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Abstract

Heuristic tools from statistical physics have been used in the past to locate the
phase transitions and compute the optimal learning and generalization errors in
the teacher-student scenario in multi-layer neural networks. In this contribution,
we provide a rigorous justification of these approaches for a two-layers neural
network model called the committee machine. We also introduce a version of
the approximate message passing (AMP) algorithm for the committee machine
that allows to perform optimal learning in polynomial time for a large set of
parameters. We find that there are regimes in which a low generalization error is
information-theoretically achievable while the AMP algorithm fails to deliver it;
strongly suggesting that no efficient algorithm exists for those cases, and unveiling
a large computational gap.

While the traditional approach to learning and generalization follows the Vapnik-Chervonenkis [1]]
and Rademacher [2]] worst-case type bounds, there has been a considerable body of theoretical work
on calculating the generalization ability of neural networks for data arising from a probabilistic model
within the framework of statistical mechanics [3} 4, 5,16, [7]]. In the wake of the need to understand
the effectiveness of neural networks and also the limitations of the classical approaches [8]], it is of
interest to revisit the results that have emerged thanks to the physics perspective. This direction is
currently experiencing a strong revival, see e.g. [9} 10} [11} [12].

Of particular interest is the so-called teacher-student approach, where labels are generated by feeding
i.i.d. random samples to a neural network architecture (the feacher) and are then presented to another
neural network (the student) that is trained using these data. Early studies computed the information
theoretic limitations of the supervised learning abilities of the teacher weights by a student who is
given m independent n-dimensional examples with « =m/n=0(1) and n — oo [3L14,[7]. These
works relied on non-rigorous heuristic approaches, such as the replica and cavity methods [[13}[14].
Additionally no provably efficient algorithm was provided to achieve the predicted learning abilities,
and it was thus difficult to test those predictions, or to assess the computational difficulty.

Recent developments in statistical estimation and information theory —in particular of approximate
message passing algorithms (AMP) [[15, 16} 17, 18], and a rigorous proof of the replica formula for
the optimal generalization error [11]— allowed to settle these two missing points for single-layer
neural networks (i.e. without any hidden variables). In the present paper, we leverage on these works,
and provide rigorous asymptotic predictions and corresponding message passing algorithm for a class
of two-layers networks.
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1 Summary of contributions and related works

While our results hold for a rather large class of non-linear activation functions, we illustrate our
findings on a case considered most commonly in the early literature: The committee machine. This is
possibly the simplest version of a two-layers neural network where all the weights in the second layer
are fixed to unity. Denoting Y, the label associated with a n-dimensional sample X ,, and W the
weight connecting the i-th coordinate of the input to the [-th node of the hidden layer, it is defined by:

K n
Y, = sign[z sign(ZXm l)} . (1)
1=1 i=1
We concentrate here on the teacher-student scenario: The teacher generates i.i.d. data samples with
i.i.d. standard Gaussian coordinates X,; ~ N(0, 1), then she/he generates the associated labels
Y,, using a committee machine as in (1)), with i.i.d. weights W}, unknown to the student (in the
proof section we will consider the more general case of a distribution for the weights of the form
[T, Po({W;}E,), but in practice we consider the fully separable case). The student is then given
the m input-output pairs (X, Y,L)Z;l and knows the distribution Fy used to generate ;. The
goal of the student is to learn the weights W; from the available examples (X, Y),);i_ in order to
reach the smallest possible generalization error (i.e. to be able to predict the label the teacher would
generate for a new sample not present in the training set).

There have been several studies of this model within the non-rigorous statistical physics approach
in the limit where « = m/n = ©(1), K = ©(1) and n — oo [19, 20} 21, 22} |6, [7]. A particularly
interesting result in the teacher-student setting is the specialization of hidden neurons (see sec. 12.6
of [7], or [23]] in the context of online learning): For o < arspec (Where argpec 1s a certain critical value
of the sample complexity), the permutational symmetry between hidden neurons remains conserved
even after an optimal learning, and the learned weights of each of the hidden neurons are identical.
For o > aipec, however, this symmetry gets broken as each of the hidden units correlates strongly
with one of the hidden units of the teacher. Another remarkable result is the calculation of the optimal
generalization error as a function of a.

