
Representer Point Selection for
Explaining Deep Neural Networks

Chih-Kuan Yeh∗ Joon Sik Kim ∗ Ian E.H. Yen Pradeep Ravikumar
Machine Learning Department

Carnegie Mellon University
Pittsburgh, PA 15213

{cjyeh, joonsikk, eyan, pradeepr}@cs.cmu.edu

Abstract

We propose to explain the predictions of a deep neural network, by pointing to the
set of what we call representer points in the training set, for a given test point pre-
diction. Specifically, we show that we can decompose the pre-activation prediction
of a neural network into a linear combination of activations of training points, with
the weights corresponding to what we call representer values, which thus capture
the importance of that training point on the learned parameters of the network. But
it provides a deeper understanding of the network than simply training point influ-
ence: with positive representer values corresponding to excitatory training points,
and negative values corresponding to inhibitory points, which as we show provides
considerably more insight. Our method is also much more scalable, allowing for
real-time feedback in a manner not feasible with influence functions.

1 Introduction

As machine learning systems start to be more widely used, we are starting to care not just about the
accuracy and speed of the predictions, but also why it made its specific predictions. While we need not
always care about the why of a complex system in order to trust it, especially if we observe that the
system has high accuracy, such trust typically hinges on the belief that some other expert has a richer
understanding of the system. For instance, while we might not know exactly how planes fly in the air,
we trust some experts do. In the case of machine learning models however, even machine learning
experts do not have a clear understanding of why say a deep neural network makes a particular
prediction. Our work proposes to address this gap by focusing on improving the understanding of
experts, in addition to lay users. In particular, expert users could then use these explanations to further
fine-tune the system (e.g. dataset/model debugging), as well as suggest different approaches for
model training, so that it achieves a better performance.

Our key approach to do so is via a representer theorem for deep neural networks, which might be of
independent interest even outside the context of explainable ML. We show that we can decompose
the pre-activation prediction values into a linear combination of training point activations, with
the weights corresponding to what we call representer values, which can be used to measure the
importance of each training point has on the learned parameter of the model. Using these representer
values, we select representer points – training points that have large/small representer values – that
could aid the understanding of the model’s prediction.

Such representer points provide a richer understanding of the deep neural network than other ap-
proaches that provide influential training points, in part because of the meta-explanation underlying
our explanation: a positive representer value indicates that a similarity to that training point is excita-

∗Equal contribution

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

tory, while a negative representer value indicates that a similarity to that training point is inhibitory,
to the prediction at the given test point. It is in these inhibitory training points where our approach
provides considerably more insight compared to other approaches: specifically, what would cause
the model to not make a particular prediction? In one of our examples, we see that the model makes
an error in labeling an antelope as a deer. Looking at its most inhibitory training points, we see that
the dataset is rife with training images where there are antelopes in the image, but also some other
animals, and the image is labeled with the other animal. These thus contribute to inhibitory effects
of small antelopes with other big objects: an insight that as machine learning experts, we found
deeply useful, and which is difficult to obtain via other explanatory approaches. We demonstrate the
utility of our class of representer point explanations through a range of theoretical and empirical
investigations.

2 Related Work

There are two main classes of approaches to explain the prediction of a model. The first class of
approaches point to important input features. Ribeiro et al. [1] provide such feature-based explanations
that are model-agnostic; explaining the decision locally around a test instance by fitting a local linear
model in the region. Ribeiro et al. [2] introduce Anchors, which are locally sufficient conditions
of features that “holds down” the prediction so that it does not change in a local neighborhood.
Such feature based explanations are particularly natural in computer vision tasks, since it enables
visualizing the regions of the input pixel space that causes the classifier to make certain predictions.
There are numerous works along this line, particularly focusing on gradient-based methods that
provide saliency maps in the pixel space [3, 4, 5, 6].

The second class of approaches are sample-based, and they identify training samples that have the
most influence on the model’s prediction on a test point. Among model-agnostic sample-based
explanations are prototype selection methods [7, 8] that provide a set of “representative” samples
chosen from the data set. Kim et al. [9] provide criticism alongside prototypes to explain what are
not captured by prototypes. Usually such prototype and criticism selection is model-agnostic and
used to accelerate the training for classifications. Model-aware sample-based explanation identify
influential training samples which are the most helpful for reducing the objective loss or making the
prediction. Recently, Koh and Liang [10] provide tractable approximations of influence functions that
characterize the influence of each sample in terms of change in the loss. Anirudh et al. [11] propose a
generic approach to influential sample selection via a graph constructed using the samples.

