A Algorithmic Details

To summarise the main steps of the submission, we now detail a pseudo-code for distributed multitask
reinforcement learning.

Algorithm 1 Distributed Multitask Reinforcement Learning

Input: A set of 7" MDPs, dimensions of the latent space k, parameter initialisation for gy,

0.,...,0r, @1, ..., ¢, precision parameter e.
Step 1: Optimise for the variational parameters ¢1, ..., ¢ by solving:

T T
mase 3By,) o8 (Relmi) | = D i (ag, (7l Ipo, (72)
b1:PT pary pot

Step 2: Given updated ¢1, . .., @7, solve for Oy, as follows:

Step 2.1: Distribute tasks among a graph G of n computational units

Step 2.2: Update ®y, using our distributed Newton method up-to precision € (Section 4.2)
Step 3: Given updated ¢1, . . ., ¢, and Oy, determine the task specific coefficients by solving:

T T
max Y By,) [logp (Relm)| = 3 Diw (g5, (70)lIpo, (72)) -
t=1 t=1

QOutput: Variational, shared, and task specific parameters.

B Additional Experiments

This section details additional experimental results reflecting consensus errors on various systems.
We ran our experiments on the benchmarks depicted in Figure

B.1 Additional Results

Clearly, our algorithm converges faster than others to low-consensus error and optimal objective
values.

C Theoretical Guarantees

For the clarity of the presentation we split the Appendix in several sections. In the first section, we
provide theoretical analysis for Distributed Chebyshev Solver for solving SDD systems.In the second
section we provide the convergence analysis for Distributed Newton network and prove Theorem ??

(x, %) (x1,%1) (x2,%2)

ki R S—

fu Nl lF T— My J { M JF
T o8 o8 " ®e
Simple Mass Double Mass
(0,0)/ M,
¥ {2y
(x,%)
Cart-Pole Helicopter Humanoid

Figure 1: A high-level depiction of the benchmark dynamical systems used in our experiments.

{ SDD- | ADD- | Netw- ; Dist- | Dist- | Dist-

 Newton ! Newton : Newton : ADMM : Average ! Gradient
sM i 101 | 102 | ~102 i ~10% | ~10% | ~10°
DM : 102 108 | ~105 i ~10¢ ¢ ~10° | ~10°
cP i 103 : ~10¢ i ~10° [~10° : ~10° i ~10°

Figure 2: Number of iterations needed for convergence to low consensus showing that our method
outperforms state-of-the-art techniques.

0%t

—Distributed SDDM Newton|

Objective Value
Consensus Error

(a) Obj. HC

Objective Value
Consensus Error

~— Distributed SDD Newton
- ibuted ADD Newton

(c) Obj. HR (d) Con. HR

Figure 3: Figures (a) and (b) report the objective value and consensus error versus iterations on HC
systems. Figures (c) and (d) demonstrate the same criteria on the humanoid tasks. In all these cases,
our method outperforms others in literature.

C.1 Distributed Chebyshev Solver

The approximated solution vector dé““ can be represented as a concatenation of dk vectors: dgm) =
dmnT dgm)’dk’T]T , where each vector d™" is an e—approximated solution of the system
L™ = b (1)

with vector b is the i*" chunk of vector by = > S°7 w270 . (3(A,))y(A)s. Please notice,
that each vector b% € R™ and it is distributed across the nodes of graph G. Indeed, the r*" component
of this vector can be computed as follows:

& T Drre(y(N)
bl =3 | T, }[yus)j]r @

where we represented primal variable y(\,) as concatenation y(As) = [y(As){, ..., y(Xs) 1] T
Indeed, Equation (2)) can be computed locally by node r € V because it stores the " components
of vectors Y(As)1, - - -, Y(As)ax as well as it stores the local primal objective Zthl jﬁ)TRL (y(Xs))-

This observation allows us to distribute the computation of an e—approximated solution vector dgm)’i

using Chebyshev polynomials:
dm = LN - Q. (L)bs, i=1...,dk. 3)

where m = [(\/m—&- 1) In 27 and

(#71+#1)_22)