Our first contribution consists in a proof of the replica formula conjectured in the statistical physics
literature, using the adaptive interpolation method of [24, [11]], that allows to put several of these
results on a firm rigorous basis. Our second contribution is the design of an AMP-type of algorithm
that is able to achieve the optimal learning error in the above limit of large dimensions for a wide range
of parameters. The study of AMP —that is widely believed to be optimal between all polynomial
algorithms in the above setting [25] 26, [27, 28— unveils, in the case of the committee machine with
a large number of hidden neurons, the existence a large hard phase in which learning is information-
theoretically possible, leading to a good generalization error decaying asymptotically as 1.25K /« (in
the « = ©(K) regime), but where AMP fails and provides only a poor generalization that does not
decay when increasing «. This strongly suggests that no efficient algorithm exists in this hard region
and therefore there is a computational gap in learning in such neural networks. In other problems
where a hard phase was identified, its study boosted the development of algorithms that are able to
match the predicted thresholds and we anticipate this will translate to the present model.

We also want to comment on a related line of work that studies the loss-function landscape of neural
networks. While a range of works show under various assumptions that spurious local minima are
absent in neural networks, others show under different conditions that they do exist, see e.g. [29].
The regime of parameters that is hard for AMP must have spurious local minima, but the converse is
not true in general. It might be that there are spurious local minima, yet the AMP approach succeeds.
Moreover, in all previously studied models in the Bayes-optimal setting the (generalization) error
obtained with the AMP is the best known and other approaches, e.g. (noisy) gradient based, spectral
algorithms or semidefinite programming, are not better in generalizing even in cases where the
“student” models are overparametrized. Of course in order to be in the Bayes-optimal setting one
needs to know the model used by the teacher which is not the case in practice.

2 Main technical results

A general model — While in the illustration of our results we shall focus on the model , all our

formulas are valid for a broader class of models: Given m input samples (X m);”;il, we denote W



the teacher-weight connecting the ¢-th input (i.e. visible unit) to the /-th node of the hidden layer. For
a generic function ., : R® x R — R one can formally write the output as

Yu:¢out({\/lﬁ§:1Xm 5}1};’A“> or Y#Npout("{\}ﬁi‘x#i J}zil)’ (2

where (AM)Z’:1 are i.i.d. real valued random variables with known distribution P4, that form the
probabilistic part of the model, generally accounting for noise. For deterministic models the second
argument is simply absent (or is a Dirac mass). We can view alternatively (2) as a channel where
the transition kernel P, is directly related to ¢.,t. As discussed above, we focus on the teacher-
student scenario where the teacher generates Gaussian i.i.d. data X,,; ~ N(0, 1), and i.i.d. weights
i1 ~ Po. The student then learns W* from the data (X,,Y),);’; by computing marginal means of
the posterior probability distribution ().
Different scenarii fit into this general framework. Among those, the committee machine is obtained
when choosing Yot (h) = sign(z:{i1 sign(h;)) while another model considered previously is given
by the parity machine, when @, (h) = Hl}il sign(h;), see e.g. [7]. A number of layers beyond two

has also been considered, see [22]. Other activation functions can be used, and many more problems
can be described, e.g. compressed pooling [30} 31]] or multi-vector compressed sensing [32]].

Two auxiliary inference problems — Denote Si the finite dimensional vector space of K x K
matrices, S;g the convex and compact set of semi-definite positive & x K matrices, S}E"’ for positive

definite K x K matrices, and VN € S;; weset Sjo(N) = {M € Sfst. N — M € S} }.
Stating our results requires introducing two simpler auxiliary /K -dimensional estimation problems:

o The first one consists in retrieving a K -dimensional input vector Wy ~ P, from the output of a
Gaussian vector channel with K -dimensional observations Yy = r'/2Wy + Z, Zo ~ N (0, Ixxk)
and the “channel gain” matrix r € SZ. The associated posterior distribution on w = (w;)X | is

1 TPt/ 20— LwTrw
P(w|Yy) = Zpo(w)eyo : ; (3)

0

and the associated free entropy (or minus free energy) is given by the expectation over Yj of the
log-partition function ¢ p, (r) = Eln Zp, and involves K dimensional integrals.

e The second problem considers K-dimensional i.i.d. vectors V,U* ~ N (0, Ixxx) where V is

considered to be known and one has to retrieve U* from a scalar observation obtained as Yy ~
Pout(-|¢"?V 4 (p — q)'/2U*) where the second moment matrix p = E[WW{] isin S;: (W ~ Pp)
and the so-called “overlap matrix” ¢ is in S?;( p). The associated posterior is

1 b

ZPO (27T)K/2

ut

P(uYy,V) = Pout (Yolg'?V + (0 — 0)"?u) “
and the free entropy reads this time Up_, (¢; p) = Eln Zp_, (with the expectation over Y and V)
and also involves K dimensional integrals.

