Supplementary Material

A Claim 1

A.1 Proof for Claim 1

Proof. We first show that for any fyo > 0, any norm ||-||,, and any Cjy > 0, there exists a function
k+1
[y satisfying fy, = Co and H

S ~o. First assume that ||(1,0,---,0)||, = ao. Note that

ap > 0 by the definition of the norm. To prove this, we could set an arbitrary V satisfying that
HV?H =@ C , the arbitrary Vs satisfying that ’ = 1fori=2,---,k, and the output layer

as Tyy1(u) = Cy. Then fxy = Co. and

Sl

* 1k_1 * aooo =70-
* CL()CO

Then

i=1 rentd \Ti=1 i=1

n

sup (iZezf z) > #0 (7a)

ferfc,d7 i=1

v
|
H

> %Ee sup ( Zelsgn ;el Co>|261 7401

Co>0

= 00,

where the step in Equation (7a) follows from P(>"" ; ¢; # 0) = 1 when n is an odd number, and
PO 6 #0)=1—3P(3X" ¢, =1)—3P(X" ,¢; = —1) > & when nis an even number. [

B Theorem 1

Proof. For Part (a), if any || T;[|, , = 0, then f = 0 € qudc .,- Otherwise, we will prove by
induction on depth k£ + 1. It is trivial when k& = 0.

When k = 1, we rescale the first hidden layer by
s=c/|Tull,q
Equivalently, define the new affine transformation 77 by
B =sB;, W] = sW,

such that || T7[, , = c. For the output layer, we define

W5 =W, |17, , /¢, B = Ba.
Then T3 (u) = (W3)Tu + Bj satisfies |75 (u)]|
TQ*OGOTl*o:cE./\/'ld

P;q;¢,Co°

pq < Coras s > 1. What's more flx) =

Assume the result holds when k < K. Then when k = K, consider f(x) = Txy1000Tko0---00
T} o . Its K'th hidden layer

fK (.’B) € Np{(qjcl,é’dk
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by induction assumption, where dx = (do, d; - - - , dg ). In other words, there exists a series of affine
transformations {7} },=1 ... &, such that

fr(®)=TgoooTj_j0---0co0Tf o,
|T7|| = cfori=1,--- , K —1,and |T%| < c. Thus
fx)=Tki1000TjocoTf_j0---0co0Tfox.

We rescale T by s = ¢/ || T ||,, ,- Equivalently, define a new affine transformation 7% by T} =
T, such that | T[], . = c. For the output layer, we define

* *
WK+1 = WK+1/S,BK+1 = BK+1.

Then Ty, (u) = (Wi 1) u+ By, satisfies HTI*(H(U)Hp,q < c¢p,ass>1.Thus f € lefdico.

For Part (b), it is a direct conclusion from Part (a) that A/ k.d C N .d if ¢; < co, and

d d d P,q,C1,Co P,q,C2,Co
K, k, e 1 2 k, e k,d
Np,q,wi C Np7q7c7cg if ¢, < c;. If g € N, .1, then by definition, c,g € Vil . .

For Part (c), note that [|-[|, > ||-[|,,, when p1 < po, hence
{v:vll,, <CF S {v: o], <C}.

Then the first line of Part (c) follows from the observation above as well as the conclusion of Part (a).
As for the second line, for any h € N[ﬁ“gc ¢,» We could write

h=Ty1000To0---0oc0T)owx,

where Tj(u) : R4~ — R% = W7u + B;, satisfies that |Till, o = cfori =1,--- k, and
[ Tk+1ll,.0 < co- Note that

1 1
1Tl 00 < 1Tl g < d7 ITill, 00 < max(d—y) I T3], o

p,00 — p,q — p,00 —

1
fori=1,2,--- k,and [|Ti41l, , < di ;[ Th+1ll, o Thus we get the desired result by Part (a).

