
A Proofs

A.1 Measurement Noise and Bias

Proof of Proposition 1.

τ̂ = [
1

N
T>(I − PX)T ]−1[

1

N
T>(I − PX)Y ] (6)

By Law of Large Number,
1

n
T>X → E[Ti(UiV

> +Wi)] = E(TiUi)V
>

1

N
X>Y → E[(UiV

> +Wi)
>(Uiα+ τTi + εi)] = V E[U>i Ui]α+ τV E(U>i Ti)

1

N
T>Y → E[Ti(Uiα+ τTi + εi)] = E(TiUi)α+ τE(T 2

i )

(
1

N
X>X)−1 → [E(V U>i UiV

>+W>i UiV
>+V U>i Wi+W

>
i Wi)]

−1 = [V E(U>i Ui)V
>+σ2

wIr×r]
−1

By Sherman–Morrison–Woodbury formula,

[V E(U>i Ui)V
> + σ2

wIr×r]
−1 =

1

σ2
w

I − 1

σ2
w

V [(
1

σ2
w

EU>i Ui)−1 + V >V ]−1V >

and

[(
1

σ2
w

EU>i Ui)−1 + V >V ]−1 = (V >V )−1 − (V >V )−1[(V >V )−1 +
1

σ2
w

EU>i Ui]−1(V >V )−1

Plug these terms back in 6,
1

N
T>(I − PX)Y = τE(T 2

i ) + E(TiUi)α

+ E(TiUi)V
>[V (EU>i Ui)−1V > + σ2

wI]−1V EU>i Uiα
+ τE(TiUi)V

>[V (EU>i Ui)−1V > + σ2
wI]−1V topEU>i Ti

= τE(T 2
i ) + E(TiUi)α

+
1

σ2
w

E(TiUi){V >V [(
1

σ2
w

EU>i Ui)−1 + V >V ]−1V >V − V >V }E(U>i Ui)α

+
τ

σ2
w

E(TiUi){V >V [(
1

σ2
w

EU>i Ui)−1 + V >V ]−1V >V − V >V }E(U>i Ti)

= τE(T 2
i ) + E(TiUi)α−

1

σ2
w

E(TiUi){
1

σ2
w

E(U>i Ui) + (V >V )−1}−1E(U>i Ui)α

− τ

σ2
w

E(TiUi){
1

σ2
w

E(U>i Ui) + (V >V )−1}−1E(U>i Ti)

Similarly,
1

N
T>(I − PX)T → E(T 2

i )− E(TiXi)(EX>i Xi)
−1E(X>i Ti)

= E(T 2
i )− 1

σ2
w

E(TiUi){
1

σ2
w

E(U>i Ui) + (V >V )−1}−1E(U>i Ti)

Therefore,

τ̂ − τ →
E(TiUi)α− 1

σ2
w
E(TiUi){ 1

σ2
w
E(U>i Ui) + (V >V )−1}−1E(U>i Ui)α

E(T 2
i )− 1

σ2
w
E(TiUi){ 1

σ2
w
E(U>i Ui) + (V >V )−1}−1E(U>i Ti)

=
E(TiUi)E(U>i Ui)

−1[ 1
σ2
w
V >V + E(U>i Ui)

−1]−1α

E(T 2
i )− E(TiUi)[(

1
σ2
w
V >V )−1 + E(U>i Ui)]

−1E(U>i Ti)

The last equality once again follows from Sherman–Morrison–Woodbury formula.
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Proof for Corollary 1.1. ‖(V >V )−1‖ = 1/σ2
min(V ) → 0 so ‖[ 1

σ2
w
V >V + E(U>i Ui)

−1]−1‖ → 0.
On the other hand, by Sherman–Morrison–Woodbury formula,

E(TiUi)[(
1

σ2
w

V >V )−1 + E(U>i Ui)]
−1E(U>i Ti)

= E(TiUi)E(U>i Ui)
−1E(U>i Ti)− E(TiUi)E(U>i Ui)

−1[E(U>i Ui) +
1

σ2
w

V >V ]−1E(U>i Ui)
−1E(U>i Ti)

So the denominator term satisfies that

E(T 2
i )−E(TiUi)[(

1

σ2
w

V >V )−1+E(U>i Ui)]
−1E(U>i Ti) > E(T 2

i )−E(TiUi)[E(U>i Ui)]
−1E(U>i Ti)

which is bounded away from 0 by Lemma 7. Therefore, the asymptotic bias term (1) diminishes to
0.

