Supplementary: Constructing Deep Neural Networks by Bayesian Network Structure Learning

Raanan Y. Rohekar Intel AI Lab raanan.yehezkel@intel.com Shami Nisimov Intel AI Lab shami.nisimov@intel.com Yaniv Gurwicz Intel AI Lab yaniv.gurwicz@intel.com

Guy Koren Intel AI Lab guy.koren@intel.com Gal Novik Intel AI Lab gal.novik@intel.com

A Preservation of Conditional Dependence

We prove that conditional dependence relations encoded by the generative structure G are preserved by the discriminative structure G_{dis} conditioned on the class Y. That is, G_{dis} conditioned on Y can mimic G; denoted by $G \preceq G_{\text{dis}}|Y$, a preference relation. While the parameters of a model can learn to mimic conditional independence relations that are not expressed by the graph structure, they are not able to learn conditional dependence relations (Pearl, 2009).

Proposition 1. Graph G_{inv} preserves all conditional dependencies in G (i.e., $G \preceq G_{inv}$).

Proof. Graph G_{inv} can be constructed using the procedures described by Stuhlmüller et al. (2013) where nodes are added, one-by-one, to G_{inv} in a reverse topological order (lowest first) and connected (as a child) to existing nodes in G_{inv} that d-separate it, according to G, from the remainder of G_{inv} . Paige & Wood (2016) showed that this method ensures $G \preceq G_{inv}$, the preservation of conditional dependence. We set an equal topological order to every pair of latents (H_i, H_j) sharing a common child in G. Hence, jointly adding nodes H_i and H_j to G_{inv} , connected by a bi-directional edge, requires connecting them (as children) only to their children and the parents of their children $(H_i$ and H_j themselves, by definition) in G. That is, without loss of generality, node H_i is d-separated from the remainder of G_{inv} given its children in G and H_j .

It is interesting to note that the stochastic inverse G_{inv} , constructed without adding inter-layer connections, preserves all conditional dependencies in G.

Proposition 2. Graph G_{dis} , conditioned on Y, preserves all conditional dependencies in G_{inv} (*i.e.*, $G_{\text{inv}} \preceq G_{\text{dis}}|Y$).

Proof. It is only required to prove that the dependency relations that are represented by bi-directional edges in G_{inv} are preserved in G_{dis} . The proof follows directly from the d-separation criterion (Pearl, 2009). A latent pair $\{H, H'\} \subset H^{(n+1)}$, connected by a bi-directional edge in G_{inv} , cannot be d-separated by any set containing Y, as Y is a descendant of a common child of H and H'. In Algorithm 1-line 16, a latent in $H^{(n)}$ is connected, as a child (as a parent in G), to latents $H^{(n+1)}$, and Y to $H^{(0)}$.

We formulate G_{inv} as a projection of another latent model (Pearl, 2009) where bi-directional edges represent dependency relations induced by latent variables Q. We construct a discriminative model by considering the effect of Q as an explaining-away relation induced by the target node Y. Thus, conditioned on Y, the discriminative graph G_{dis} preserves all conditional (and marginal) dependencies in G_{inv} .

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.

Proposition 3. Graph G_{dis} , conditioned on Y, preserves all conditional dependencies in G (*i.e.*, $G \leq G_{dis}$).

Proof. It immediately follows from Propositions 1 & 2 that $G \preceq G_{inv} \preceq G_{dis}$ conditioned on Y.

Thus $G \preceq G_{inv} \preceq G_{dis}$ conditioned on Y.

B Flowchart

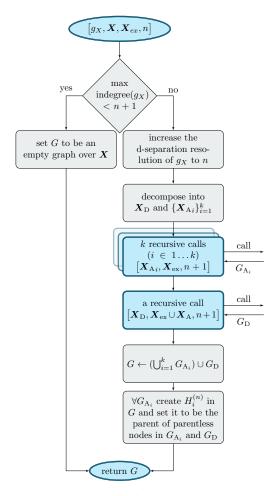


Figure 1: Flowchart of the DeepGen algorithm.

References

- Paige, Brooks and Wood, Frank. Inference networks for sequential Monte Carlo in graphical models. In *Proceedings of the 33rd International Conference on Machine Learning*, volume 48 of *JMLR*, 2016.
- Pearl, Judea. Causality: Models, Reasoning, and Inference. Cambridge university press, second edition, 2009.
- Stuhlmüller, Andreas, Taylor, Jacob, and Goodman, Noah. Learning stochastic inverses. In Advances in neural information processing systems, pp. 3048–3056, 2013.