Regarding Part (d), we first show the result holds when ki = k5. For any g € N, ko d! we could add

p,q,¢,Co°
d? — d} neurons in each hidden layer with no connection to other neurons, thus not increasing the
2
norm of each layer. Note that this neural network belongs to N;Z(jco
For the general case when k1 < ko, we could add ko — k4 identity layers of width 1 with their L,, ,
norm equals 1 < ¢. Then the new neural network represents the same function as the original one.
Combining the conclusion of Part (a), we have

Nk‘q,dl C Nk’Q,Eil

P,4q,CyCo D»q,C,Co?
where d! = d! fori = 0,1,--- ki, and d! = dp, oy fori = ki +1,--- ks + 1. Note that
Nk2d N2 d by the case when k; = k. Thus we get what is expected. O

P;q,¢;Co P»q,C,Co

C Radermacher Complexities

Rademacher complexity is commonly used to measure the complexity of a hypothesis class with
respect to a probability distribution or a sample and analyze generalization bounds [6].

Rademacher Complexities. The empirical Rademacher complexity of the hypothesis class F with
respect to a data set S = {z1 ...z, } is defined as:

S)A%s(}-) = E lSUP <Tll Zﬂf(zz))]

feF
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where € = {€; ... €, } are n independent Rademacher random variables. The Rademacher complexity
of the hypothesis class F with respect to n samples is defined as:

R, (F) =Eg_pn {5%5(;)}

We list the following technical lemmas that will be used later in our own proofs for reference.
Lemma 2. Let F and G be two hypothesis classes and a € R be a constant. Define the shorthand
notation:

aF ={af | feF}

F+G={f+g|feFandgec G}

We have:
i. Rg(aF) = |a| Rg(F)
ii. FCG = Re(F) < Rs(9)
iii. Rs(F + G) < Rs(F) + Rs(G)
Proof. By definition. O

Lemma 3. [15] Assume that the hypothesis class F C {f|f : X = R} and x1,--- ,x, € X. Let
G : R — R be convex and increasing. Assume that the function ¢ : R — R is L-Lipschitz continuous

and satisfies that $(0) = 0. We have:
G <L sup (1 i flx )))1
- € i
reF\"i3

1 n
G | su — € x; < E.
(fe.l;: (” ; o >)>>]

Lemma 4 (Massart’s finite lemma). Let A be some finite subset of R™ and €1,¢€3,- - , €, be
independent Radermacher random variables. Let v = supgc 4 ||a||,, then we have

lsup *ZE% Z] _ r+/2log |A|

acA ™ m

E.

The theorem below is a more general version of [17, Theorem 3.1], where they assume a = 0, of
which the proof is very similar to the original one.

Theorem 3. Let z be a random variable of support Z and distribution D. Let S ={z ...z, }
be a data set of n i.i.d. samples drawn from D. Let F be a hypothesis class satisfying
FCAfIf:2Z—[a,a+1]}. Fix § € (0,1). With probability at least 1 — & over the choice of
S, the following holds for all h € F:

~ log (1/6

Eplh] < B[] + 2%, (F) + %
D Propositions 1, 2, 3
In this section, define o(u) = ul{u > 0} foru € Rand o 0z = (0(21),- -+ ,0(2n,)) for any vector
z € R™.
D.1 Proof for Proposition 1
Proof. By Theorem 1 /\/1 e /\/ 1.50,c,c,- Lherefore it is sufficient to show that the result holds
for N i

In order to get the first term inside the minimum operator, we will show that N 1.00,c.c, Delongs to
some DNN class with only bias neuron in the input layer. Then the result follows ‘from Theorem
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+
2[10]. Define . Vkl‘i <, asa function class that contains all functions representable by f = T}y o
ocoTio---o000T) ox satisfying that
k+1

Moo = [ IWill1oo <7
=1

where d* = (my + 1,dy + 1,dy + 1,-++ ,dj, + 1,1), Ty(u) = WTu, and W; € RE-1%4 for
i=1,-,k+1

Nk,,d ./\/'k‘,,dJr

Loo,eco = Ny <max(i,epkey” Following the notations in Section

The next step is to prove that
2, for any V; € R(%-17DXdi gatisfying that H\?}H = ¢, we have | V;||; ., = max(1, ¢), where
1,00 ’

V,; = (e, VZ) andey; = (1,0,---,0)T € RE-1+L Equivalently, the bias neuron in the ith hidden
layer can be regarded as a hidden neuron computed from the i — 1th layer by o (e, 7 | (x)) = 1,
while the new affine transformation could be parameterized by V;, such that [ V]|, _ = max(1,c).