O _Tm< Hn—H1 4
m(2) = Tm(“"—ﬂ“) @)

Hn—H1

where p1, 14, are smallest and largest non-zero eigenvalues of graph Laplacian £. Please notice , that
for any z € [u1, p1p] we have

__ 4am
|Q (Z)|2 < T2 Hp T H1 T = T2 711(1@) +1 < de VeD+1
m — m m —
Hp — H1 k(L) —1

where k(L) = % Let d** be the exact solution of system , then a solution vector in Equation li
.) ___am)
satisfies ||d{™"" — d*i||2 < 4e V=®1||d*||%. Hence, by choosing degree m = [L(VE(L) +

1) In 2] the solution vector

[T () 1 -, (o2
d{m = Lt L : b,

o Hptia
Tm (,“'p_ltl)

satisfies the e—accuracy requirement: ||d{™"" — d*[|2 < ¢||d?]| .

i=1,...,dk (5)

Having proposed an approximate solution dgm)’l, at this stage we are ready to commence with the
distributed implementation of our solver. However, we recognize the following two challenges
hindering its direct distributed implementation. First, we note that computing the minimum and
maximum non-zero eigenvalues of £ requires global information. The second relates to the product
with LT needed in Equation [S| Here we detail the solutions to above two problems for the case
when L is graph Laplacian and derive our distributed SDD solver, which is used later to compute the
Newton direction

1. Parameters (1; and p,. As clear from the previous section, our method requires the
computation of the second-minimum and maximum eigenvalues of £. The computation
of these, however, requires global information and hence are difficult to determine in a
distributed fashion. As a substitute for the exact values of p; and yi,, one can use the
well-known eigenvalue bounds determined as

1 2> =

4
n?
pp < fL=2n

2. Multiplication on L. We start by noting that the second issue faced relates to the com-
putational inefficiency when attempting to compute the coefficients of T, (Z”ii”ﬁ) I—
p
((pp+p)I-2L
T (Hp—H1
on the condition number of the processing graph. To illustrate, let us, in fact, consider the
naive approach by assuming that each node ¢ has access to the following decomposition of

T (2):

) where performing it naively will potentially lead to linear dependency

Tn(2) =14+ a2+ az® + ... 4+ 2™

where ag, ..., q,, are coefficients one for each power of the polynomial. For ease of
exposition, let us further denote

+
Cl = — C2

=
=

2
i p i p
Using the above, the numerator in Equation (3)): can be written as

LT (e)I — Ty (e1 I — L)) bl =
Z a, i T — Zal,(clI — L)
v=1 v=1

Z ay (e D) = (eI — C2£)V]] b,

Lt bl =

Lt

The term ¢ 1) is easy to compute. The second, on the other hand, can be computed by

rewriting the term (c1I — c2£)" explicitly in terms of £ for each node 7. Unfortunately, this
procedure is inefficient as it boils-down to a total of O(m?) matrix vector multiplications
of the form Lu. Taking into account the expression for m, we end up with an algorithm
exhibiting linear dependency on the condition number «(£). Instead, our goal is to show
that solution in (5)) can be computed in fully distributed way in O(m) rounds. The crucial
property for us here is the recursive relation of Chebyshev polynomials:

To(z) =1, (6)
Ti(z) = 2,
Ty(z) = 22Tp-1(2) — Ty—2(2)
Denote by
Ay = LN Ty(e) I = Ty(erI — coL)] b
Q= Ty(c1 I — o L)bl,
O = Ty(c1)

dim = % and recursive relation

m

Therefore, the solution vector || can be written as
gives:
Ap=2c1Dp 1 —Ap_a+2c282 1 @)
Qg = 2(011 - CQ,C)Qg,1 - QZ,Q
Op =2¢104_1 — Op_»
with initials given by:
Al ZCgbi Ql Z[ClI — Cgﬁ]bi @1 =C1
Ay =0 Qo =b}, 0 =1
Algorithm 2] summarizes these results and provides a fully distributed computation of vector (3) in
O(m) rounds. Clearly, lines 8-10 are executing relations (7)) in a fully distributed way. Indeed, each
matrix vector multiplication (¢;I — ¢o£)u can be computed locally by a single message exchange

between the neighboring nodes. Moreover, the total number of such multiplications is bounded by
O(m) and this fact establishes the following