Our approach is based on a representer theorem for deep neural network predictions. Representer
theorems [12] in machine learning contexts have focused on non-parametric regression, specifically
in reproducing kernel Hilbert spaces (RKHS), and which loosely state that under certain conditions
the minimizer of a loss functional over a RKHS can be expressed as a linear combination of
kernel evaluations at training points. There have been recent efforts at leveraging such insights
to compositional contexts [13, 14], though these largely focus on connections to non-parametric
estimation. Bohn et al. [13] extend the representer theorem to compositions of kernels, while Unser
[14] draws connections between deep neural networks to such deep kernel estimation, specifically
deep spline estimation. In our work, we consider the much simpler problem of explaining pre-
activation neural network predictions in terms of activations of training points, which while less
illuminating from a non-parametric estimation standpoint, is arguably much more explanatory, and
useful from an explainable ML standpoint.

3 Representer Point Framework

Consider a classification problem, of learning a mapping from an input space X ⊆ Rd (e.g., images)
to an output space Y ⊆ R (e.g., labels), given training points x1,x2, ...xn, and corresponding
labels y1,y2, ...yn. We consider a neural network as our prediction model, which takes the form
ŷi = σ(Φ(xi,Θ)) ⊆ Rc, where Φ(xi,Θ) = Θ1fi ⊆ Rc and fi = Φ2(xi,Θ2) ⊆ Rf is the last
intermediate layer feature in the neural network for input xi. Note that c is the number of classes,
f is the dimension of the feature, Θ1 is a matrix ⊆ Rc×f , and Θ2 is all the parameters to generate
the last intermediate layer from the input xi. Thus Θ = {Θ1,Θ2} are all the parameters of our
neural network model. The parameterization above connotes splitting of the model as a feature model
Φ2(xi,Θ2) and a prediction network with parameters Θ1. Note that the feature model Φ2(xi,Θ2)

2

can be arbitrarily deep, or simply the identity function, so our setup above is applicable to general
feed-forward networks.

Our goal is to understand to what extent does one particular training point xi affect the prediction
ŷt of a test point xt as well as the learned weight parameter Θ. Let L(x,y,Θ) be the loss, and
1
n

∑n
i L(xi,yi,Θ) be the empirical risk. To indicate the form of a representer theorem, suppose we

solve for the optimal parameters Θ∗ = arg minΘ

{
1
n

∑n
i L(xi,yi,Θ) + g(||Θ||)

}
for some non-

decreasing g. We would then like our pre-activation predictions Φ(xt,Θ) to have the decomposition:
Φ(xt,Θ

∗) =
∑n
i αik(xt,xi). Given such a representer theorem, αik(xt,xi) can be seen as the

contribution of the training data xi on the testing prediction Φ(xt,Θ). However, such representer
theorems have only been developed for non-parametric predictors, specifically where Φ lies in a
reproducing kernel Hilbert space. Moreover, unlike the typical RKHS setting, finding a global
minimum for the empirical risk of a deep network is difficult, if not impossible, to obtain. In the
following, we provide a representer theorem that addresses these two points: it holds for deep neural
networks, and for any stationary point solution.

Theorem 3.1. Let us denote the neural network prediction function by ŷi = σ(Φ(xi,Θ)), where
Φ(xi,Θ) = Θ1fi and fi = Φ2(xi,Θ2). Suppose Θ∗ is a stationary point of the optimization
problem: arg minΘ

{
1
n

∑n
i L(xi,yi,Θ)) + g(||Θ1||)

}
, where g(||Θ1||) = λ||Θ1||2 for some λ >

0. Then we have the decomposition:

Φ(xt,Θ
∗) =

n∑
i

k(xt,xi, αi),

where αi = 1
−2λn

∂L(xi,yi,Θ)
∂Φ(xi,Θ) and k(xt,xi, αi) = αif

T
i ft, which we call a representer value for xi

given xt.