The free entropy — The central object of study leading to the optimal learning and generalization
errors in the present setting is the posterior distribution of the weights:

{% Z: X} ). )

where the normalization factor is nothing else than a partition function, i.e. the integral of the
numerator over {w;; }?li{l The expected ree entropy is by definition f,, = Eln Z,, /n. The replica
formula gives an explicit (conjectural) expression of f;, in the high-dimensional limit n, m — oo with
a = m/n fixed. We discuss in the long version of this paper [33]] how the heuristic replica method
[L3} [14] yields the formula. This computation was first performed, to the best of our knowledge,
by [19] in the case of the committee machine. Our first contribution is a rigorous proof of the
corresponding free entropy formula using an interpolation method [34} 35} 24]].

’ ’K . 1 n m
P({wil}?,l:1 H{ X i YM}T,;;J ~Zz HPO({wil}lIil) HPout (YH
" i=1 u=1

2 The symbol E will generally denote an expectation over all random variables in the ensuing expression (here
{Xyi,Y,}). Subscripts will be used only when we take partial expectations or if there is an ambiguity.



In order to formulate our rigorous results, we add an (arbitrarily small) Gaussian regularization noise
ZM\/Z to the first expression of the model , where A > 0, Z W~ N(0,1), so that the channel
kernel is (u € R¥)

Pous( dPy(a)e~ 285 (v—e(wa)?, (6)

yIU)—ﬂlW—A/]R

Theorem 2.1 (Replica formula) Suppose (H1): The prior Py has bounded support in RE: (H2):
The activation oyt - RE x R — R is a bounded C? function with bounded first and second
derivatives w.r.t. its first argument (in R¥ -space); and (H3): Forallp = 1,... , mandi=1,...,n
we have i.i.d. X,; ~ N(0,1). Then for the model 2)) with kernel (6) the limit of the free entropy is:

1 1
lim f, = lim —ElnZ,, = sup inf {wpo (r)+a¥p . (q;p) — §Tr(rq)}, (7)

n—oo n—oo N T‘ES; qu;(p)

where o« = m/n and where Vp,  (q;p) and V¥p,(r) are the free entropies of two simpler K-
dimensional estimation problems (3)) and ().

This theorem extends the recent progress for generalized linear models of [[11]], which includes the
case K = 1 of the present contribution, to the phenomenologically richer case of two-layers problems
such as the committee machine. The proof sketch based on an adaptive interpolation method recently
developed in [24]] is outlined and the details can be found in [33]. Note that, following similar
approximation arguments as in [11]], the hypothesis (H1) can be relaxed to the existence of the
second moment of the prior; thus covering the Gaussian case, (H2) can be dropped (and thus include
model (1) and its sign(-) activation) and (H3) extended to data matrices X with i.i.d. entries of zero
mean, unit variance and finite third moment. Moreover, the case A = 0 can be considered when
the outputs are discrete, as in the committee machine @), see [11]]. The channel kernel becomes
Pous(ylu) = [ dPa(a)1(y — ¢(u,a)) and the replica formula is the limit A — 0 of the one provided
in Theorem [2.1] In general this regularizing noise is needed for the free entropy limit to exist.

Learning the teacher weights and optimal generalization error — A classical result in Bayesian
estimation is that the estimator 1/ that minimizes the mean-square error with the ground-truth W* is
given by the expected mean of the posterior distribution. Denoting ¢* the extremizer in the replica
formula , we expect from the replica method that in the limit n — 0o, m/n = «, that with high

probablity WTw* /n — q*. We refer to proposition and to the proof in [33] for the precise
statement, that remains rigorously valid only in the presence of an additional (possibly infinitesimal)
side-information. From the overlap matrix ¢*, one can compute the Bayes-optimal generalization
error when the student tries to classify a new, yet unseen, sample X ... The estimator of the new label