Proposition 2. Given the true V , Ui can be estimated by the OLS estimator for the following linear
regression: for j = 1, . . . , p

Xij = VjU
>
i + ηij .

Namely we regress X>i on the design matrix V to estimate U>i . The resulting confounder estimator
is Ũ = XV (V >V )−1. The subsequent OLS estimator for ATE based on Ũ , Y and T is denoted as τ̂ .
Under the assumptions in Proposition 1, τ̃ has the same asymptotic bias as in Proposition 1.

Proof of Proposition 2. In this case, Ũ = U +WV (V >V )−1. Moreover, τ̃ has the following form:

τ̂ = [
1

N
T>(I − PŨ )T ]−1[

1

N
T>(I − PŨ )Y ]

= [
1

N
T>(I − PŨ )T ]−1[

1

N
T>(I − PŨ )Uα+

τ

N
T>(I − PŨ )T +

1

N
T>(I − PŨ )ε]

Take 1
N T
>PŨUα as an example.

1

N
T>PŨUα =

1

N
TŨ(

1

N
Ũ>Ũ)−1 1

N
Ũ>Uα

where
1

N
TŨ =

1

N
T>[U +WV (V >V )−1]→ ETiUi

(
1

N
Ũ>Ũ)−1 = { 1

N
[U +WV (V >V )−1]>[U +WV (V >V )−1]}−1

→ 1

σ2
w

[
1

σ2
w

EU>i Ui + (V >V )−1]−1

1

N
Ũ>Uα =

1

N
[U +WV (V >V )−1]>Uα→ EU>i Uiα

Therefore

1

N
T>PŨUα→

1

σ2
w

ETiUi[
1

σ2
w

EU>i Ui + (V >V )−1]−1EU>i Uiα

which is exactly equal to the limit of 1
N T
>PXUα in the proof of Proposition 1. The equivalence of

other terms can be verified similarly.

A.2 Proof of Theorem 1

Proof of Theorem 1. The error of the ATE estimator in the linear regression can be written as:

τ̂ − τ = [
1

N
T>(I −PÛ )T ]−1[

1

N
T>(I −PÛ )U ]α+ [

1

N
T>(I −PÛ )T ]−1[

1

N
T>(I −PÛ )ε] (7)
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We first bound 1
N [T>(I − PÛ )U ]α:

1

N
|T>(I − PÛ )Uα| = 1

N
|T>(I − PÛ )Uα− T>(I − PU )Uα|

=
1

N
|T>(PU − PÛ )Uα|

≤ 1√
N
‖T‖ 1√

N
‖Uα‖‖PU − PÛ‖

≤ (
2√
N
‖T‖)( A√

Nr
‖U‖)(r∠(Û , U))

The first equaility follows from (I − PU )U = 0. The last inequality follows from Lemma 4.

We then bound [T>(I − PÛ )T ]:

1

N
|T>(I − PÛ )T | = 1

N
|T>(I − PU )T + T>(PU − PÛ )T |

≥ 1

N
T>(I − PU )T − | 1

N
T>(PU − PÛ )T |

≥ 1

N
T>(I − PU )T − 2

N
‖T‖2∠Θ(U, Û)

Furthermore, we can bound 1
N |T

>(I − PÛ )ε|: T>(I − PÛ )ε is sub-Gaussian with mean 0 and
variance σ2T>(I − PÛ )T . By Hoeffding bound, for any t > 0 and some constant c > 0,

P (
1

n
|T>(I − PÛ )ε| ≥ t) ≤ 2e

− cN2t2

σ2T>(I−P
Û

)T ≤ 2e−
cNt2

σ2

Take t = σ
N1/4 , then 1

N |T
′(I − PÛ )ε| ≤ σ

N1/4 with high probability 1− 2 exp(−cN1/2) for some
positive constant c.