Proof. Note that for any stationary point, the gradient of the loss with respect to Θ1 is equal to 0.
We therefore have

1

n

n∑
i=1

∂L(xi,yi,Θ)

∂Θ1
+ 2λΘ∗

1 = 0 ⇒ Θ∗
1 = − 1

2λn

n∑
i=1

∂L(xi,yi,Θ)

∂Θ1
=

n∑
i=1

αif
T
i (1)

where αi = − 1
2λn

∂L(xi,yi,Θ)
∂Φ(xi,Θ) by the chain rule. We thus have that

Φ(xt,Θ
∗) = Θ∗

1ft =

n∑
i=1

k(xt,xi, αi), (2)

where k(xt,xi, αi) = αif
T
i ft by simply plugging in the expression (1) into (2).

We note that αi can be seen as the resistance for training example feature fi towards minimizing the
norm of the weight matrix Θ1. Therefore, αi can be used to evaluate the importance of the training
data xi have on Θ1. Note that for any class j, Φ(xt,Θ

∗)j = Θ∗
1jft =

∑n
i=1 k(xt,xi, αi)j holds by

(2). Moreover, we can observe that for k(xt,xi, αi)j to have a significant value, two conditions must
be satisfied: (a) αij should have a large value, and (b) fTi ft should have a large value. Therefore, we
interpret the pre-activation value Φ(xt,Θ)j as a weighted sum for the feature similarity fTi ft with
the weight αij . When ft is close to fi with a large positive weight αij , the prediction score for class j
is increased. On the other hand, when ft is close to fi with a large negative weight αij , the prediction
score for class j is then decreased.

We can thus interpret the training points with negative representer values as inhibitory points that
suppress the activation value, and those with positive representer values as excitatory examples that
does the opposite. We demonstrate this notion with examples further in Section 4.2. We note that
such excitatory and inhibitory points provide a richer understanding of the behavior of the neural
network: it provides insight both as to why the neural network prefers a particular prediction, as well
as why it does not, which is typically difficult to obtain via other sample-based explanations.

3

3.1 Training an Interpretable Model by Imposing L2 Regularization.

Theorem 3.1 works for any model that performs a linear matrix multiplication before the activation
σ, which is quite general and can be applied on most neural-network-like structures. By simply
introducing a L2 regularizer on the weight with a fixed λ > 0, we can easily decompose the pre-
softmax prediction value as some finite linear combinations of a function between the test and train
data. We now state our main algorithm. First we solve the following optimization problem:

Θ∗ = arg min
Θ

1

n

n∑
i

L(yi,Φ(xi,Θ)) + λ||Θ1||2. (3)

Note that for the representer point selection to work, we would need to achieve a stationary point
with high precision. In practice, we find that using a gradient descent solver with line search or
LBFGS solver to fine-tune after converging in SGD can achieve highly accurate stationary point.
Note that we can perform the fine-tuning step only on Θ1, which is usually efficient to compute. We
can then decompose Φ(xt,Θ) =

∑n
i k(xt,xi, αi) by Theorem 3.1 for any arbitrary test point xt,

where k(xt,xi, αi) is the contribution of training point xi on the pre-softmax prediction Φ(xt,Θ).
We emphasize that imposing L2 weight decay is a common practice to avoid overfitting for deep
neural networks, which does not sacrifice accuracy while achieving a more interpretable model.

3.2 Generating Representer Points for a Given Pre-trained Model.

We are also interested in finding representer points for a given model Φ(Θgiven) that has already
been trained, potentially without imposing the L2 regularizer. While it is possible to add the L2
regularizer and retrain the model, the retrained model may converge to a different stationary point,
and behave differently compared to the given model, in which case we cannot use the resulting
representer points as explanations. Accordingly, we learn the parameters Θ while imposing the L2
regularizer, but under the additional constraint that Φ(xi,Θ) be close to Φ(xi,Θgiven). In this case,
our learning objective becomes Φ(xi,Θgiven) instead of yi, and our loss L(xi, yi,Θ) can be written
as L(Φ(xi,Θgiven),Φ(xi,Θ)).
Definition 3.1. We say that a convex loss function L(Φ(xi,Θgiven),Φ(xi,Θ)) is “suitable” to an
activation function σ, if it holds that for any Θ∗ ∈ arg minΘ L(Φ(xi,Θgiven),Φ(xi,Θ)), we have
σ(Φ(xi,Θ

∗)) = σ(Φ(xi,Θgiven)).