Yhew that minimizes the mean-square error with the true label is given by computing the posterior
mean of Pout (Xneww) (Xnew 18 @ row vector). Given the new sample, the optimal generalization
error is then

1
i}E {(]Ew\X,Y [@out(Xneww)] - @out(XnewW*))2:| —_— €g(q*) (8)

n— oo

where w is distributed according to the posterior measure (B) (note that this Bayes-optimal compu-
tation differs from the so-called Gibbs estimator by a factor 2, see [33]). In particular, when the
data X is drawn from the standard Gaussian distribution on R™*™ and is thus rotationally invariant,
it follows that this error only depends on wTW™*, which converges to ¢*. Then a direct algebraic
computation gives a lengthy but explicit formula for €,4(g*), as shown in [33]].

Approximate message passing, and its state evolution — Our next result is based on an adaptation
of a popular algorithm to solve random instances of generalized linear models, the AMP algorithm
(15} [16], for the case of the committee machine and models described by ().

The AMP algorithm can be obtained as a Taylor expansion of loopy belief-propagation (see [33]) and
also originates in earlier statistical physics works [36, 137,138,139, 40, [26]. It is conjectured to perform
the best among all polynomial algorithms in the framework of these models. It thus gives us a tool
to evaluate both the intrinsic algorithmic hardness of the learning and the performance of existing
algorithms with respect to the optimal one in this model.

The AMP algorithm is summarized by its pseudo-code in Algorithm [T where the update functions
Jout> OwYout, fw and feo are related, again, to the two auxiliary problems and . The functions



Algorithm 1 Approximate Message Passing for the committee machine

Input: vector Y € R™ and matrix X € R™*"™:
Initialize: Wi, gous,,, € R and Cy, . gout, . € S;g forl<i<nandl <pu<matt=0.
repeat

Update of the mean w,, € R¥ and covariance V,, € S+'
n

t N Xuitirt X et—1 tyt—1 t X2, A
Wp = 21 (‘ﬁWi — (3 ) CIZi o) | Vi= 21 G
i= i=

Update of gout,, € R and D, gout,u € Sit:
géut,u = gOllt( /u )/Iu Vt) ‘ awgout,/:, = awgout (wfu }/lu ‘//f)

Update of the mean T; € R¥ and covariance ; € Si:

N Xy X o X -
Tit = Ei( Z \}fg(t)ut,u T 8Wgout uwt) | Ei = _( Zl 711 awg(t)ut,u)
/_L:
Update of the estimated marginals W; e RE and C; € S;Q:
Wit = fw(SLTH | P = fo(S4TY)
t=t+1

until Convergence on w,C.
Output: W and C.

fw(X,T) and fc(E T) are respectively the mean and variance under the posterior distribution (3)
whenr — X1 and Yy — ©1/27 while * Jout (wu, Yy, V,,) is given by the product of V,,” /2 and the
mean of « under the posterior @) using Yo —+Y,,p—q—V,and g2V — w,, (see [33] for more

details). After convergence, W estimates the weights of the teacher-neural network. The label of a
sample X ..\, not seen in the training set is estimated by the AMP algorithm as

K
View = [ u(T]020) vPos Gl DN (zihns Vi) ©

=1
where Wi, = >, Xnewinf is the mean of the normally distributed variable z € R, and
View = p — ¢l up 18 the K x K covariance matrix (see below for the definition of ¢’ ;p). We

provide a demo of the algorithm on github [41]].

AMP is particularly interesting because its performance can be tracked rigorously, again in the
asymptotic limit when n — o0, via a procedure known as state evolution (a rigorous version of the
cavity method in physics [14]), see [18]]. State evolution tracks the value of the overlap between the
hidden ground truth W* and the AMP estimate W,, defined as dhyp = limn_)oo(Wt)TW* /n, via:

81/11:’0 6\PPout
ar (TZMP% ?1\/}1) 20 dq (qf\MP5p)‘ (10)

t+1
davp = 2—5—

The fixed points of these equations correspond to the critical points of the replica free entropy (7).

Let us comment further on the convergence of the algorithm. In the large n limit, and if the integrals
are performed without errors, then the algorithm is guaranteed to converge. This is a consequence of
the state evolution combined with the Bayes-optimal setting. In practice, of course, n is finite and
integrals are approximated. In that case convergence is not guaranteed, but is robustly achieved in all
the cases presented in this paper. We also expect (by experience with the single layer case) that if the
input-data matrix is not random (i.e. beyond our assumptions) then we will encounter convergence
issues, which could be fixed by moving to some variant of the algorithm such as VAMP [42].

