− Φ−1(x)|dx+

∫
I\A
|f(x)− Φ−1(x)|dx+

∫
[0,1]\(I∪A)

|f(x)− Φ−1(x)|dx

≤ m(A) · 2 ln(1/ε21) + 1 · ε1 + 2

∫ 1

Φ(ln(1/ε21))

|f(x)− Φ−1(x)|dx.

Rewriting the integral on the tails,

= m(A) · 2 ln(1/ε21) + 1 · ε1 + 2

∫ ∞
ln(1/ε21)

1− Φ(x)dx,

and since the normal CDF has exponentially small tails

= m(A) · 2 ln(1/ε21) +O(ε1).

Now, choosing m(A) sufficiently small,

= O(ε1),

and we can choose ε1 sufficiently small so that this is under ε. Since ε1 is linear in ε, the construction
still uses polylog(1/ε) nodes.

A.8 Proof of Proposition 2

Proof. Let [0 = a0, a1], [a1, a2], . . . , [aNA−1, aNA
= 1] be the intervals on which f |[0,1] is affine.

The distribution given by f#U([0, 1) is a mixture of NA distributions

f#U([0, 1]) =

NA−1∑
i=0

1

ai+1 − ai
f#U([ai, ai+1]),

where the f#U([ai, ai+1]) is either a uniform distribution on the interval [f(ai), f(ai+1)] (or
[f(ai+1), f(ai)]), or if f(ai) = f(ai+1), it is a point distribution on f(ai). Since these distri-
butions have CDFs which are nonlinear only at f(ai) values, the CDF of f#U([0, 1]) (which is the
weighted sum of CDFs of these simple distributions), is piecewise affine with nonlinearities at f(ai).
In other words, it is piecewise affine in NA + 2 pieces.
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A.9 Proof of Lemma 4

Proof. Define g to be the function

g(x) = max(0,min(1, f(x))).

Since f has NA affine pieces, and each of these can yield at most 3 pieces in g, g has 3NA affine
pieces at most. By Safran and Shamir [2016, Theorem 7], since Φ has second derivative bounded
away from 0 on an interval, we get∫ b

a

|Φ(x)− g(x)|2dx ≥ k

(3NA)4
=

K

N4
A

for some constant K. Since |Φ(x)− g(x)| ≤ 1, we have∫ b

a

|Φ(x)− f(x)|dx ≥
∫ b

a

|Φ(x)− g(x)|dx ≥ K

N4
A

.

A.10 Proof of Theorem 12

Proof. Each of the uniform variables has mean 1/2 and variance 1/12 so subtract n/2 and multiply
the sum by 1/

√
12 to normalize. The nonuniform version of the Berry-Esseen theorem [Pinelis,

2013] tells us that there is a constant C such that the difference in CDF between this and the normal
CDF at t is no more than C√

n(1+|t|3)
. Since the integral of 1/(1 + |t|3) converges, the integral of this

difference over all R is bounded by O( 1√
n

) and by Proposition 1, this gives the Wasserstein distance
bound.

B Additional Lemma

Lemma 8. If we have A,B,C subsets of Euclidean spaces and functions f, f̃ : A → B and
g, g̃ : B → C such that

• For all x ∈ A, |f̃(x)− f(x)| < ε
2Lg

(where Lg is a Lipschitz constant of g)

• For all y ∈ B, |g̃(y)− g(y)| < ε
2

then |(f̃ ◦ g̃)(x)− (f ◦ g)(x)| ≤ ε for all x ∈ A.

Proof. If |f̃(x) − f(x)| < ε1 = ε
2Lg

and |g̃ − g| < ε2 = ε
2 , then applying the triangle inequality

gives us

|(g̃ ◦ f̃)(x)− (g ◦ f)(x)| = |(g̃ ◦ f̃)(x)− (g ◦ f̃)(x) + (g ◦ f̃)(x)− (g ◦ f)(x)|
≤ |(g̃ ◦ f̃)(x)− (g ◦ f̃)(x)|+ |(g ◦ f̃)(x)− (g ◦ f)(x)|
≤ ε2 + Lgε1
= ε.
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