Assume that we are given such a loss function L that is “suitable to” the activation function σ. We
can then solve the following optimization problem:

Θ∗ ∈ arg min
Θ

{
1

n

n∑
i

L(Φ(xi,Θgiven),Φ(xi,Θ)) + λ||Θ1||2
}
. (4)

The optimization problem can be seen to be convex under the assumptions on the loss function. The
parameter λ > 0 controls the trade-off between the closeness of σ(Φ(X,Θ)) and σ(Φ(X,Θgiven)),
and the computational cost. For a small λ, σ(Φ(X,Θ)) could be arbitrarily close to σ(Φ(X,Θgiven)),
while the convergence time may be long. We note that the learning task in Eq. (4) can be seen as
learning from a teacher network Θgiven and imposing a regularizer to make the student model Θ
capable of generating representer points. In practice, we may take Θgiven as an initialization for
Θ and perform a simple line-search gradient descent with respect to Θ1 in (4). In our experiments,
we discover that the training for (4) can converge to a stationary point in a short period of time, as
demonstrated in Section 4.5.

We now discuss our design for the loss function that is mentioned in (4). When σ is the soft-
max activation, we choose the softmax cross-entropy loss, which computes the cross entropy
between σ(Φ(xi,Θgiven)) and σ(Φ(xi,Θ)) for Lsoftmax(Φ(xi,Θgiven),Φ(xi,Θ)). When σ is
ReLU activation, we choose LReLU(Φ(xi,Θgiven),Φ(xi,Θ)) = 1

2 max(Φ(xi,Θ), 0)�Φ(xi,Θ)−
max(Φ(xi,Θgiven), 0)� Φ(xi,Θ), where � is the element-wise product. In the following Propo-
sition, we show that Lsoftmax and LReLU are convex, and satisfy the desired suitability property in
Definition 3.1. The proof is provided in the supplementary material.
Proposition 3.1. The loss functions Lsoftmax and LReLU are both convex in Θ1. Moreover, Lsoftmax
is “suitable to” the softmax activation, and LReLU is “suitable to” the ReLU activation, following
Definition 3.1.

4

Figure 1: Pearson correlation between the actual and approximated softmax output (expressed as
a linear combination) for train (left) and test (right) data in CIFAR-10 dataset. The correlation is
almost 1 for both cases.

As a sanity check, we perform experiments on the CIFAR-10 dataset [15] with a pre-trained VGG-16
network [16]. We first solve (4) with loss Lsoftmax(Φ(xi,Θ),Φ(xi,Θgiven)) for λ = 0.001, and then
calculate Φ(xt,Θ

∗) =
∑n
i=1 k(xt,xi, αi) as in (2) for all train and test points. We note that the

computation time for the whole procedure only takes less than a minute, given the pre-trained model.
We compute the Pearson correlation coefficient between the actual output σ(Φ(xt,Θ)) and the
predicted output σ(

∑n
i=1 k(xt,xi, αi)) for multiple points and plot them in Figure 1. The correlation

is almost 1 for both train and test data, and most points lie at the both ends of y = x line.

We note that Theorem 3.1 can be applied to any hidden layer with ReLU activation by defining a
sub-network from input x and the output being the hidden layer of interest. The training could be
done in a similar fashion by replacing Lsoftmax with LReLU. In general, any activation can be used
with a derived "suitable loss".

4 Experiments

We perform a number of experiments with multiple datasets and evaluate our method’s performance
and compare with that of the influence functions.2 The goal of these experiments is to demonstrate
that selecting the representer points is efficient and insightful in several ways. Additional experi-
ments discussing the differences between our method and the influence function are included in the
supplementary material.

4.1 Dataset Debugging

Figure 2: Dataset debugging performance for several methods. By inspecting the training points
using the representer value, we are able to recover the same amount of mislabeled training points as
the influence function (right) with the highest test accuracy compared to other methods (left).

2Source code available at github.com/chihkuanyeh/Representer_Point_Selection.