3  From two to more hidden neurons, and the specialization phase transition

Two neurons — Let us now discuss how the above results can be used to study the optimal learning
in the simplest non-trivial case of a two-layers neural network with two hidden neurons, i.e. when
model (1) is simply Y,, = sign|[sign(}_; | X,,;W7;) + sign(}_;_, X,;W)], with the convention
that mgn( ) = 0. We remind that the input-data matrix X has i.i.d. N(0,1) entries, and the
teacher-weights W * used to generate the labels Y are taken i.i.d. from F.



In Fig. [I|we plot the optimal generalization error as a function of the sample complexity & = m/n.
In the left panel the weights are Gaussian (for both the teacher and the student), while in the center
panel they are binary/Rademacher. The full line is obtained from the fixed point of the state evolution
(SE) of the AMP algorithm (I0), corresponding to the extremizer of the replica free entropy (7).
The points are results of the AMP algorithm run till convergence averaged over 10 instances of size
n = 10*. In this case and with random initial conditions the AMP algorithm did converge in all our
trials. As expected we observe excellent agreement between the SE and AMP.

In both left and center panels of Fig.[T|we observe the so-called specialization phase transition. Indeed
has two types of fixed points: A non-specialized fixed point where every element of the K x K
order parameter g is the same (so that both hidden neurons learn the same function) and a specialized
fixed point where the diagonal elements of the order parameter are different from the non-diagonal
ones. We checked for other types of fixed points for K = 2 (one where the two diagonal elements are
not the same), but have not found any. In terms of weight-learning, this means for the non-specialized
fixed point that the estimators for both W7 and W5 are the same, whereas in the specialized fixed
point the estimators of the weights corresponding to the two hidden neurons are different, and that
the network “figured out” that the data are better described by a non-linearly separable model. The
specialized fixed point is associated with lower error than the non-specialized one (as one can see in
Fig.[I). The existence of this phase transition was discussed in statistical physics literature on the
committee machine, see e.g. [20, 23]].

For Gaussian weights (Fig. [I] left), the specialization phase transition arises continuously at
aS.(K = 2) ~ 2.04. This means that for @ < af.(K = 2) the number of samples is too
small, and the student-neural network is not able to learn that two different teacher-vectors Wy and
Wy were used to generate the observed labels. For oo > ag,eC(K = 2), however, it is able to distin-
guish the two different weight-vectors and the generalization error decreases fast to low values (see
Fig.[I). For completeness we remind that in the case of K = 1 corresponding to single-layer neural
network no such specialization transition exists. We show [33]] that it is absent also in multi-layer
neural networks as long as the activations remain linear. The non-linearity of the activation function

is therefore an essential ingredient in order to observe a specialization phase transition.

The center part of Fig. [I]depicts the fixed point reached by the state evolution of AMP for the case of
binary weights. We observe two phase transitions in the performance of AMP in this case: (a) the
specialization phase transition at aSB;eC(K = 2) ~ 1.58, and for slightly larger sample complexity a
transition towards perfect generalization (beyond which the generalization error is asymptotically
zero) at aferf(K = 2) ~ 1.99. The binary case with K = 2 differs from the Gaussian one in the fact
that perfect generalization is achievable at finite o. While the specialization transition is continuous
here, the error has a discontinuity at the transition of perfect generalization. This discontinuity is
associated with the 1st order phase transition (in the physics nomenclature), leading to a gap between
algorithmic (AMP in our case) performance and information-theoretically optimal performance
reachable by exponential algorithms. To quantify the optimal performance we need to evaluate the
global extremum of the replica free entropy (not the local one reached by the state evolution). In
doing so that we get that information theoretically there is a single discontinuous phase transition
towards perfect generalization at af.(K = 2) ~ 1.54.

While the information-theoretic and specialization phase transitions were identified in the physics
literature on the committee machine [20, 21} [3, 4]], the gap between the information-theoretic per-
formance and the performance of AMP —that is conjectured to be optimal among polynomial
algorithms— was not yet discussed in the context of this model. Indeed, even its understanding in
simpler models than those discussed here, such as the single layer case, is more recent [15 [26] 25].