Finally, we get the first term inside the minimum operator by applying Theorem 2[10], and the second
term is the bound of Proposition 2 when p = 1. O

D.2 Proposition 2

We first introduce two technical lemmas, which will be used later to prove Proposition 2.
Lemma 5. z; € R™ ||z;|| < 1fori=1,2,--- ,n Forpe(1,2],

n
E €;,Z;
i=1

EN
m?
< 1

N

%E min ((\/p* -1, \/2 10g(2m1)> ,

and forp =1U (2, 00),

n

g €:Z;

=1

1
—E
n

2log(2m;)

1
F
n 1

o

Lemma 6. Vp,q > 1, 51,82 > 1, e € {—1,+1}" and for all functions g : R™* — R®', we have
1 n

T[S (v
pq ||i=1

i 1
= 5[2” alt Sup T
veR* 7],

sup
VeRﬁl XS2

)

S o (w.g(@)

1 1
where = + = = 1.
5T

D.3 Proof of Proposition 2

Proof. The proof has two main steps.

Fixing the sample S, p > 1 and the architecture of the DNN, define a series of random variables
{20, 21, Zi} as

Zo = ‘ Z €;L;
=1 p*
and
Zj=  sup Zeio o filxy)||
rend ., =1 b
forj = 1,--- ,k, where {1, -- ,€,} are n independent Rademacher random variables, and f;
denotes the jth hidden layer of the WN-DNN f.
In the first step, we prove by induction that for j = 1,--- ,kandany ¢t € R

t’n

. g2 Jaa
Ecexp(tZ;) < 4 exp ( 5 Tt [Td" QHAZA,S) )
i=1
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where

ch z+1de i+ [
and -
o Vimin (V7= Tnf" Zlogmmi” ) if pe
i 2nlog(2ml)mL it pe
Note that 5,41 = cdg-"i*iéh(sj +1).

When j = 0, by Lemma 5, E.Z; < Afnl

i.i.d.random variables €1, - - - , €,,, satisfying that

|Z0(617"' aen)_ZO(ela"' 7671) >
by Minkowski By the proof of Theorem 6.2 [7],
2
logE exp (t(Zo — E.Zp)) < t>nm]” /2, thus

5 €gyt e

y TE€iy

inequality.

Ecexp (tZy) = Ecexp (t(Zy — EZp)) x exp (tEZp)
2, B
< exp -1 tAm1 s
forany ¢ € R.
For the case when j = 1,--- | k,
Ecexp (tZj) =Ecexp [t sup Z €,0 0 (V?o o fj’ll(wi))
[Vi, zelli=1 v

1

q

L
E. exp (tc P sup Too 1(x))

)
)

Yt

al *
* SupZEiU(UTUO J—1(®d)/ (vl

1
< 2E. exp (tcdgp*

—1.
smexp<cw F oS e gy 1<wz>/||v||>
i=1
11 n
< 2E. exp (tcd bl sup Zei(l,ao fi—1(zs))
i=1 -

[ — 2]
< 2Ecexp | ted;

n
(1) el +sup
i=1 f

Z €;,0 O fj_l(wi)
i=1

g~ Note that Zj is a deterministic function of the

1

L < me*

Zy satisfies that
(8a)
(8b)
(8c)