Plug these three bounds in (7) then the conclusion follows.

Lemma 4 (Equivalence of Space Distance Metrics). The metric ∠(M̂,M) for matrices M ∈ RN×r
and M̂ ∈ RN×k with orthonormal columns satisfies:

∠(M̂,M) ≤ ‖M̂M̂T −MMT ‖ ≤ 2∠(M̂,M)

Proof. See Lemma 1 in Cai et al. [31].

Lemma 5. Suppose that Ti is almost surely not a linear combination of Ui. Under Assumption 5,
1
N T
>(I − PU )T is almost surely bounded away from 0 for any N .

Proof. Consider the asymptotic case when N →∞.

1

N
T>(I − PU )T =

1

N

N∑
i=1

T 2
i −

1

N

N∑
i=1

TiU
>
i (

1

N

N∑
i=1

UiU
>
i )−1 1

N

N∑
i=1

UiTi

By Law of Large Number,

1

N

N∑
i=1

T 2
i → E(T 2

i )

1

N

N∑
i=1

TiU
>
i (

1

N

N∑
i=1

UiU
>
i )−1 1

N

N∑
i=1

TiUi → E(TiU
>
i )[EUiU>i ]−1E(UiTi)

The result follows immediately from a matrix version of Cauchy-Schwartz Inequality [37].
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A.3 Proof of Theorem 2

Lemma 6. Assume that ΦN×p is a low-rank matrix of rank atmost r � N, p. Further assume ∀(i, j),
Xij−g(Φij) are sub-exponential with parameter σ′ and |Ω| > c0rN̄ logN̄ for large enough constant

c0. Given any β there exist positive constants cβ , Cβ ,Kβ such that for λ = 2cβσ
′√Np

√
rN̄ log N̄
|Ω| ,

the estimator from Exponential Family Matrix Completion (2) satisfies the following with probability
at least 1− 4e−(1+β) log2 N̄ − e−(1+β) log N̄ :

‖Φ̂− Φ‖2F ≤ Cβ
α2
sp(Φ) max{σ′2, 1}

µ2
β

(
rN̄ logN̄

|Ω|
)‖Φ‖2F (8)

where µβ = Kβe
− 2ηαsp(Φ)

√
Np > 0 for some positive constant Kβ and αsp(Φ) is the spikeness ratio of

Φ defined as follows:

αsp(Φ) =
‖Φ‖max

√
Np

‖Φ‖F

Proof. See Corollory 1 in Gunasekar et al. [8] for sub-Gaussian Xij − g(Φij). For sub-Exponential
case, use the Orlicz norm corresponding to sub-Exponential random variables for Lemma 3 and
Lemma 5 in Gunasekar et al. [8] and then the same conclusion follows.

Lemma 7 (Wedin’s Theorem). Suppose that X = UΣV > is of rank r and X̂ = X + E with the
leading r left singular vector matrix and right singular vector matrix being Û and V̂ . Then

max{∠(Û , U),∠(V̂ , V )} ≤ max{‖R‖2, ‖S‖2}
σr(X̂)

∧ 1

where

R = XV̂ − Û Σ̂ = −EV̂
S = X ′Û − V̂ Σ̂ = −E′Û

Proof of Theorem 2. Obviously αsp(Φ)√
Np

< 1, so µβ > Kβe
−2η. Let c22 =

Cβ max{σ′2,1}
K2
βe
−4η with β = 1,

then according to Lemma 6, the following holds with high probability at least 1 − 4e−2 log2 N̄ −
e−2 log N̄ :

