
Supplementary Material for Deep Defense: Training
DNNs with Improved Adversarial Robustness

Ziang Yan1* Yiwen Guo2,1* Changshui Zhang1

1Institute for Artificial Intelligence, Tsinghua University (THUAI),
State Key Lab of Intelligent Technologies and Systems,

Beijing National Research Center for Information Science and Technology (BNRist),
Department of Automation,Tsinghua University, Beijing, China

2 Intel Labs China
yza18@mails.tsinghua.edu.cn yiwen.guo@intel.com zcs@mail.tsinghua.edu.cn

1 More Evaluation Metrics and Attacks

Table 2: Test performance of different methods in the sense of: l2 under DeepFool, ρ∞ under FGS,
l2 under the C&W attack, the prediction accuracy on PGD adversarial examples and the PASS score.

Dataset Network Method l2 (DeepFool) ρ∞ (FGS) l2 (C&W) Acc. (PGD) PASS

MNIST

MLP

Reference 0.81 5.40×10−2 0.84 1.19% 0.8534
Par. Train 0.80 5.78×10−2 0.83 1.18% 0.8542

Adv. Train I 1.17 9.46×10−2 1.17 4.11% 0.8280
Deep Defense 1.64 1.53×10−1 1.58 33.18% 0.8181

LeNet

Reference 1.48 1.29×10−1 1.40 26.17% 0.9074
Par. Train 1.50 1.50×10−1 1.58 23.06% 0.8981

Adv. Train I 1.90 2.05×10−1 1.71 50.67% 0.8810
Deep Defense 2.05 2.36×10−1 1.84 64.54% 0.8760

CIFAR-10

ConvNet

Reference 0.18 5.27×10−3 0.29 21.34% -
Par. Train 0.24 8.02×10−3 0.33 27.91% -

Adv. Train I 0.21 6.37×10−3 0.31 27.08% -
Deep Defense 0.36 1.58×10−2 0.47 45.05% -

NIN

Reference 0.30 1.05×10−2 0.41 34.41% -
Par. Train 0.31 1.07×10−2 0.41 36.59% -

Adv. Train I 0.37 1.76×10−2 0.48 45.51% -
Deep Defense 0.40 2.15×10−2 0.50 51.07% -

ImageNet
AlexNet Reference 0.29 5.46×10−4 - - -

Deep Defense 0.45 8.70×10−4 - - -

ResNet Reference 0.69 6.96×10−4 - - -
Deep Defense 1.03 1.08×10−3 - - -

In this paper, we leave the optimal choice of evaluation metric an open question and simply choose
some popular ones following previous works. Here in the supplementary material we try to test as
many as possible to verify the effectiveness of our method extensively.

In the main body of our paper, we utilize the normalized l2 norm of required adversarial perturbations
to evaluate the robustness of different models, as suggested in the DeepFool paper [6]. We notice that
in some papers, an unnormalized norm is used instead, which means

l2 :=
1

|D|
∑
k∈D

‖∆xk
‖2 (1)

*The first two authors contributed equally to this work.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

0.1 0.2 0.3 0.40.0%

20.0%

40.0%

60.0%

80.0%

100.0%

FG
S

su
cc

es
s r

at
e

on
 te

st
 se

t,
M

LP

Reference
Pars. Train
Adv. Train I
Ours (c=25)

0.1 0.2 0.3 0.40.0%

20.0%

40.0%

60.0%

80.0%

100.0%

su
cc

es
s r

at
e

on
 M

N
IS

T
te

st
 se

t,
Le

N
et

Reference
Pars. Train
Adv. Train I
Ours (c=25)

0.01 0.02 0.03 0.040.0%

20.0%

40.0%

60.0%

80.0%

100.0%

su
cc

es
s r

at
e

on
 C

IF
A

R
-1

0
te

st
 se

t,
C

on
vN

et

Reference
Pars. Train
Adv. Train I
Ours (c=25)

0.01 0.02 0.03 0.040.0%

20.0%

40.0%

60.0%

80.0%

100.0%

su
cc

es
s r

at
e

on
 C

IF
A

R
-1

0
te

st
 se

t,
N

IN

Reference
Pars. Train
Adv. Train I
Ours (c=70)

Figure 5: Comparison of different defense methods under the FGS attack. For each network, we
report the success rate of FGS with varying ε. Lower is better. Best viewed in color.

can also be calculated as a metric (see the fourth column of Table 2). In addition, we further evaluate
the robustness of different models under the C&W’s l2 attack [1], using the official CleverHans [7]
implementation. The (unnormalized) l2 values under the C&W’s l2 attack are reported in the sixth
column of Table 2. Using different reference models trained with different initializations lead to very
similar results in our experiments, so we simply omit such variance (e.g., for l2, it is less than 0.003).

