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A Preservation of Conditional Dependence

We prove that conditional dependence relations encoded by the generative structure G are preserved
by the discriminative structure Gdis conditioned on the class Y . That is, Gdis conditioned on Y can
mimic G; denoted by G � Gdis|Y , a preference relation. While the parameters of a model can learn
to mimic conditional independence relations that are not expressed by the graph structure, they are
not able to learn conditional dependence relations (Pearl, 2009).
Proposition 1. Graph Ginv preserves all conditional dependencies in G (i.e., G � Ginv).

Proof. Graph Ginv can be constructed using the procedures described by Stuhlmüller et al. (2013)
where nodes are added, one-by-one, to Ginv in a reverse topological order (lowest first) and connected
(as a child) to existing nodes in Ginv that d-separate it, according to G, from the remainder of Ginv.
Paige & Wood (2016) showed that this method ensures G � Ginv, the preservation of conditional
dependence. We set an equal topological order to every pair of latents (Hi, Hj) sharing a common
child in G. Hence, jointly adding nodes Hi and Hj to Ginv, connected by a bi-directional edge,
requires connecting them (as children) only to their children and the parents of their children (Hi and
Hj themselves, by definition) in G. That is, without loss of generality, node Hi is d-separated from
the remainder of Ginv given its children in G and Hj . �

It is interesting to note that the stochastic inverse Ginv, constructed without adding inter-layer
connections, preserves all conditional dependencies in G.
Proposition 2. Graph Gdis, conditioned on Y , preserves all conditional dependencies in Ginv

(i.e., Ginv � Gdis|Y ).

Proof. It is only required to prove that the dependency relations that are represented by bi-directional
edges in Ginv are preserved in Gdis. The proof follows directly from the d-separation criterion (Pearl,
2009). A latent pair {H,H ′} ⊂ H(n+1), connected by a bi-directional edge in Ginv, cannot be
d-separated by any set containing Y , as Y is a descendant of a common child of H and H ′. In
Algorithm 1-line 16, a latent in H(n) is connected, as a child (as a parent in G), to latents H(n+1),
and Y to H(0). �

We formulate Ginv as a projection of another latent model (Pearl, 2009) where bi-directional edges
represent dependency relations induced by latent variables Q. We construct a discriminative model
by considering the effect of Q as an explaining-away relation induced by the target node Y . Thus,
conditioned on Y , the discriminative graph Gdis preserves all conditional (and marginal) dependencies
in Ginv.
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Proposition 3. Graph Gdis, conditioned on Y , preserves all conditional dependencies in G
(i.e., G � Gdis).

Proof. It immediately follows from Propositions 1 & 2 that G � Ginv � Gdis conditioned on Y . �

Thus G � Ginv � Gdis conditioned on Y .
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Figure 1: Flowchart of the DeepGen algorithm.
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