‖Φ̂− Φ‖2F ≤ c22α2
sp(Φ)

rN̄ logN̄

|Ω|
‖Φ‖2F

Apply Wedin’s Theorem (Lemma 7) on Φ and Φ̂ with E = Φ − Φ̂. Since Û and V̂ both have
orthonormal columns,

‖R‖2 ≤ ‖E‖2 ≤ ‖E‖F

‖S‖2 ≤ ‖E‖2 ≤ ‖E‖F

where

‖E‖F ≤ c2αsp(Φ)

√
rN̄ log N̄

|Ω|
‖Φ‖F

By Weyl’s inequality,

σr(Φ̂) ≥ σr(Φ)− ‖E‖2 ≥ σr(Φ)− ‖E‖F
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As a result,

∠(Û , U) ≤
c2αsp(Φ)

√
rN̄ log N̄
|Ω| ‖Φ‖F

σr(Φ)− c2αsp(Φ)
√

rN̄ log N̄
|Ω| ‖Φ‖F

∧ 1

≤
c2αsp(Φ)

√
rN̄ log N̄
|Ω| r‖Φ‖2

σr(Φ)− c2αsp(Φ)
√

rN̄ log N̄
|Ω| r‖Φ‖2

∧ 1

≤
c2αsp(Φ)

√
r3N̄ log N̄
|Ω|

σr(Φ)
σ1(Φ) − c2αsp(Φ)

√
r3N̄ log N̄
|Ω|

∧ 1

A.4 Proof of Theorem 3

Proof of Theorem 3. The conclusions immediately follow from Lemma 8, Lemma 9, Lemma 10,
Theorem 1, and Theorem 2.

Lemma 8 (Spikeness Ratio). Under Assumption 5, the spikeness ratio αsp(Φ) ≤ c′cV
√
r̄ with high

probability 1−N−1/2 − 2 exp(−cN1/2) for some positive constant c, c′.

Proof. According to the definition, αsp(UV >) =
√
Np‖UV

>‖max

‖UV >‖F . Obviously,

‖UV >‖max ≤ max
ij

(UTi Vj) ≤ max
i
‖Ui‖max

j
‖Vj‖

Next, we prove that ‖UV >‖F ≥ σr(U)‖V ‖F . Suppose U has SVD Ūn×rΣ̄r×rV̄
T
r×r where Σ̄r×r =

diag(σ1(U), ..., σr(U)) and V̄ T V̄ = V̄ V̄ T = Ir×r. Then

‖UV ‖F = ‖Ūn×rΣ̄r×rV̄ Tr×rV ‖F

= ‖


σ1(U) 0 . . . 0

0 σ2(U) . . . 0
...

...
. . .

...
0 0 . . . σr(U)



V̄ T1 V
V̄ T2 V

...
V̄ Tr V

 ‖F

=

√√√√ r∑
k=1

‖σk(U)V̄ Tk V ‖2

≥ σr(U)

√√√√ r∑
k=1

‖V̄ Tk V ‖2

= σr(U)‖V̄ TV ‖F = σr(U)‖V ‖F

Therefore, αsp(UV >) ≤
√
Np

1√
N

maxi ‖Ui‖maxj ‖Vj‖
1√
N
σr(U)‖V ‖F

. Following the similar proof in Lemma 10,

we can prove that the following holds with high probability at least 1− 2 exp(−cN1/2):

1√
N
σr(U) ≥ (1− C

√
r

N
− 1

N1/4
)‖L‖

Under Assumption 5, ‖L−1Ui‖2 ∼ χ2(r). Then according to Proposition 1 in [39], with probability
at least 1 − exp(−t2/2), ‖Ui‖ ≤

√
r + t

√
2r + t2 ≤

√
r + t. Let t =

√
3 logN and take union

bound over i = 1, ..., N , then with high probability 1−N−1/2 for any i,

1√
N
‖Ui‖ ≤ (

√
r√
N

+

√
3 logN√
N

)‖L‖
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which implies that 1√
N

maxi ‖Ui‖ ≤ (
√
r√
N

+
√

3 logN√
N

)‖L‖.