)

o
- 1 o
-4 1 K -1+ - ’
< 2 Ee €xXp (Tthdjp ! |Z€l|>‘| ]Eg exXp T;thjp N sup Z €;,0 O fj—l(wi)
L i=1 i=1 o
(8d)
(&1l w E [& -1 g
<2 |2Ecexp ( rjted;” * Zei E. exp <7";-‘tcdj" e Zj_lﬂ , (8e)
L i=1 L
i1 2 92 [ ]+
< 41+ 7 exp ntte d 5 a+ i ) + tc! H d; » Afnl S
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. nt?s? o i
< 4 exp (23 +1e [ d7 q]*AfnhS>
i=1

The step in Equation (8a) follows from Lemma 6. The step in Equation (8b) follows from the
observation that

E.exp | sup
v

n

o(v! fi (i) ool fi ()
ZQ—HUHP |> < E.exp (SupZeiH’UH ) +

i=1 v oo P
- o(ol fiy(x " oo (
EeeXp SUPZ(—GZ‘)M :2E€exp Supzeiw .
v S 1, v = Ivll,

The step in Equation (8c) follows from Lemma 3. Note that Equation (8d) holds for any » > 1
and r* = 15 (|XY]) < E(|X|")*E(|]Y|"")7. An optimal rj = Sj_1+
1 is chosen in our case. The step in Equation (8e) follows from E. exp (| X|) < Ecexp (X) +
E.exp (—X).

n
Note that ) ¢; is also a deterministic function of the i.i.d.random variables €1, - - - , €, satisfying
~
n ¢
that E. > ¢; = 0and
i=1

|Z€i +e— (Zel —€) <2
i#] i#]
Then by the proof of Theorem 6.2 [7],
" t2n
Ecexp(t Yy ) < —
exp(t ) ) < exp( )
for any ¢ € R. Then we get the desired result by choosing the optimal r; while following the
induction assumption.

The second step is based on the idea of [10] using Jensen’s inequality. For any A > 0,

nms (N;quc cu) = E. sup (i: 61f($2)>

fENk d i=1

P,49,¢,co

1 n
< X logE.exp | A Sup()i (Z el-f(;vi))
FEND o VT
1 n
< —logE.exp | Ac, sup Z (1,0 0 fr(x;))
A d |=

feN:q c,co =1 p*

)\2 2 1 2 k i,l
<3 (k+1)10g4+M+)\Aplsco H ekt (og)
~(k+1)logd  Acin(sp+1)2 o -1,
= 5 Hd AP,

where the step in Equation (9a) is derived using a similar techlmque as in Equations (8a) to (8e) By

\/ (k+1)log 16

choosing the optimal A = oGy Ve have
,d (k+1)log16 (¢ k—i+1 i I N
Rs(NF4) < - Dl | +(mi” + 1)k ] +1)+
i=2 =i i=1
S Ea
T P
ﬁcoc E d AmI;
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D.4 Proof of Lemma 5

Proof. For p € (1,2], or equivalently p* € [2,00),

- 18 2(p" — 1)-strongly convex with respect
n 1
Soezi| < /EEmpT [14].

i=1
For p € [1, 00) or equivalently p* € (1,00, let z[j] = (z1[j], Zz2[j], - - , Zn[4])T, where z;[j] is the
jth element of the vector z; € R™*.

1
to itself on R™ 1 [ o <mi ||z, thus L E

p*

n

1
—E 7 <
Le S em| <
1=1 p* =
1
P /2log(2my) ‘
< SupHZ[J]Ilz (10)
\/210g (2my)
< fsuPIIZ[ 11
%
< 7" v/2log(2my)
< n
The step in Equation (10) follows from Lemma 4. O

D.5 Proof of Lemma 6

Proof. The proof is based on the ideas of [19, Lemma 17]

The right hand side (RHS) is always less than or equal to the left hand side (LHS), since given any
vector v we could create a corresponding matrix V of which each row is v.