Theorem 1. The distributed SDD solver described in Algorithm2Juses local communication exchange
to compute an e-approximate solution of the SDD system ([I)) in the following number of rounds

1 1
o (\/FE(C) log ()) <O (\/ndmaxdiam(g) log ())
€ €
where k(L) is condition number of G, dpmq., diam(G) are its maximal degree and diameter.

This result provides us with time complexity O (dmm\/ k(L) log (%)) and message complexity

(@] (|€|mlog (%))

Algorithm 2 : Chebyshev SDD Solver

1: Input: The r*" row of graph Laplacian £, the
€.
2: Output: The r** components of e— approximate solution d

3: Setfi = 2n, p = %andcl = gi—%,CQZﬁ,H(ﬁ):%

th component of vector b, precision parameter

gm),i-

4: m = [3(/k(£)+1)In2].

5: [Ao]r =0 [Qr = [b]r O9 =1. .

6: [Al]r = Cg[bg}r [Ql]r = [(ClI - CQL) bzg]r @1 = C1.
7: for ¢ =2 tom do

8: Oy =2¢10p_1 — Oy_o.

9: [Qg]r = [2(611 — Cgﬂ)ﬂgfl]r — [Qg,g]r.

10: [Ag] = 2c1[A—1]r — [Ap—2]r + 2¢2[Q—1],
11: endfo(r)_ N
12: Set [ds ’]’I“ = #

m

C.2 Convergence Analysis of Distributed Newton Method

Before to proceed to the prove of the Theorem ?? we will establish several intermediate results which
are crucial for our convergence analysis. We pose the following assumptions on the local functions:

Assumption 1. The cost functions, f,.(-) = Z]‘Tzl J, ﬁ)T (), in Equation (??) are

1. twice continuously differentiable, i.e., vIgixar < V2f,«(-) < T'Lik gk, with v and T are
constants; and

V2 fr(z) — V2 fr (&)

2. Hessian Lipschitz continuous, i.e., !2 <dl||lx — ||z forall z, & €

de

C.2.1 Primal Dual Transition

Recall, that transition between primal and dual variables is given by a system of differential equations

(??) and let ¢§i), e ¢>Ej,2 denote the solution of this system.
Lemma Let 21 = [LA1]r, 22 = [LA2]r, -y 2dr = [LAak]r Under Assumption the functions
qbgr), ceey <b£l'2 exhibit bounded partial derivatives with respect to z1, . . . , 2qx. In other words, for any
r=1,...,dk:
o0y | _ ik o0y | _ ik
0z1 | = v Ozar | —
forany [z1, ..., zq) € R¥*,
Proof. Using the definition of 21, ... 24, We can write:
ofi _
6(;;7/) =~z
Ofi
W = —*2
'84)2 (8)
of _
5 ¢$€) = —Zdk

Taking the derivative with respect to z; in each equation of system () gives:

82er 991" azfi _ 95 + + 5_2fi _ 8‘17512 —
a(d)gl))z 0z1 v a(bgl)ad);t) 821 é}d)g‘)(')(z)((i’bk) dzl.
o%f;, _ 0¢%” o%f; 095 +o o+ 0%fi _ 99y) =0

a(i)gi)ad}g’) 0z1 a((bgi))z 0z1 84’;1)8‘15;1;3 0z1

f_0e | 0’ 04
8¢;L]36¢§L) 0z1 acz);)‘)ad)é‘) 0z1

0%f; 0%
+ ... Lk — ()
()2 9=

265" 0¢3) 29

Letu; = | B2 e P |7 then the above result can be written in matrix vector form:
2
(V= filur = —ey
where e; = [1,0...,0] € R%. Similarly we have:
2 2 2
[VZfilua = —ex [V7filus = —es, ... [V filug = —ea
. PYTORIPO! PO . . .
with u, = [dg; L, 68(;5; ey ;;F]T. Combining all these equations gives:
2
[VZJU = —Iagxax ©)
where _) _
0 LS AV
Oz 0zgy 0z
0o ool - asl)
U — 821 (922 Bzdk
0z1 Oz2 O0zak