5

https://github.com/chihkuanyeh/Representer_Point_Selection

To evaluate the influence of the samples, we consider a scenario where humans need to inspect the
dataset quality to ensure an improvement of the model’s performance in the test data. Real-world
data is bound to be noisy, and the bigger the dataset becomes, the more difficult it will be for humans
to look for and fix mislabeled data points. It is crucial to know which data points are more important
than the others to the model so that prioritizing the inspection can facilitate the debugging process.

To show how well our method does in dataset debugging, we run a simulated experiment on CIFAR-
10 dataset [17] with a task of binary classification with logistic regression for the classes automobiles
and horses. The dataset is initially corrupted, where 40 percent of the data has the labels flipped,
which naturally results in a low test accuracy of 0.55. The simulated user will check some fraction of
the train data based on the order set by several metrics including ours, and fix the labels. With the
corrected version of the dataset, we retrain the model and record the test accuracies for each metrics.
For our method, we train an explainable model by mimimizing (3) as explained in section 3.1. The
L2 weight decay is set to 1e−2 for all methods for fair comparison. All experiments are repeated for
5 random splits and we report the average result. In Figure 2 we report the results for four different
metrics: “ours” picks the points with bigger |αij | for training instance i and its corresponding label j;
“influence” prioritizes the training points with bigger influence function value; and “random” picks
random points. We observe that our method recovers the same amount of training data as the influence
function while achieving higher testing accuracy. Nevertheless, both methods perform better than the
random selection method.

4.2 Excitatory (Positive) and Inhibitory (Negative) Examples

We visualize the training points with high representer values (both positive and negative) for some
test points in Animals with Attributes (AwA) dataset [18] and compare the results with those of the
influence functions. We use a pre-trained Resnet-50 [19] model and fine-tune on the AwA dataset to
reach over 90 percent testing accuracy. We then generate representer points as described in section
3.2. For computing the influence functions, just as described in [10], we froze all top layers of the
model and trained the last layer. We report top three points for two test points in the following
Figures 3 and 4. In Figure 3, which is an image of three grizzly bears, our method correctly returns
three images that are in the same class with similar looks, similar to the results from the influence
function. The positive examples excite the activation values for a particular class and supports the
decision the model is making. For the negative examples, just like the influence functions, our method
returns images that look like the test image but are labeled as a different class. In Figure 4, for the
image of a rhino the influence function could not recover useful training points, while ours does,
including the similar-looking elephants or zebras which might be confused as rhinos, as negatives.
The negative examples work as inhibitory examples for the model – they suppress the activation
values for a particular class of a given test point because they are in a different class despite their
striking similarity to the test image. Such inhibitory points thus provide a richer understanding, even
to machine learning experts, of the behavior of deep neural networks, since they explicitly indicate
training points that lead the network away from a particular label for the given test point. More
examples can be found in the supplementary material.

Ours Influence Function

Figure 3: Comparison of top three positive and negative influential training images for a test point
(left-most column) using our method (left columns) and influence functions (right columns).

6

Ours Influence Function

Figure 4: Here we can observe that our method provides clearer positive and negative examples while
the influence function fails to do so.

4.3 Understanding Misclassified Examples

The representer values can be used to understand the model’s mistake on a test image. Consider a test
image of an antelope predicted as a deer in the left-most panel of Figure 5. Among 181 test images
of antelopes, the total number of misclassified instances is 15, among which 12 are misclassified as
deer. All of those 12 test images of antelopes had the four training images shown in Figure 5 among
the top inhibitory examples. Notice that we can spot antelopes even in the images labeled as zebra
or elephant. Such noise in the labels of the training data confuses the model – while the model sees
elephant and antelope, the label forces the model to focus on just the elephant. The model thus learns
to inhibit the antelope class given an image with small antelopes and other large objects. This insight
suggests for instance that we use multi-label prediction to train the network, or perhaps clean the
dataset to remove such training examples that would be confusing to humans as well. Interestingly,
the model makes the same mistake (predicting deer instead of antelope) on the second training image
shown (third from the left of Figure 5), and this suggests that for the training points, we should
expect most of the misclassifications to be deer as well. And indeed, among 863 training images of
antelopes, 8 are misclassified, and among them 6 are misclassified as deer.

