
7 Supplementary Materials
7.1 Additional Analysis
This section presents the analysis for all of lemmas and propositions and additional analysis.
Transition Mechanism of Adversary MDP:

Figure 6: Assumed mechanism (only for analysis purpose) for nominal to adversary state transitions:
p0|0 signifies the probability that a nominal state transits to another nominal state; p1|0 signifies the
probability that a nominal state transits to an adversarial state; p0|1 signifies the probability that an
adversarial state transits to a nominal state; p1|1 signifies the probability that an adversarial state
transits to another adversarial state

The rest of the analysis in this section is based on the above transition mechanism.
Proof of Lemma 1:

Proof. Based on the definitions of Eunc,s∼SV (s) and Econ,s∼S|0V (s), we have

Eunc,s∼SV (s)− Econ,s∼S|0V (s) = V0
n

1−m+ n
+ V1

1−m

1−m+ n
− V0m− V1(1−m)

With some mathematical manipulation, we have

Eunc,s∼SV (s)− Econ,s∼S|0V (s) =
(V0 − V1)(n−m)(1−m)

1−m+ n
(12)

As V1 < V0 and n < m, then we get the desired results.

Proof of Lemma 2:

Proof. As V1 < V0, then V0 − V1 > 0. Based on the definitions of δcon|0 and δunc, and Lemma 1,
the desired result is immediately obtained.

The following analysis is for establishing the relationship between the true and actual expected
discounted rewards.
For completeness, we rewrite or redefine some definitions here to characterize the analysis. We
denote by V̂ (s) the actual state value of the learned policy (i.e., the conditioned or unconditioned).
Define the relationship between the true state value and actual state value as:

V (s) = V̂ (s) + δ

which can be adaptive to the unconditioned or conditioned policy by substituting different bias. δ is
the observed bias in the state value. We also denote by π and π̃ the current policy and the new policy.
According to the definition of advantage function in Eq. 2, letting λ = 0, we have

Aπ(st, at) = rt + γV (st+1)− V (st)

Substituting V (s) = V̂ (s) + δ into the last equation yields

Aπ(st, at) = rt + γV̂ (st+1)− V̂ (st) + γδs,t+1 − δs,t = Âπ(st, at) + δs,t+1(γ − 1) (13)

where Âπ(st, at) is the actual advantage function under a learned policy. Based on the definition of
expected discounted reward in [11], we have

R(π) = Es∼π

�
Vπ(st, at)

�
(14)

which results in the relationship between the true and actual expected discounted rewards as follows

R(π) = Es∼π

�
V̂π(st, at) + δ

�
= R̂(π) + δ̂ (15)
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where δ̂ is the observed bias in the expected discounted reward. It is immediately obtained that
corresponding to different learned policies, δ̂ is not the same. In this context, we define δ̂unc as the
observed bias in the expected discounted reward caused by the unconditioned policy and δ̂con|0 as the
observed bias in the expected discounted reward caused by the conditioned policy. Now we analyze
the expected discounted reward of the new policy π̃ in terms over the current policy π in order to
know the difference between different policies during the learning process. Following [11], we define
the expected discounted reward of π̃ as follows

R(π̃) = R(π) + Es,a∼π̂

� T�

t=0

γtAπ(st, at)

�
(16)

Hence, combining Eq. 13 and Eq. 16 we obtain the expected discounted reward of the new policy π̃
with respect to the expected discounted reward of the current policy π, the actual advantage and the
observed bias in the state value.

R(π̃) = R(π) + Es,a∼π̃

� T�

t=0

γtÂπ(st, at)

�
+ Es,a∼π̃

� T�

t=0

γt(γδs,t+1 − δs,t)

�
(17)

As we use the same neural networks to estimate the actual state values, we assume that in Eq. 17
the expectation of bias δs,t given the state s can be treated equally as constant, represented by δ for
convenience of analysis. Therefore, by substituting Eq. 15 the last equality becomes as follows

R(π̃) = R̂(π) + δ̂ + Es,a∼π̃

� T�

t=0

γtÂπ(st, at)

�
− δ = R̂(π̃) + δ̂ − δ (18)

which shows the true expected discounted reward of the policy π̃ with respect to its actual expected
discounted reward R̂(π̃), the observed bias in the expected discounted reward, δ̂, and the observed
bias in the state value, δ.
For the rest of analysis, we follow the similar analysis procedure presented [11] and for convenience
we denote by πold the current policy π and by πnew the new policy π̃. Following [11], we first rewrite
Eq. 16 as the following equation