Therefore, with high probability 1−N−1/2 − 2 exp(−cN1/2),

αsp(UV
>) ≤

√
r +
√

3 logN

1− C
√
r√
N
− 1

N1/4

√
p

maxj ‖Vj‖
‖V ‖F

≤ c′cV
√
r̄

Lemma 9. Under Assumption 5, σr(Φ)
σ1(Φ) ≥

√
v

v+2v with high probability 1 − 2 exp(−Cpδ) given

that p1+δ/N → 0 for some positive constant δ, C.

Proof. We aim to prove |x>( 1
N V U

>UV > − V L>LV >)x| ≤ ε for any x on the p-dimensional unit
sphere Sp−1. Since x>( 1

N V U
>UV > − V L>LV >)x = 0 for x ∈ Null(V ), we only have to prove

max
x∈Sp−1∩Null⊥(V )

|x>(
1

N
V U>UV > − V L>LV >)x| ≤ ε

where Sp−1 ∩Null⊥(V ) is a r-dimensional space.

Consider 1
4 -net N for SD−1 ∩Null⊥(V ), according to Lemma 5.4 in [38],

max
x∈Sp−1∩Null⊥(V )

|x>(
1

N
V U>UV >−V L>LV >)x| ≤ 2 max

x∈N
|x> 1

N
V U>UV >x−x>V L>LV >x|

So we only need to prove that maxx∈N |x> 1
N V U

>UV >x− x>V L>LV >x| ≤ ε
2 with high proba-

bility. Note that 1
N x
>V U>UV >x− x>V L>LV >x = 1

N

∑
i(Z

2
i − E(Z2

i )), where Zi = UiV
>x

are mutually independent with E(Zi) = 0 and E(Z2
i ) = xTV L>LV >x ≤ ‖V L>‖2. It follows that

the Z2
i − EZ2

i are sub-Exponential with upper bounded sub-Exponential norm (Lemma 5.14 [38]):

‖Z2
i − EZ2

i ‖ ≤ ‖Z2
i ‖ψ1 + EZ2

i ≤ 2‖Zi‖2ψ2
+ EZ2

i ≤ 3‖V L‖2

By the Berstein Inequality (Corollary 5.17 in [38])

P(|x′( 1

N
V U>UV > − V L>LV >)x| ≥ ε

2
) ≤ 2 exp(−cmin{ ε

6‖V L‖
,

ε2

36‖V L‖2
}N)

Furthermore, Lemma 5.2 in [38] implies that |N | ≤ 9r. So taking union bound over N gives:

P(max
x∈N
|x′( 1

N
V U>UV > − V L>LV >)x| ≥ ε

2
) ≤ 2 exp(r log 9− c

K̃
min{ε, ε2}N)

where K̃−1 = min{ 1
6‖V L‖2 ,

1
36‖V L‖4 }.

We consider two cases:

1. For large enough p (6vp > 1), take ε = p2+δ

N , then for some positive constant C and
r/pδ → 0,

P(max
x∈N
|x>(

1

N
V U>UV >−V L>LV >)x| ≥ ε

2
) ≤ 2 exp(r log 9− c

36v2p2
εN) ≤ 2 exp(−Cpδ)

So with probability at least 1− 2 exp(−Cpδ),

σ2
r(UV >)

σ2
1(UV >)

≥ σ2
r(V L>)− ε
σ2

1(V L>) + ε
≥ v − ε/p
v + ε/p

=
v − p1+δ

N

v + p1+δ

N

≥ v

2v + v

which is bounded away from 0 for large enough N, p such that p
1+δ

N ≤ v
2 .