Then we will show that (LHS) is always less than or equal to (RHS). Let V7, j] be the jth column
of the matrix V. We have | V]|, . <|[[V],, when ¢ < p* and by Hélder’s inequality, [ V|, . <

[ s

sy” HV|| when ¢ > p*. Thus
S[iffh n .
(LHS) SVG?R}I‘EXW HV”p)p* ;Q‘O’O (V g(wz)) *
1) ” Y
-1y,
T v & Vi ; ;ez (@)
L s pt\ 1/P°

< 5[27**5]+ sup W Z ||V[,j]||p[(ii_§])+

VeRe1xe2 pp* \ j=1 SO
1/p”
- (RHS)V:]%;IM IIVH J; IVLil,)
= (RHS)

D.6 Proposition 3

Proof. Define N %, d< <~ as a function class that contains all functions representable by some neural
network f = Tk+1 ogoTgo- 00 0T o satisfying that
k+1

g = [ IIWill,, <7,
=1
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where d = (my,d,--- ,d,1), Ty(u) = Wl u,and W; € R%*% fori =1,.-- k4 1. In order
to use the conclusion of [19, Theorem 3] for DNNs with no bias neuron, it is sufficient to show that

N—k,d< - Nk,d

Ve <Y = 7Vpigcico
for any c, ¢, satisfying that c*c, > 7.

If any || T5[|,,,, = 0, then f = 0 € NEA  Otherwise, for any c, ¢, satisfying that cFc, > 7 >

P,q,C,Co "
k+1
'H1 73|, ,» we rescale each hidden layer by
i=
Si = C/ ||T7;Hp,q7

that is, define 77" by B; = 0 and W; = s;W,, such that [|T}||, . = cand T} = s;T;. Cor-
k

respondingly, rescale the output layer by 1/ [] s; and HT,:‘ +1”p . < ¢, as s; > 1. Therefore,
i=1 ’

fenNkd O

P»q,C,Co "
E Generalization Bounds

In this section, we provide a generalization bound that holds for any data distribution for regression
as an extension of Section 3.

The Regression Problem. Assume that (x1,y1),. .., (€,,y,) are n i.i.d samples on X x Y C
R™1 x R, satisfying that
yi = f(®i) + &, (11)

where f : X — ) C R is an unknown function and ¢; an independent noise.

E.1 Generalization Bounds

Assume that d : J) x ) — [0, 1] is a 1-Lipschitz function related to the prediction problem. For
example, we could define d(y, y’) = min(1, (y — y')?/2). Letz = (x,y) € Z, where Z = X x ).

Furthermore, for each f € Nﬁ;ﬁic’co, define a corresponding h ¢ such that hs(z) = d(y, f(x)). Let
H’;’d be a hypothesis class satisfying

14,C5Co
k.d _
Hp’q’c,co - U hy.

feNi,'fc,co

k.d

P;q,¢;Co

Forevery h € H , define the true and empirical risks as

Eplh] =B, plh(z)], Eslh] = - > hiz)
i=1

Theorem 4. Let z = (x,y) be a random variable of support Z and distribution D. Let
S ={2z1...2,} be a dataset of n i.i.d. samples drawn from D. Fix 6 € (0,1), k € [0,00) and
d; € Ny fori=1,--- k. With probability at least 1 — § over the choice of S,

(a) forp=1andq € [1,00], we have Yh € ’Hlfg

C,Co"

= log(1/8) = 2¢, . b
< oA T o
Ep[h] < Es[h] + o + NG * min (2 max(1, ¢ )\/k; + 2 +log(my + 1),

k
vV (k+1)log 162 ¢+ ¥ (y/2log(2my) + /(k + 1) log 16))
i=0
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(b) forp e (1,2] and q € [1,¢], we have Vh € Hk d

P,q,C,Co

~ log(1/5 1 sl o
Eplh] < Es[h] + o kHd “V2log(2my)mI” +

k+1 k
k+1)log16 p [F-11¢ L -1
ET (ot o)
(c) forp € (2,00) and q € [1, 0], we have Vh € HE d

PId,C,Co"
~ log(1/6
< B g;n/ )

~——
+

k
1 a1y,
Tcock | I dE” q]+mf min ((\/p* —1,/2log(2m,)
n
i=1

k+1 k
(k+1)log 16 i1 L1y, L [L 1],
Col\| ——— g ¢ Ildp T+ m? c”dl” 1 .
" i=1 =i ' i=1

The corollary below gives a generalization bound for the L1 o, WN-DNNS.