Also, when the FGS attack is adopted, the robustness can be evaluated by replacing the l2 norm with
an l∞ norm in the definition of ρ as the FGS attack is usually considered as an l∞ norm-based (or
max-norm based) perturbation method, and get

ρ∞ :=
1

|D|
∑
k∈D

‖∆xk
‖∞

‖xk‖∞
. (2)

in the fifth column of Table 2. Higher l2 and ρ∞ indicate better robustness to the l2 and l∞ attacks,
respectively. Recall that, to establish a benchmark, we adjust ε such that 50% of the image samples
are misclassified by well-trained models, as introduced in the main body of our paper. Here we
further compare the FGS success rates with respect to varying ε on different models in Figure 5.

As an additional l∞ attack, the PGD-based method [4] is also tested here. We set ε = 0.1 for MNIST,
ε = 0.01 for CIFAR-10, and compare prediction accuracies on adversarial examples in the seventh
column of Table 2. It can be seen that the superiority of our method holds on various baseline
networks. Recently, Rozsa et.al. [8] propose a psychometric perceptual adversarial similarity score
named PASS, which seems consistent with human perception. The lower such score is, the better
defensive performance the model gets. We calculate it using an official implementation provided by
the authors and report some results in the last column of Table 2.

2 Comparison with Adv. Train II

As introduced in the main body of our paper, various forms of adversarial training have been adopted
in previous works [10, 2, 6, 3, 5, 4]. Here we test Goodfellow et al.’s adversarial training (abbreviated
as “Adv. Train II”). In addition, we also try combining it with our Deep Defense by simply adding the
cross entropy loss corresponding to FGS adversarial examples to the training objective of our method.
The performance of Adv. Train II, our Deep Defense and our combined method are compared in
Figure 6. For each network, we report the ρ2 values under DeepFool in the left column and success
rate of FGS with varying ε in the right column.

For our Deep Defense, we fix λ and d and vary only c in the figure, while for the combined method,
we further fix c and vary only ε, as for Adv. Train II. In the right column, we select winning Adv.

2

0.05 0.10 0.15 0.20 0.25 0.30 0.35
test 2 of MLP

0.965

0.970

0.975

0.980

0.985

0.990

te
st

 a
cc

ur
ac

y
of

 M
LP

Reference
Adv. Train II
Ours
Ours (Combined, c=15)
Ours (Combined, c=25)

(a)

0.1 0.2 0.3 0.40.0%

20.0%

40.0%

60.0%

80.0%

100.0%

FG
S

su
cc

es
s r

at
e

on
 te

st
 se

t,
M

LP

Reference
Adv. Train II
Ours (c=25)
Ours (c=10)
Ours (Combined, c=10)

(b)

0.15 0.20 0.25 0.30 0.35 0.40 0.45
test 2 of LeNet

0.982

0.984

0.986

0.988

0.990

0.992

0.994

0.996

te
st

 a
cc

ur
ac

y
of

 L
eN

et

Reference
Adv. Train II
Ours
Ours (Combined, c=15)
Ours (Combined, c=25)

(c)

0.1 0.2 0.3 0.40.0%

20.0%

40.0%

60.0%

80.0%

100.0%

su
cc

es
s r

at
e

on
 M

N
IS

T
te

st
 se

t,
Le

N
et

Reference
Adv. Train II
Ours (c=25)
Ours (c=10)
Ours (Combined, c=10)

(d)

0.02 0.03 0.04 0.05 0.06 0.07 0.08
test 2 of ConvNet

0.76

0.77

0.78

0.79

0.80

0.81

0.82

0.83

0.84

te
st

 a
cc

ur
ac

y
 o

f
C

on
vN

et

Reference
Adv. Train II
Ours
Ours (Combined, c=15)
Ours (Combined, c=25)

(e)

0.01 0.02 0.03 0.040.0%

20.0%

40.0%

60.0%

80.0%

100.0%

su
cc

es
s r

at
e

on
 C

IF
A

R
-1

0
te

st
 se

t,
C

on
vN

et

Reference
Adv. Train II
Ours (c=25)
Ours (c=5)
Ours (Combined, c=5)

(f)

0.03 0.04 0.05 0.06 0.07 0.08 0.09
test 2 of NIN

0.84

0.85

0.86

0.87

0.88

0.89

0.90

0.91

0.92

te
st

 a
cc

ur
ac

y
of

 N
IN

Reference
Adv. Train II
Ours
Ours (Combined, c=25)
Ours (Combined, c=55)

(g)

0.01 0.02 0.03 0.040.0%

20.0%

40.0%

60.0%

80.0%

100.0%

su
cc

es
s r

at
e

on
 C

IF
A

R
-1

0
te

st
 se

t,
N

IN

Reference
Adv. Train II
Ours (c=70)
Ours (c=50)
Ours (Combined, c=50)

(h)

Figure 6: Comparison with Adv. Train II on both MNIST and CIFAR-10 datasets. For each network,
we report the ρ2 values with DeepFool in the left column (upper right is better) and the success rate
of FGS with varying ε in the right column (lower is better). Best viewed in color.