More is different — It becomes more difficult to study the replica formula for larger values of K
as it involves (at least) K -dimensional integrals. Quite interestingly, it is possible to work out the
solution of the replica formula in the large K limit (thus taken after the large n limit, so that K /n
vanishes). It is indeed natural to look for solutions of the replica formula, as suggested in [[19], of
the form q = g4Ik x i + (qa/K)1x 1}, with the unit vector 1 = (1){;1. Since both ¢ and p are
assumed to be positive, this scaling implies [33]] that 0 < ¢ < 1and 0 < g, + ¢4 < 1, as it should.
We also detail in [33] the corresponding large K expansion of the free entropy for the teacher-student
scenario with Gaussian weights. Only the information-theoretically reachable generalization error
was computed [19], thus we concentrated on the analysis of performance of AMP by tracking the
state evolution equations. In doing so, we unveil a large computational gap.
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Figure 1: Order parameter and optimal generalization error for a committee machine with two
hidden neurons with Gaussian weights (left), binary/Rademacher weights (center), and for Gaussian
weights in the large number of hidden units limit (right). These are shown as a function of the ratio
a = m/n between the number of samples m and the dimensionality n. Lines are obtained from
the state evolution equations (dominating solution is shown in full line), data-points from the AMP
algorithm averaged over 10 instances of the problem of size n = 10%. g and o1 denote diagonal
and off-diagonal overlaps, and their values are given by the labels on the far-right of the figure.

In the right plot of Fig. |1/ we show the fixed point values of the two overlaps qoo = ¢4 + ¢u/K
and qo1 = ¢,/ K and the resulting generalization error. As discussed in [[19] it can be written in
a closed form as ¢, = arccos [2 (g, + arcsingy) /7] /7. The specialization transition arises for
a = O(K) so we define & = o/ K. The spec1ahzat10n is now a st order phase transition, meaning
that the specialization fixed point first appears at &< , =~ 7.17 but the free entropy global

spinoda
extremizer remains the one of the non-specialized fixed point until ¢ aspec ~ 7.65. This has interesting
1mphcat10ns for the optimal generalization error that gets towards a plateau of value &pjatcau = 0.28

for a < aspcc and then jumps discontinuously down to reach a decay aymptotically as 1.25/a.

AMP is conjectured to be optimal among all polynomial algorithms (in the considered limit) and thus
analyzing its state evolution sheds light on possible computational-to-statistical gaps that come hand
in hand with 1st order phase transitions. In the regime of « = ©(K) for large K the non-specialized
fixed point is always stable implying that AMP will not be able to give a lower generalization error
than eplateau. Analyzing the replica formula for large K in more details [33], we concluded that
AMP will not reach the optimal generalization for any o < ©(K?). This implies a rather sizable
gap between the performance that can be reached information-theoretically and the one reachable
tractably. Such large computational gaps have been previously identified in a range of inference
problems —most famously in the planted clique problem [27]— but the committee machine is the
first model of a multi-layer neural network with realistic non-linearities (the parity machine is another
example but use a very peculiar non-linearity) that presents such large gap.

4 Sketch of proof of Theorem 2.1]

We denote K -dimensional column vectors by underlined letters. In particular W7 = (W;z )fi LW, =

(wir)fLy. For p =1,...m,letV,,, U’ be K-dimensional vectors with i.i.d. (0, 1) components.
Let s, € (0,1/2] a sequence that goes to 0 as n increases, and let M be the compact subset of
matrices in S with eigenvalues in the interval [1,2]. For all M € s, M, 25, Ircxrx — M € Sjt.
Lete = (e1,€2) € (s,M)2. Letthen g : [0,1] = S (p) and 7 : [ 1] — S} be two “interpolation
functions” (that will later on depend on ¢€), and Ry (t) = €1 + fo v)dv, Ra(t) = €2 + fg q(v)dv

For ¢ € [0, 1], define the K -dimensional vector: S =v1-t/n Zl 1 X Wi+ /Ro(t V +
\/ tp— Ro(t) + 2splxxx U U where matrix square -roots are well defined. We 1nterpolate w1th
auxiliary problems related to those discussed in sec. [2}