Notice, Equation (9) implies:
U=-[Vf]!
Hence, using Assumption U2 < %, and:

Vdk

v

U] < |U||p < VdE||U]2 <

C.2.2 Dual Function Properties

In this section we establish important properties of the dual to the problem (??).
Lemma 1. The function q(A) = q(A1, . .., Adk) abides by the following properties:

1. Let y(X) be the primal variable corresponding to dual vector X. Then the gradient and the
Hessian of q(\) are given by

Vg(A) =g(A) = My(A)
VZq(A) = HQA) = -M [V*f(y(\)] ' M
where [(y(A) = Sy Sity Tarrre V)
2. Denote u,, (L) as the largest eigenvalue of the unweighted Laplagian of G and constants 9,y
are given in Assumption Then, for constant B = dké (%) ’ and for any A\, X € R"%:
IH(X) = H(A)[]2 < BIX = Alll2
i.e. H(A) is Lipschitz continuous with constant B.
Proof: To avoid confusion with indexes let us focus on more general optimization problem:
mwin f(z) (10)
st. Ar=b, AecR"P beR"

where f(x) twice differentiable strongly convex function, and unknown variable € R?. One can
see, that problem (??) is a special case of with f(-) =>", fi(-), A= M,and b = (ﬂ Let
() be the corresponding dual for (10), with dual variable A € R". We will show that:
V2(A) = —A[V2f(z(N))] AT (11)
Vg(A) = Axz(X\) —b

In this case n = p = dk

where () = argming f(z) + AT (Az — b) minimizes the Lagrangian of problem (10).

denote z(A\) =

o (e
asy -+ Qg (A zo(x
7N (@)

The optimal primal variable x () satisfies:
Vi(z(A)+ATA=0.
Using Fenchel’s conjugate, the dual function can be written as:

g(A) = =b"A — f*(~ATX)

Therefore,
Vg(A) = —b - V[f*(-ATX)
Denoting u = — AT, then the k*" component of vector V f*(—ATX\) can be written as:
ar*
70
8f* ou; ou
T J — .. 2
[V (A" X)] Z < Ju, Ohe Lk k2 akp | X :
ar
Oup _ATA

Let us

12)

13)

(14)

5)

Applying result (T3] and the relation between the gradients of function and its Fenchel’s conjugate:

Vi (—ATA) = AV, f*(u)|_a1a = —AV.f* (—ATA) =
— AV, f*(Vf(zT)) = —Az(N)

Therefore, the result (I5) gives:
Vg(A) = b+ Ax(X)

which establishes the claim for the dual gradient.
Taking the gradient in gives:

gzt (N 9z (N dz} (N
[2¥ D2 e X
oz (A 92i (V) 9x5 (A)
qu()\) —A X1 X2 X
szrl(k) ax; (N) ax;. (N)
2V Az e X
F(zt)

Hence, we target matrix F'(x™") to obtain the form of dual Hessian. Equation gives:

Vixt)=—-ATX

(16)

a7

(18)

On the next step, we take partial derivative % for both sides of the above equation for j =1, ...
J

. .. . 0 .
For simplicity, consider Ve

%zl(az“‘)
0 TZ’2($+)
Vi) = -

%Zp(aﬁ)

0z (1) dzT (N) 4

9z (1) oz (N)

9z (z) Ozf

dzy (A) O\
B2y (xt) dzT (N)

dzg (A) O\
dzp(xt) Oz (N)

dza(x™) OZF;—

dzT (A) O\

Azp(x™) 61? (X)