3

Train II models (under the FGS attack) from those tested in the left. Obviously, we see that our Deep
Defense outperforms Adv. Train II as well in most cases. Moreover, by combining them, we gain
even better robustness and benign-set accuracies, which verifies our previous claim of orthogonality.

3 MNIST Visualization Results

Quantitative results in our paper demonstrate that an adversary has to generate larger perturbations to
successfully attack our regularized models. Intuitively, this implies that the required perturbations
should be perceptually more obvious. Here we provide visualization results in Figure 7. Given a clean
image from the test set (as illustrated in Figure 7(a)), the generated DeepFool adversarial examples
for successfully fooling different models are shown in Figure 7(b)-7(e). Obviously, our method
yields more robust models in comparison with the others, by making the adversarial examples closely
resembling real “8” and “6” images. More interestingly, our regularized LeNet model predicts all
examples in Figure 7(a)-7(d) correctly as “0”. For the lower adversarial example in Figure 7(e), it
makes the correct prediction “0” with a probability of 0.30 and the incorrect one (i.e., “6”) with a
probability of 0.69.

“0”

(a)

→“8”

0.18

→“8”

0.32

→“8”

0.18

→“8”

0.41

→“5”

0.25

(b)

→“8”

0.39

(c)

→“5”

0.28

(d)

→“6”

0.41

(e)

Figure 7: An image (xk) labelled “0” from the MNIST test set with DeepFool examples generated
to fool different models including: (b) the references, (c)-(e): fine-tuned models with Adv. Train I,
Parseval training and our Deep Defense method. Arrows above the pictures indicate which class the
examples are “misclassified” to and the numbers below indicate values of ‖∆xk

‖2/‖xk‖2. Upper
images are generated for MLP models and lower images are generated for LeNet models.

4 CIFAR-10 Convergence Curves

Convergence curves on CIFAR-10 of different methods are provided in Figure 8.

0 10 20 30 40 50
epoch

0.76

0.78

0.80

0.82

0.84

0.86

te
st

 a
cc

ur
ac

y
of

 C
on

vN
et Clean

Par. Train
Adv. Train I
Ours

(a)

0 10 20 30 40 50
epoch

0.02

0.03

0.04

0.05

0.06

0.07

0.08

te
st

2

of
 C

on
vN

et

Clean
Par. Train
Adv. Train I
Ours

(b)

0 10 20 30 40 50
epoch

0.86

0.87

0.88

0.89

0.90

0.91

0.92

te
st

 a
cc

ur
ac

y
of

 N
IN

Clean
Par. Train
Adv. Train I
Ours

(c)

0 10 20 30 40 50
epoch

0.03

0.04

0.05

0.06

0.07

0.08

te
st

2

of
 N

IN

Clean
Par. Train
Adv. Train I
Ours

(d)

Figure 8: Convergence curves on CIFAR-10: (a)-(b) test accuracy and ρ2 of ConvNet, and (c)- (d)
test accuracy and ρ2 of NIN. “Clean” indicates fine-tuning on benign examples. Best viewed in color.

5 ImageNet Results

Our method yields models with substantially improved robustness and no accuracy loss is observed
on benign test sets, even on ImageNet. Though also enhance models, Parseval and adversarial training

4

seem difficult to achieve good trade-offs between robustness and accuracy in our experiments on
ImageNet. On AlexNet, we were unable to find a suitable β such that the fine-tuned model shows
reasonably high accuracy (> 56%) and significantly improved robustness simultaneously for Parseval
training. This phenomenon can possibly be caused by insufficient hyper-parameter search. For Adv.
Train I and II, we observed a decrease of inference accuracy on benign examples when the fine-tuning
process starts, and after 10 epochs the accuracy is still unsatisfactory. However, Kurakin et.al. [3]
have produced an Inception v3 model [9] using 50 machines after 150k iterations (i.e.roughly 187
epochs) of training and obtain only slightly degraded accuracy, so we guess more training epochs and
sophisticated mixture of clean and adversarial examples are required.