Yip ~ Pout(-18;,), 1<pu<m, Yi,=VR(OW; +Z;, 1<i<n, (11)

where Z', is (for each i) a K-vector with i.i.d. N'(0,1) components, and Y, . is a K-vector as well.
Recall that in our notation the x-variables have to be retrieved, while the other random variables are




assumed to be known (except for the noise variables obviously). Define now s, , by the expression
of S, , but with w; replacing W and u,, replacing U},. We introduce the interpolating posterior:

—Y!  —/Ri(Dw. |2 e 5 lluyul3
Pt e(w U|Y},Y;,X V) Z, (tE H PO( )6 éHth B (B2l H}L #K/;Pout(y;,ﬂ|§t,y)

where the normalization factor Z,, (¢, €) equals the numerator integrated over all components of w
and u. The average free entropy at time ¢ is by definition f,, (t) = Eln Z,(¢, €)/n. One verifies,
using in particular continuity and boundedness properties of ) p, and Wp_ , (see [33] for details):

{fn,e(o) = fo— K+On(1)v
fre(l) = p, jo t)dt) + a¥p,, fo t)dt; p) pfo v)dv) ——Jr(?n(l).

Here 0,,(1) — 0 in the n, m — oo limit uniformly in ¢, ¢, r, e. The next step is to compute the free
entropy variation along the interpolation path [33]:

Proposition 4.1 (Free entropy variation) Denote by (—),, ... the (Gibbs) expectation w.rt. the
posterior P, .. Set uy(x) = In Py (y|x). Forallt € [0, 1] the derivative f” ‘( ) equals

n,t,e

—E(Te[ (5 Z Vv (50,) Vv o (8,07 = () (@ = a(0) | ) + 5T r(0)al®) — p)]+0u (1),

where V is the K-dimensional gradient w.r.t. the argument of uy, ,(-), and 0,,(1) — 0 in the
n, m— oo limit uniformly in t, q, r, €. Here, Qy = Zl 1 Wiwg [nis a K x K overlap matrix .

A crucial step of the adaptive interpolation method is to show that the overlap concentrates (see [33]]):

Proposition 4.2 (Overlap concentration) Assume that for any t € (0, 1) the transformation € €
(snM)? = (Ry(t,€), Ra(t,€)) is a C* diffeomorphism with a Jacobian greater or equal to 1. Then
one can find a sequence s, going to O slowly enough such that there exists a constant C > 0 and a
v > 0, that only depend on the support and moments of Py and on the activation @ and o, such that
(|| = || 7 is the Frobenius norm): Vol(s, M) =2 f(snM)2 de fol th<HQ —E(Q)n,t.ell > < Cn™".

n,t,e —

Let frs(q,7) = ¥p,(r) + a¥Vp, , (q; p) — Tr(rq)/2 the replica symmetric (RS) potential. We have:

Proposition 4.3 (Lower bound) liminf,, . f, > sup,. st inf . SE(p) Irs(q, 7).

Proof: Choose first (t) = r € S a fixed matrix. Then R(t) = (Ri(t), R2(t)) can be fixed
as the solution to the first order differential equation: O;R1(t,€) = r, OiRa(t,e) = E(Q)n t.c
and R(0,¢) = e. We denote it R(t,e) = (rt + el,fot q(v,e;7)dv + €3). It is possible to
check (see [33]]) that this ODE satisfies the hypotheses of the parametric Cauchy-Lipschitz
theorem, and that by the Liouville formula the determinant of the Jacobian of € — R(e,t)
satisfies J,, (t) = exp{fot E{;l, O(Ry), BAQu ) s.e (5, R(s,€))ds} > 1; indeed, this sum of
partials is always positive, see [33]. Using then Prop. and Prop. we obtain f, =
Vol (s, M) =2 f(s"M)2 defRS(fO1 q(v, €;r)dv, r) + 0,(1). This implies the lower bound.

Proposition 4.4 (Upper bound) limsup,, ., fn < sup,. st inf St(p) frs(q, 7).