Corollary 1. Let z = (x,y) be a random variable of support Z and distribution D. Let
S ={z1...2,} be a dataset of n i.i.d. samples drawn from D. Fix § € (0,1), k € [0,00) and
d; € Ny fori=1,--- k. Assume that ck < ag for some ag > 1. With probability at least 1 — §

over the choice of S, for any h € 'Hp g.c,co0 W€ have:
~ log(1/6)  4e,
Eplh] < Es[h] + Ogén/ ) 4 Aot \/k T2+ log(my + 1).

For instance, we could define c as 1+ %2 with some constant v > 0 for ResNet [12], then c(k)F < evo
The case with vy = 0 leads to a specific case where the normalization constant ¢ = 1.

E.2 Proof of Theorem 4

Proof. By applying Theorem 3, with probability at least 1 — & over the choice of S, Vi € H*: ;16 s
we have:
E ~-E d log (1/0
D[h} s[h] < 2R, (Hk )+ M_

P»4q,C,Co 2n

kd ) in order to bound the absolute value of the generalization

Thus it is equivalent to bound R, ( Pg.CoCo

error. By Lemma 3, we have:

(de )_ (de )

P,q,C,Co P,d,C,Co
Finally, (a) follows from

(N;ichc co) < Sgp SRS(qudc c,,)
and Proposition 1, while

R, (WEE ), (VR )gsgpfﬁs(/\/qdoco)

P;q,¢;Co P;q,¢;Co

and Proposition 2 lead to (b) and (c). L]

F Theorem 2

F.1 Proof of Lemma 1

Proof. || b, wl)||. = 1 implies || b, 2w?) ||1 < 2, thus by Theorem 1 Part (b), it is sufficient to

M =

show that g could be represented by some neural network in N k" 1a, if instead H (b;, 2wT) H

p,q,widy, 1
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1. In addition, by Theorem 1 Parts (b), (c) and (d), it is equivalent to show that when >_ |¢;| = 1,
i=1

g could be represented by some neural network in N 1]“ ’0(01’1’1 where d; < [r/k] + 2my + 3 for
i=1,--- k.

Decompose the shallow neural network as
71 T2
2= (Lt )outo)- (e )o-to
i=1 i=1

w)Zic;rU((wj)Tw-i-b;r)/icf, g_(x ch w; ) + b)) /Zc
i=1 i=1

for some ¢, ¢; > 0. Note that HoaTATH < 1if o € R? satisfies that |||, < 1, and A € R"*®

()

satisfies that || A, ., < 1. Additionally

T1 T2 T

+ - —
Sy a =Y lel=1
i=1 i=1 =1

Thus it is sufficient to show that

where

(9+(x), 9-())

could be represented by some neural network in N, lk ’il’l, where each hidden layer contains both
oo x and o o (—x), while satisfying that d; < [r1/k] + [ro/k] +2my +2fori=1,---  k and
dpy1 = 2.

When k£ = 1, it is trivial.
When k = 2, we construct the first hidden layer consisting of [r; /2] + [r2/2] 4+ 2m; hidden neurons:

{whHTa+bf vi=1 [m/2} {(w)) e+ b7 ri=1, [r/2} 2, —=

For the second hidden layer, there are 2 + r — ([r1/2] + [r2/2]) + 2m1 hidden neurons. The first
neuron