Figure 5: A misclassified test image (left) and the set of four training images that had the most
negative representer values for almost all test images in which the model made the same mistakes.
The negative influential images all have antelopes in the image despite the label being a different
animal.

4.4 Sensitivity Map Decomposition

From Theorem 3.1, we have seen that the pre-softmax output of the neural network can be decomposed
as the weighted sum of the product of the training point feature and the test point feature, or
Φ(xt,Θ

∗) =
∑n
i αif

T
i ft. If we take the gradient with respect to the test input xt for both sides,

we get ∂Φ(xt,Θ
∗)

∂xt
=
∑n
i αi

∂fTi ft
∂xt

. Notice that the LHS is the widely-used notion of sensitivity map
(gradient-based attribution), and the RHS suggests that we can decompose this sensitivity map into a
weighted sum of sensitivity maps that are native to each i-th training point. This gives us insight into
how sensitivities of training points contribute to the sensitivity of the given test image.

In Figure 6, we demonstrate two such examples, one from the class zebra and one from the class
moose from the AwA dataset. The first column shows the test images whose sensitivity maps we wish
to decompose. For each example, in the following columns we show top four influential representer

7

points in the the top row, and visualize the decomposed sensitivity maps in the bottom. We used
SmoothGrad [20] to obtain the sensitivity maps.

For the first example of a zebra, the sensitivity map on the test image mainly focuses on the face of the
zebra. This means that infinitesimally changing the pixels around the face of the zebra would cause
the greatest change in the neuron output. Notice that the focus on the head of the zebra is distinctively
the strongest in the fourth representer point (last column) when the training image manifests clearer
facial features compared to other training points. For the rest of the training images that are less
demonstrative of the facial features, the decomposed sensitivity maps accordingly show relatively
higher focus on the background than on the face. For the second example of a moose, a similar
trend can be observed – when the training image exhibits more distinctive bodily features of the
moose than the background (first, second, third representer points), the decomposed sensitivity map
highlights the portion of the moose on the test image more compared to training images with more
features of the background (last representer point). This provides critical insight into the contribution
of the representer points towards the neuron output that might not be obvious just from looking at the
images itself.

Figure 6: Sensitivity map decomposition using representer points, for the class zebra (above two
rows) and moose (bottom two rows). The sensitivity map on the test image in the first column can be
readily seen as the weighted sum of the sensitivity maps for each training point. The less the training
point displays spurious features from the background and more of the features related to the object of
interest, the more focused the decomposed sensitivity map corresponding to the training point is at
the region the test sensitivity map mainly focuses on.

4.5 Computational Cost and Numerical Instabilities

Computation time is particularly an issue for computing the influence function values [10] for a large
dataset, which is very costly to compute for each test point. We randomly selected a subset of test
points, and report the comparison of the computation time in Table 1 measured on CIFAR-10 and
AwA datasets. We randomly select 50 test points to compute the values for all train data, and recorded
the average and standard deviation of computation time. Note that the influence function does not
need the fine-tuning step when given a pre-trained model, hence the values being 0, while our method

8

first optimizes for Θ∗ using line-search then computes the representer values. However, note that the
fine-tuning step is a one time cost, while the computation time is spent for every testing image we
analyze. Our method significantly outperforms the influence function, and such advantage will favor
our method when a larger number of data points is involved. In particular, our approach could be
used for real-time explanations of test points, which might be difficult with the influence function
approach.

Influence Function Ours
Dataset Fine-tuning Computation Fine-tuning Computation

CIFAR-10 0 267.08± 248.20 7.09± 0.76 0.10± 0.08
AwA 0 172.71± 32.63 12.41± 2.37 0.19± 0.12

Table 1: Time required for computing an influence function / representer value for all training points
and a test point in seconds. The computation of Hessian Vector Products for influence function alone
took longer than our combined computation time.

While ranking the training points according to their influence function values, we have observed
numerical instabilities, more discussed in the supplementary material. For CIFAR-10, over 30 percent
of the test images had all zero training point influences, so influence function was unable to provide
positive or negative influential examples. The distribution of the values is demonstrated in Figure 7,
where we plot the histogram of the maximum of the absolute values for each test point in CIFAR-10.
Notice that over 300 testing points out of 1,000 lie in the first bin for the influence functions (right).
We checked that all data in the first bin had the exact value of 0. Roughly more than 200 points lie in
range [10−40, 10−28], the values which may create numerical instabilities in computations. On the
other hand, our method (left) returns non-trivial and more numerically stable values across all test
points.