Proof :  We now fix R(t) = (Ry(t), Rz2(t)) as the solution R(t,e fo v,e)dv +

el,fo v,€)dv + €3) to the following Cauchy problem: 0;R;(t,e) = 204V\I/pout (E(Q)n.t.e)
Ot Ro(t, e) E(Q)n,i,e, and R(0, €) = e. We denote this equation as O, R(t,¢) = F, (R(¢,€),t). Itis
then possible to verify that F,,(R(t, €),t) is a bounded C! function of R(t, ¢), and thus a direct appli-
cation of the Cauchy-Lipschitz theorem implies that R(t, €) is a C* function of ¢ and € and by unicity
of the solution, the function € — R(t, €) is injective for any ¢. Since E(Q),, ¢, and p — E(Q), 1 are
positive matrices (see [33]) we also have that q(t,€) € Sy (p) and since by the differential equation
we have 7(t,€) = 2aVVUp  (q(t,€)) andas VUp,  (q) € S (see [33]), then 7 (¢, €) € S;. More-

out

over the Liouville formula for the Jacobian of the map € € (s, M)? — R(t,¢) € R(t, (s,M)?)



yields J, (1) = exp{f(;E Zgl, [O(Rry),y (Fn1)ur +0(Ry),, (Fr2)ur](s, R(s, €))ds}. Forall s € [0, 1]
the integrand >,/ [. . .] > 0 (see [33]). We can again apply Prop. and obtain

Fr=varewoe ) Ae{wr(fy (e, v)dv)+aW b, (fy (e, v)dv; p) = 3T [ g(e, v)r(e, v)dv}+0n(1).

By convexity of ¥p, and ¥p, ,, fr < m Jisnrayz de fol dv frs(q(e,v),r(e,v))+0,(1). We
now remark that frs(q(e,v),7(e,v)) = infqes,t(p) frs(q,7(e,v)). Indeed, for every r € S;, the

function g, : ¢ € Sjz(p) — frs(g,7) € R can be shown to be convex (see [33]) and its g-derivative
is Vgr(q) = aV¥p,, (q) — r/2. Since Vg, (¢ (q(€,v)) = 0 by definition of r(e, v), and S} (p) is

out

convex, the minimum of g, . (q) is necessarily achieved at ¢ = q(e, v). Therefore

fn < m de fol dv Hﬂrf .fRS (qu<€’ U)) + On(l) < sup inf fRS(qu) + On(l),
qESK (p) 7‘68} qESIt(p)

which concludes the proof of Prop. .4l Combined with Prop. f.3|we obtain Thm. 2.1

5 Discussion

One of the contributions of this paper is the design of an AMP-type algorithm that is able to achieve
the Bayes-optimal learning error in the limit of large dimensions for a range of parameters out of
the so-called hard phase. The hard phase is associated with first order phase transitions appearing
in the solution of the model. In the case of the committee machine with a large number of hidden
neurons we identify a large hard phase in which learning is possible information-theoretically but
not efficiently. In other problems where such a hard phase was identified, its study boosted the
development of algorithms that are able to match the predicted threshold. We anticipate this will also
be the same for the present model. We should, however, note that for larger K > 2 the present AMP
algorithm includes higher-dimensional integrals that hamper the speed of the algorithm. Our current
strategy to tackle this is to combine the large- K expansion and use it in the algorithm. Detailed
account of the corresponding results are left for future work.

We studied the Bayes-optimal setting where the student-network is the same as the teacher-network,
for which the replica method can be readily applied. The method still applies when the number
of hidden units in the student and teacher are different, while our proof does not generalize easily
to this case. It is an interesting subject for future work to see how the hard phase evolves under
over-parametrization and what is the interplay between the simplicity of the loss-landscape and the
achievable generalization error. We conjecture that in the present model over-parametrization will
not improve the generalization error achieved by AMP in the Bayes-optimal case.

Even though we focused in this paper on a two-layers neural network, the analysis and algorithm can
be readily extended to a multi-layer setting, see [22]], as long as the number of layers as well as the
number of hidden neurons in each layer is held constant, and as long as one learns only weights of the
first layer, for which the proof already applies. The numerical evaluation of the phase diagram would
be more challenging than the cases presented in this paper as multiple integrals would appear in the
corresponding formulas. In future works, we also plan to analyze the case where the weights of the
second and subsequent layers (including the biases of the activation functions) are also learned. This
could be done for instance with a combination of EM and AMP along the lines of [43| 44] where this
is done for the simpler single layer case.

Concerning extensions of the present work, an important open case is the one where the number of
samples per dimension o = ©(1) and also the size of the hidden layer per dimension K /n = (1)
as n — 0o, while in this paper we treated the case K = (1) and n — oo. This other scaling where
K /n = ©(1) is challenging even for the non-rigorous replica method.
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