+ 3 (N)

dzp () 31‘3(*)

ox T

9zp ($+) Ow;

dz(A) O\

)

dzF(A) O\

)

&)

L 0z7(2) oM + dxf (N OM R dxf(N) OM
[0z (xT) 8z (xt) 8z (xt) Bwir()\) aw;r()\)
dzf(X) dzf(N) dz;f (N) W O
Oz(xF) Dzp(ah) 9z3(zF) dx3 (N dz3 (N
azF(N) dxf (N dzF (N OX _ V2f(m+) N
Azp(x™) zp(x™) Azp(x™) 8$;()\) 81:()\)
L dz7 (A 9z (N) dzF (N 2! OA1
V2 f(xt)
ail
o a12
(—ATA) = —
O\
alp
Repeating this for ~2— -9_ gives:
Xz DN, :
azf(A) ozf(™n 9z
oM 9Xz OAn a1 a1 - Qpi
dzy (N dzi(N) . dxi(N) I T
20+ N OXa D . n
Vaf(™) . : =-
Bx;(k) (‘)a:;' (N) o Bz:; (A) Qip A2p - Anp
8)\1 6)\2 a>\n
AT
F(xt)

Therefore, for matrix F/(x7) = —[V2f(xz*)] "' AT and combining this result with gives:

V2q(N) = —A[VZf(xT)] 71 AT

Now we are ready to prove the second statement of the lemma. Using M < p,,(£)I:

IHX) = HN\)wl[3 = [[IM (V2 fy(A)] ™" = [V2f(y(N)] ") Mo]||; =

(
v T M([V2f(y(N))] ! = [V2F(y)] HM2 (V2 fly(A)] ™! = V2 Fly(W)] ™) Mo <
(1

(L) M (V2 f)?Mwv <

1 (L) i (V2 F (M) = V2 (y(W))] o M <

Hin (L) i [V 2 F (M) = [V2F(y Q) D] 13
Therefore,

IH(X) = HN)l2 < g5 (L) pimaa (|[V2 F(y ()] 7 = (V2 f(y(A)] 1)
To bound the term fimaz (|[V2f(y (X))~ — [V2f(y(X))]71|) we study study the properties of

primal Hessian more carefully:

19)

Claim 2. For primal Hessian NV f(y()) the following properties are true

7=V f(y(N) =T (20)
prmaz (|[V2F (AN~ = [V2F(y(A)] 7)) < 1)
6me > (1) - [ysli (V)

for any X\, \ € RP,
Proof. Firstly, notice that forany j £ iandany r =1..., p:

o f _ o f L o f _ 0
Olyilidly,); Olyalidlyrl; Olyplidlyl;
Hence, the sparsity pattern of primal Hessian allows the symmetric reordering of rows and columns
such that V2 f(y (X)) is transformed into the block diagonal matrix:

V2fi(X) 0 0
WA = 0 V2 fa(A)) 0
0 0 o V()

The matrix W () preserves the important properties of V2 f(y(X)). Particularly, the spectrum of
these two matrices are the same. Indeed, let T7; is the operator that swaps ifh and j*" rows of some
arbitrary matrix A and let A be the result of such transformation. Then, A = T;; AT;;, and using
Tl% =1I.

det(A — pI) = det(T;; AT;; — pI) = det(T;; (A — uI)T};) =

det(A — ,uI)det(T%—) = det(A — pI)

Since W () is constructed from V2 f(y(A)) by symmetric reordering rows and columns, then
Spectrum(W (X)) = Spectrum(V? f(y(X))). Using the Assumptionit implies:

YyXW(A)XT
To prove , notice that if A = T;; AT;; and A is invertible, then so A and using Tl-;l =T
det(A™" — uI) = det(T;; A7 T — pI) = det(Ti; (A~ — uI)Tyj) =
det(A™" — ul)

Denote {T,...,T;} is a collection of operators that swaps the rows of matrix V2f(y())) to
transform it to W (), i.e.