Figure 7: The distribution of influence/representer values for a set of randomly selected 1,000 test
points in CIFAR-10. While ours have more evenly spread out larger values across different test points
(left), the influence function values can be either really small or become zero for some points, as seen
in the left-most bin (right).

5 Conclusion and Discussion

In this work we proposed a novel method of selecting representer points, the training examples that
are influential to the model’s prediction. To do so we introduced the modified representer theorem
that could be generalized to most deep neural networks, which allows us to linearly decompose the
prediction (activation) value into a sum of representer values. The optimization procedure for learning
these representer values is tractable and efficient, especially when compared against the influence
functions proposed in [10]. We have demonstrated our method’s advantages and performances on
several large-scale models and image datasets, along with some insights on how these values allow
the users to understand the behaviors of the model.

An interesting direction to take from here would be to use the representer values for data poisoning
just like in [10]. Also to truly see if our method is applicable to several domains other than image
dataset with different types of neural networks, we plan to extend our method to NLP datasets with
recurrent neural networks. The result of a preliminary experiment is included in the supplementary
material.

9

Acknowledgements

We acknowledge the support of DARPA via FA87501720152, and Zest Finance.

References
[1] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Why should i trust you?: Explaining

the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 1135–1144. ACM, 2016.

[2] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Anchors: High-precision model-
agnostic explanations. 2018.

[3] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional networks:
Visualising image classification models and saliency maps. arXiv preprint arXiv:1312.6034,
2013.

[4] Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning important features through
propagating activation differences. arXiv preprint arXiv:1704.02685, 2017.

[5] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks.
arXiv preprint arXiv:1703.01365, 2017.

[6] Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-Robert
Müller, and Wojciech Samek. On pixel-wise explanations for non-linear classifier decisions by
layer-wise relevance propagation. PloS one, 10(7):e0130140, 2015.

[7] Jacob Bien and Robert Tibshirani. Prototype selection for interpretable classification. The
Annals of Applied Statistics, pages 2403–2424, 2011.

[8] Been Kim, Cynthia Rudin, and Julie A Shah. The bayesian case model: A generative approach
for case-based reasoning and prototype classification. In Advances in Neural Information
Processing Systems, pages 1952–1960, 2014.

[9] Been Kim, Rajiv Khanna, and Oluwasanmi O Koyejo. Examples are not enough, learn to
criticize! criticism for interpretability. In Advances in Neural Information Processing Systems,
pages 2280–2288, 2016.

[10] Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions.
In International Conference on Machine Learning, pages 1885–1894, 2017.

[11] Rushil Anirudh, Jayaraman J Thiagarajan, Rahul Sridhar, and Timo Bremer. Influential sample
selection: A graph signal processing approach. arXiv preprint arXiv:1711.05407, 2017.

[12] Bernhard Schölkopf, Ralf Herbrich, and Alex J Smola. A generalized representer theorem. In
International conference on computational learning theory, pages 416–426. Springer, 2001.

[13] Bastian Bohn, Michael Griebel, and Christian Rieger. A representer theorem for deep kernel
learning. arXiv preprint arXiv:1709.10441, 2017.

[14] Michael Unser. A representer theorem for deep neural networks. arXiv preprint
arXiv:1802.09210, 2018.

[15] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
2009.

[16] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

[17] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[18] Yongqin Xian, Christoph H Lampert, Bernt Schiele, and Zeynep Akata. Zero-shot learning-a
comprehensive evaluation of the good, the bad and the ugly. arXiv preprint arXiv:1707.00600,
2017.

10

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[20] Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda Viégas, and Martin Wattenberg. Smooth-
grad: removing noise by adding noise. arXiv preprint arXiv:1706.03825, 2017.

[21] Andrew L Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng, and Christopher
Potts. Learning word vectors for sentiment analysis. In Proceedings of the 49th annual meeting
of the association for computational linguistics: Human language technologies-volume 1, pages
142–150. Association for Computational Linguistics, 2011.

11