6 Network Architectures and Hyper-parameters

Some hyper-parameters for our fine-tuning are summarized in Table 3. Other hyper-parameters like
momentum and weight decay are kept as the same as training the reference models (i.e., momentum:
0.9, and weight decay: 0.0005). Table 4 shows the architecture of networks used in our MNIST and
CIFAR-10 experiments. For AlexNet and ResNet experiments, we directly use the reference models
from the Caffe and PyTorch model zoos.

Table 3: Some hyper-parameters in the fine-tuning process.

Dataset Batch Size #Epoch Base Learning Rate

MNIST 100 5 5×10−4

CIFAR-10 100 50 5×10−4

ImageNet 256 10 1×10−4

Table 4: Network architectures adopted in MNIST and CIFAR-10 experiments. We use Conv-[kernel
width]-[output channel number], FC-[output channel number], MaxPool-[kernel width], AvgPool-
[kernel width] to denote parameters of convolutional layers, fully-connected layers, max pooling
layers and average pooling layers, respectively.

MNIST CIFAR-10

MLP LeNet ConvNet NIN

Input (28×28) Input (32×32)

FC-500 Conv-5-20 Conv-5-32 Conv-5-192

ReLU MaxPool-2 MaxPool-2 ReLU

FC-150 Conv-5-50 ReLU Conv-1-160

ReLU MaxPool-2 Conv-5-32 ReLU

FC-10 FC-500 ReLU Conv-1-96

ReLU AvgPool-2 ReLU

FC-10 Conv-5-64 MaxPool-2

ReLU Conv-5-192

AvgPool-2 ReLU

Conv-4-64 Conv-1-192

ReLU ReLU

Conv-1-10 Conv-1-192

ReLU

AvgPool-2

Conv-3-192

ReLU

Conv-1-192

ReLU

Conv-1-10

AvgPool-8

5

7 Note on Max-unpooling Layers of the Reverse Network

In the main body of our paper, we mimic the DeepFool attack calculation using a neural network.
In order to do this, the forward process of the “reverse” network should generate an exact output as
the backward process of the original classification network. As discussed in the main paper, feasible
“reverse” layers can always be made available when building the reverse network.

Special attention should be paid when reversing max-pooling layers. In many modern DL frameworks
(including TF, PyTorch and Keras), the forward process of a max-unpooling layer is not strictly equal
to the backward process of a max pooling layer, if the stride is smaller than the pooling window size.
In the max pooling operation, if more than one overlapped sliding windows select the same element
from feature maps simultaneously, the derivatives from later feature maps should be summed up in
the backward calculation. However, many DL frameworks just select one of the overlapped windows
and ignore the others in the forward process of a max unpooling, which is slightly different. Such
difference could accumulate layer-by-layer and the final perturbation can be very different from the
original DeepFool, especially for deep networks. We release a patch to fix this along with our source
code at https://github.com/ZiangYan/deepdefense.pytorch.

References
[1] Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In IEEE

Symposium on Security and Privacy (SP), 2017.

[2] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples.
In ICLR, 2015.

[3] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial machine learning at scale. In ICLR, 2017.

[4] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards
deep learning models resistant to adversarial attacks. In ICLR, 2018.

[5] Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, and Shin Ishii. Virtual adversarial training: a
regularization method for supervised and semi-supervised learning. arXiv preprint arXiv:1704.03976,
2017.

[6] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. DeepFool: a simple and accurate
method to fool deep neural networks. In CVPR, 2016.

[7] Nicolas Papernot, Nicholas Carlini, Ian Goodfellow, Reuben Feinman, Fartash Faghri, Alexander Matyasko,
Karen Hambardzumyan, Yi-Lin Juang, Alexey Kurakin, Ryan Sheatsley, et al. cleverhans v2.0.0: an
adversarial machine learning library. arXiv preprint arXiv:1610.00768, 2017.

[8] Andras Rozsa, Ethan M Rudd, and Terrance E Boult. Adversarial diversity and hard positive generation.
In CVPR Workshop, 2016.

[9] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru
Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In CVPR, pages
1–9, 2015.

[10] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, and
Rob Fergus. Intriguing properties of neural networks. In ICLR, 2014.

6

https://github.com/ZiangYan/deepdefense.pytorch

	More Evaluation Metrics and Attacks
	Comparison with Adv. Train II
	MNIST Visualization Results
	CIFAR-10 Convergence Curves
	ImageNet Results
	Network Architectures and Hyper-parameters
	Note on Max-unpooling Layers of the Reverse Network