[r1/2] [ri/2]
m= o)z +5) /Y o
i=1 i=1
the second neuron
[r2/2] [r2/2]
ﬁzzch"((i T+ b /ZC,
i=1

then follows 0 o @ , o o (—x) and the left » — ([r1/2] 4 [r2/2]) hidden neurons

{f = @) Toom— (wh)Too (~2) +bf i =[r1/2) + 1,1},

{n; = ()" D)oo (=) +br i=[ra/2 41,000 o}

The output layer only contains two hidden neurons (g, g— ), which could be computed respectively

cox — (w

[r1/2] [r2/2]

Z:l Cz_ 1 C ; Ci_ "2 c.
o)+ Y. o) and “F—oln) + > o).
> cj‘ i=[r /2141 Y ¢; > i=[r2/2141 Y ¢

i=1 i=1 1=1 i=1

>+

Thus, we find a neural network in J\/'1 ~.1.c, fepresenting (g, g—), where d; < [r1/2] + [r2/2] +
2m1 + 2

20



When k = K, define r; = (K — 1)[r1/K],r5 = (K — 1)[ro/K],r* =11 + 79 and

Lk Lk

0" (@) = (02(2). 0" @) = | =D cFo (W) Tz + ), Do (wi) e+ b))

> So

i=1 i=1

By induction assumption, g* could be represented h* € NlK O;ll’_ﬁl*, where df < [ri/(K —1)] +

[r3/(K — 1)] + 2m; + 2. In order to construct a WN-DNN representing (g4, g— ), we keep the first
K — 1 hidden layers of h* and build the K'th hidden layer based on the output layer of A*. Since the
(K — 1)th hidden layer contains both o o & and o o (—a). Thus except the original two neurons, we
could add

(W) (@om—oo(~a)+bF i=ri+1 1)

{(w; ) (cox—0co(—x))+b] :i=r3+1,--+,r9},00x),00(—x)
to the K'th hidden layer. Note that H (bi, 2wiT) H , = 1, thus we does not increase the L1,o, norm of
the K'th transformation by adding these neurons.

We finally construct the output layer by

T +
¢ 1 +
c.

=1
Sogi@)+ Y o ((wHTz+0]),
S i=rit1 Y ¢f

=1

i=1 -

Zc; 2 e
oy @)+ Y o ((w) T+ D).

> ¢ i=r3+1 Y- ¢
i=1

Thus, we build a neural network in A, 1K of 1,1 fepresenting (94, 9-)- The width of the ith hidden layer
d; < [r1/K]+ [r2/ K]+ 2mq + 3. H

F.2 Proof for Theorem 2

Proof. Assume f is an arbitrary function defined on R™ — R, satisfying that ||z;] < 1,
lz2ll < 1, f(x1) < Land |f(x1) — f(z2)] < L& — x2]|,. Following [3, Propositions 1
& 6], for ¢, greater than a constant depending only on mq, a fixed v > 0, , there exists some

function h(z) : R™ — R = Y ¢;o(w!l @ +b;), satisfying that > |¢;| < ¢, || (b5, wf)”l = 1and
i=1 i=1

_2(mi41)
r < co(mq)y” “™1F% , such that

Coy——2 Co
sup | f(x) — h(x)] < coy + c1(my)L(=)" ™7 log —,
lel<1 L L

where ¢1 (mq) and cz(my ) are some constants depending only on m;.
By taking v = ¢1(m1)(c,/L) 172/ M+ Jog S we have some function h(z) = 3 ¢;o(w! z +
i=1

T
b;), satisfying that > |¢;| < ¢,
i=1

(bs, 2w])]||, = 1 and

Co\_9(m m Co\ 2(m1+3)/(ma1+4)
r < Cr(ml)(logf) 2(m1+1)/(m1+4) (f) ’
such that

sup |f(@) — h(z)| < C(my)L(52) 77 log 2,
Izl <1 L L
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where C,.(m1) and C(m1) denote some constants that depend only on m;.

k
By Lemma 1, for any integer k& € [1, r], this & could be represented by a neural network in N, h.d

p,00,1,¢0°

where dj = my, d} = [r/k] +2my +3fori=1,--- ,kandd},, = 1. O
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