2. For moderate p (6vp ≤ 1), take ε = p1/2+δ/2

N and then

P(max
x∈N
|x′( 1

N
V TUTUV − V TV )x| ≥ ε

2
) ≤ 2 exp(r log 9− c

6vp
ε2N) ≤ 2 exp(−Cpδ),

which implies the same conclusion.
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Lemma 10. Under Assumption 5, 1√
Nr
‖U‖ is bounded for any N with high probability at least

1− 2 exp(−cN1/2).

Proof. Apply Theorem 5.39 in [38] to matrix L−1U , for any t > 0 and positive constants c, C, with
probability at least 1− 2 exp(−ct2),

1√
Nr
‖U‖ ≤ 1√

Nr
‖UL−1L‖ ≤ (1 + C

√
r√
N

+
t√
N

)
1√
r
‖L‖

Take t = N1/4 then the conclusion follows.

B More Numerical Results
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Figure 4: Relative RMSE for binary covariates in the low dimensional setting as in Section 4.1 and
the relative RMSE for the setting where p varies from 150 to 1500 and N = p/1.5.
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Figure 5: Relative RMSE of ATE estimators for binary covariates with N = 200, 400, . . . , 2000 and
p = N/2. Each entry is set to be missing value with equal probability 0, 0.3, or 0.5.

C Causal Effect Variational Autoencoder

Figure 7 shows the estimation error of the causal effect variational autoencoder (CEVAE) [9] in
the twins dataset when there are no missing values. Like Exponential Family Matrix Completion,
variational autoencoder (VAE) is another latent variable model that provides yet another way to
recover the latent confounders. In [9], the authors combine such a latent variable model with an
outcome and treatment model and train these together in order to recover causal effects in the
presence of noisy proxies. This flexible neural-net-based model allows for additional non-linearities
that provide for better performance in this semi-synthetic example, as we explain below. Indeed,
these benefits disappear when we limit the outcome model to be linear.
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Figure 6: Relative RMSE of ATE estimators for Gaussian and Binary covariates with N =
150, 300, . . . , 1500 and p = 200.
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Figure 7: Performance of causal effect variational autoencoder [9] on the twins dataset without
missingness. CEVAE follows the neural network architecture given in [9], and CEVAE Linear uses 0
hidden layer in P(Yi | Ti, Ui) while keeping the archetecture of other neural networks the same as
CEVAE.

In our twins data example, the proxies are synthetic: we replicate the GESTAT10 multiple times
and independently perturb the entries of these copies with probability 0.5; each perturbed entry is
then assigned with a new value sampled from 0 to 9 uniformly at random. This means that for
a ∈ {0, . . . , 9}, P (Xij = a | Ui) = 0.5× 1

10 + 0.5× I(Ui = a). In contrast, the matrix factorization
method based on multinomial loss assumes that P (Xij = a | Ui) = exp(U>i V

a
j )/

∑
a exp(U>i V

a
j ),

where V 0
j , . . . , V

9
j define the complete set of loading vectors of the jth noisy proxy [18]. Although

this assumption drastically deviates from the true proxy generating process, using matrix factorization
still leads to considerable improvement in causal effect estimation. Thanks to its high non-linearity,
CEVAE can even better adapt to this complex synthetic emission model and learn it more faithfully,
therefore producing the better results see in Figure 7. While CEVAE has no theoretical guarantees,
our work focuses on providing the first finite-sample recovery result for a causal parameter from
high-dimensional proxy data, which is only possible in the simpler linear setting. Indeed, our work
can be seen as providing some theoretical justification for more practical methods using more complex
models.

To further study where the benefit of CEVAE stems from, we replaced the outcome model with a
linear one (i.e., no hidden layers, essentially a logistic regression) and found that the performance
deteriorated significantly (CEVAE Linear in Figure 7). This indeed suggests that the primary
improvement arises from the high flexibility of the neural networks in CEVAE. In fact, while logistic
regression on the matrix-factorization-recovered confounders improves significantly on simple logistic
regression, CEVAE with a linear outcome does as badly as simple logistic regression when the number
of proxies is large.
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