R(πnew) = R(πold) +
�

s

T�

t=0

γtP(st = s|πnew)
�

a

πnew(a|s)Aπold
(s, a)

= R(πold) +
�

s

ρπnew
(s)

�

a

πnew(a|s)Aπold
(s, a)

(19)

where ρπnew
is the discounted visitation frequencies as similarly defined in [11]. Then we define an

approximation of R(πnew) as

Lπold
(πnew) = R(πold) +

�

s

ρπold
(s)

�

a

πnew(a|s)Aπold
(s, a) (20)

due to the complex dependence of ρπnew
on πnew. Similarly, according to Eq. 18 we have

Lπold
(πnew) = L̂πold

(πnew) + δ̂ − δ (21)

For completeness, we state the main theorem from [11] to guarantee the monotonic improvement.
Before that, we need to define the total variation divergence for two different discrete probability
distributions q, o, i.e., DTV (q||o) = 1

2

�
i |qi − oi|, based on which, we define Dmax

TV (πold,πnew) =
maxsDTV (πold(·|s)||πnew(·|s)). Following [11], we state the main theorem from [11] to guarantee
the monotonic improvement.
Theorem 1. (Theorem 1 in [11]) Let α = Dmax

TV (πold,πnew). Then the following bound holds:

R(πnew) ≥ Lπold
(πnew)−

4�γα2

(1− γ)2
(22)

where � = maxs,a|Aπ(s, a)|.
With this, we arrive at the following proposition to demonstrate the relationship between the actual
expected discounted reward and its approximation.
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Proposition 1 Let α = Dmax
TV (πold,πnew). Then the following inequality hold:

R̂(πnew) ≥ L̂πold
(πnew)−

4�̃γα2

(1− γ)2
(23)

where �̃ satisfies the following relationship

�̃ =




maxs,a|Âπ(s, a)|+ (γ − 1)δ, if Âπ(s, a) ≥ (1− γ)δ.

−maxs,a|Âπ(s, a)|+ (1− γ)δ, if 0 < Âπ(s, a) < (1− γ)δ.

maxs,a|Âπ(s, a)|+ (1− γ)δ, if Âπ(s, a) ≤ 0

(24)

Proof. Combining Eq. 21 with the proof of Lemmas 1, 2, and 3 in [11], we can arrive at the similar
form of conclusion as shown in Theorem 1. The difference between the conclusion in Theorem 1
and Proposition 1 is when we consider the actual expected discounted reward, the �̃ value is different
from the � value in Eq. 22. We next discuss the new value for �̃. As the advantage function has the
following relationship

Aπ(st, at) = Âπ(st, at) + δ(γ − 1)

Then, �̃ = maxs,a|Âπ(s, a) + (γ − 1)δ|. Since δ > 0 and γ − 1 < 0, we need to discuss the sign of
Âπ(s, a) + (γ − 1)δ. Three cases are discussed as below:

1. When Âπ(s, a) + (γ − 1)δ ≥ 0 such that Âπ(s, a) ≥ (1 − γ)δ, �̃ = maxs,a|Âπ(s, a)| +
(γ − 1)δ,

2. When Âπ(s, a)+ (γ− 1)δ ≤ 0 and if 0 < Âπ(s, a) < (1− γ)δ, �̃ = −maxs,a|Âπ(s, a)|+
(1− γ)δ,

3. When Âπ(s, a) + (γ − 1)δ ≤ 0 and if Âπ(s, a) ≤ 0, �̃ = maxs,a|Âπ(s, a)|+ (1− γ)δ,

which completes the proof.

Remark 2. The condition Âπ(s, a) ≥ (1 − γ)δ above may seem constrictive, but it can hold. If
we consider that in order to achieve a positive advantage, the value function must be biased to
underestimate the reward at the beginning. Therefore, the value function bias itself needs to be biased
by at least δ(1− γ) at the beginning. Hence, for any δ > 0, we have δ(1− γ) < δ, which is always
true as 0 < γ < 1. One can arrive at the same result for δ < 0 when Âπ(s, a) ≤ (1− γ)δ.
Now we will show the Proposition 1 with the condition Âπ(s, a) ≥ (1− γ)δ.
Proof of Proposition 2:

Proof. For assessing the new lower bound, we have exactly accounted for the bias in both conditioned
and unconditioned policies. Therefore, according to Theorem 1, Eq. 21, and Eq. 23, we have

Lπold
(πnew)−

4�γα2

(1− γ)2
=

�
L̂πold

(πnew)

�

con|0
+ δ̂con|0 − δcon|0 −

4�̃con|0γα2

(1− γ)2

=

�
L̂πold

(πnew)

�

unc

+ δ̂unc − δunc −
4�̃uncγα

2

(1− γ)2

(25)

The
�
L̂πold

(πnew)

�

con|0
and

�
L̂πold

(πnew)

�

unc

signify the approximation of R̂(πnew) in both

conditioned and unconditioned policies, respectively. Similarly, �̃con|0 and �̃unc indicate the different
upper bounds corresponding to the conditioned and unconditioned policies, respectively. Let �̂ =
maxs,a|Âπ(s, a)| such that we have �̂con|0 and �̂unc for the conditioned and unconditioned policies.
Due to the condition that Âπ(s, a) ≥ (1− γ)δ, based on Proposition 1 we have

�̃unc =

�
maxs,a|Âπ(s, a)|

�

unc

+ (γ − 1)δunc = �̂unc + (γ − 1)δunc (26)

and

�̃con|0 =

�
maxs,a|Âπ(s, a)|

�

con|0
+ (γ − 1)δcon|0 = �̂con|0 + (γ − 1)δcon|0 (27)
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Hence, substituting Eq. 26 and Eq. 27 into Eq. 25, we have
�
L̂πold

(πnew)

�

con|0
+ δ̂con|0 − δcon|0 −

4�̂con|0γα2

(1− γ)2
+

4δcon|0γα2

1− γ

=

�
L̂πold

(πnew)

�

unc

+ δ̂unc − δunc −
4�̂uncγα

2

(1− γ)2
+

4δuncγα
2

1− γ

(28)

By the condition that Δδ̂ < CΔV and Δδ̂ = δ̂unc − δ̂con|0, we have

δ̂unc − δ̂con|0 <
(m− n)(1−m)(4γα2 + 1− γ)

(1−m+ n)(1− γ)
ΔV

= ΔV
(m− n)(1−m)

1−m+ n

4γα2 + 1− γ

1− γ

= ΔV
m− n+mn−m2 + 1−m+m− 1

1−m+ n

4γα2 + 1− γ

1− γ

= ΔV
1−m− (1−m+ n−m+m2 −mn)

1−m+ n

4γα2 + 1− γ

1− γ

= ΔV
1−m− (1−m)(1−m+ n)

1−m+ n

4γα2 + 1− γ

1− γ

=

�
(1−m)ΔV

1−m+ n
− (1−m)ΔV

��
4γα2

1− γ
+ 1

�

(29)

According to the definition of bias for the expected discounted reward, we have

δ̂unc − δ̂con|0 < (δunc − δcon|0)

�
4γα2

1− γ
+ 1

�

=
4γδuncα

2

1− γ
− 4γδcon|0α2

1− γ
+ δunc − δcon|0

(30)

The last inequality yields the following relationship:

4γδcon|0α2

1− γ
+ δcon|0 − δ̂con|0 <

4γδuncα
2

1− γ
+ δunc − δ̂unc (31)

which results in the next inequality, combined with Eq. 28
�
L̂πold

(πnew)

�

con|0
− 4�̂con|0γα2

(1− γ)2
>

�
L̂πold

(πnew)

�

unc

− 4�̂uncγα
2

(1− γ)2
(32)

which suggests that by the conditioned policy, the lower bound of expected discounted reward is
higher. It completes the proof.

7.2 Meta Optimization of the Advantage Space
To better explain the use of the advantage coordinate space, we provide some additional illustrations
of the interesting optimization process at play. For visualization purposes, in figure 7 we simulated
a value surface with injected noise for a game in which there are two goal positions on a 2D plane,
one at [−1, 0] and the other at [1, 0]. At any moment the goal may be at only one of these positions.
When we create two polices to learn each distinct goal and value surface, we start from nothing, and
the advantage space extremely noisy. The master agent will try its best to select sub-policies given
this mapping and incrementally, each policy will become slightly better, meaning there is less bias
and variance in the value function predictor. This will then allow the master agent to select policies
with even greater accuracy, in result, improving the two value function accuracy more. One can see
from this iterative process that it can hopefully achieve both an accurate master, and high-performing
distinct polices simultaneously. This is an interesting way to perform an EM style optimization
because it is only defined by a reward signal. All other optimization steps can be derived from that
single scalar signal.
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Figure 7: Depicted is the visualized meta optimization process for a multi-objective game. In each
frame there are two surface, each representing the belief of the state-value map. As the map becomes
more accurate, the advantage space becomes easier to regress, which improves value accuracy and so
on. One can draw parallels to some sort of expectation maximization style algorithm.

7.3 Additional Results
In this section, we provide some additional experiments, results and illustrations that may help the
reader better understand the implications of the paper. We have tested the oracle-MLAH based
protocol on several Gym environments and of these we show MountainCarContinuous-v0 Figure
8 and Hopper-v2 Figure 10 case studies with white noise attacks and discuss some interesting
observations made in each. All experiment are once again using the PPO clipped objective function
with value prediction bonus.

7.3.1 MountainCarContinuous-v0
This experiment using the MountainCarContinuous-v0 environment was particularly insightful due
to the behavior of the bias. The Vanilla policy was able to achieve considerable reward and the
difference between it’s nominal and adversarial peaks was small. It can be noted that out of the
average maximum nominal reward of ≈ 95.0 and a minimum with adversaries ≈ 5.0, the expected
biased return should have been 30.0 according to ΔV from eq. 8. This is approximately the observed
average return for the Vanilla policy.

Figure 8: Here we show an adversary that is implements strong stochastic white noise on the
MountainCarContinuous-v0 environment. The baseline for the adversarial transitions happens to be
approximately 5.0 which makes our ΔV about 90.0 reward points. According to the approximate
m and n for this experiment, the bias should be about 60.0 reward points (30.0 return), which is
approximately the mean return for the Vanilla policy.
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7.3.2 CartPole-v1 Gradient Attack
We introduce a gradient attack similar to [15] designed for DDPG policies, but slightly modified to
work on our value function based policies. The attack is iterative based on the nominal value network
parameters. We take the state as input and take step size α in the opposite direction of the gradient
of the value network in respect to that state input. Although this attack is rather naive, the attack
strategy will change over time via the value network parameters as the nominal policy tries to adapt.
We assume that the adversary is not aware of the adversary policy used in MLAH. Because MLAH
will separate all information related to mitigating the attack into the adversary policy, the nominal
policy is not biased and a separate mapping can be solved to counter the gradient attack. Note that in
this example we allow an initial pre-training period in the nominal condition, so that the there is a
consistent basis for the gradient attack.

xk+1 = xk − α∇xV (xk) (33)

Figure 9: A gradient attack based on the nominal value function network is implemented and is
introduced on an on/off interval of 5000 action steps after an initial pre-training period. We observe
the MLAH algorithm with perfect switching can rather quickly learn a counter adversary policy
which leaves the nominal policy unbiased. The Vanilla PPO algorithm will struggle to maintain the
nominal baseline and adapt to the changing attack.

7.3.3 Hopper-v2
The Hopper-v2 environment behaved similar to others during the attacks, except that the average
performance during the attack appeared to be lower for the MLAH oracle, however MLAH oracle
remained less biased in the nominal case. This is a curious observation that tells us that MLAH may
not always mitigate the attack as well as a single Vanilla policy (in this case PPO).

7.4 Parameter Settings

Table 3: Sub Policy Hyperparameters
Parameter Value

Horizon (T) 1024-2048
Discount rate (γ) 0.99

GAE discount rate (λ) .98
Clipping parameter(�) 0.2

Surrogate opt. Batch Size 64
Surrogate opt. Epochs 10

Adam stepsize 3e-4
Hidden layers (Fully Connected) 2

Hidden nodes (tanh) 32

Table 4: Master Hyperparameters
Parameter Value

Horizon (T) 1024-2048
Discount rate (γ) 0.99

GAE discount rate (λ) .98
Clipping parameter(�) 0.2

Surrogate opt. batch size 64
Surrogate opt. epochs 10

Adam stepsize 0.1
Hidden layers (Fully Connected) 2

Hidden nodes (tanh) 16
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Figure 10: Here we show an adversary that is implements strong stochastic white noise on the
Hopper-v2 environment. This environment-adversary pair is particularly interesting because it shows
that the unconditioned policy actually learned to handle the adversary more effectively than the
conditioned MLAH. However, it obviously suffers in the nominal condition, while MLAH receives
significantly higher returns.
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