W) =T, - TiVf(y)T, - - Ty
Then [V2f(y(A)] ™' =T - - - TyW ~H(A)T; - - - T}, and using the Assumption|i}
fmae (V2 F O] = [V F(y)] D) =
fimaz (L1 Ti[WHA) = W)T+ 1) < paa (W HA) = WHA)))
Iglea@(//cmam(HVZfi([yl]i(j‘)? i OO = Vil iV, - [y li W) M) =
%%;(|||[V2fi([y1]i(x)’ - Lypli O] = V2 Fil[yas), - [y ls Q)] [<

IN

%Igle@ll([yﬂi(;\), o [Ypli(N) = ([Wai(A), - [Ypli (W) |2 =

which establishes I).

Consider the term ([ys}z(;\) — [ys]i(A)). Using the above results we can write:
[y ()(A) = () N)] = 60 ([LAi, - [EA]0) = (LA - [LA]:)] <

o Z([cirh—[cwf—% > [Eo(h — 2] < Y2 12~ A -

r=1 r=1 r=1
p
? S = AL, = A < Y2 (6 SR~ AT~) =
r=1 r=1
p _
— (0 2% - All
v
where ,
Z(j‘r - AT)T(S‘T —A) = Hj‘ - AH%
r=1

is used. Hence,
(lyeli(R) = i (N)* < 2 (£) 1A = All

Combining this result with (1)) gives:
trmaz (I[[V2 F ()] = V2 Fy(A)]) <

and applying it to gives:

0
2k

5 ()*HA All2

. pn(L)\? 5 (0?5 .
[[H(A) — H(A)[|2 < ép — [|A = All2 = ddk — [[A = All2 = Bl[A = All2
3
In other words, dual Hessian is Lipschitz continuous with constant B = §dk (MT(L)>

C.2.3 Dual Gradient Bounds
The following Lemma studies the change of the norm of dual gradient for Distributed Newton iteration
scheme and plays a crucial role for the convergence analysis:
Lemma 2. Let us consider iteration scheme given by As11 = Ag + ozsdgm) and denote

=H s dgm) + gs
be the approximation error vector corresponding to e— approximated Newton direction vector dgm)
and gs = g(As) = V(). Then for any oy, € (0, 1]

llgs+1ll2 < (22)
T2 . T2

lgsl 15 + arll€sllz + o B——Il€sll5
115(L) 115(L)

where B is defined in Lemmaland w2 (L) is the smallest nonzero eigenvalue of unweighted Laplacian

of G.

Proof. Using definition of € for the dual gradient we have:

(1= aw)llgsllz + ox B——

1
g + a,d™) = g(A,) + / H(X, + ta,d™)a,d™ dt =
0
1 1
g(xs) +/ [H(AS + tad{™) fH()\S)] asdgm>dt+as/ H(\,)d{™dt =
0 0

(A + /1 [HO +taed™) — H)| ad{™dt + ay(e; — g(A,))
0

10

Applying gar1 = g(As + asd™). g = g(As) and Lemmall}

1
lgs+1llz < (1 — as)llgsll2 + as|les]2 + 50423Hd§m)||§ =

1
(1= a)llgs|l + asllesll> + 5ol BILHT(A;)(gs — €5)I[5 <
(1= as)llgsllz + asllesllz + aZBIHT(A)|3(11gs]13 + lles|13)

r

Investigating the explicit form of dual Hessian gives || HT(X,)[|, < 72z~ Hence,
2
[1gs+1ll2 < (1= as)llgsl| fatp [lgsl13 + aslles| ratB llesll3
s+1[|2 > - g s||2 s s s s||2 s s .
" pa(L) e pi(L)

C.2.4 Newton Method Proofs

Similar to centralized Newton method, the step size o in iteration scheme Ag11 = A + ozsdgm)
should be chosen carefully in order to attain quadratic convergence. In this part of the Appendix,
we consider the distributed version of Armijo rule is given in Algorithm[3] We use g = My =

Algorithm 3 : Distributed Line Search
Input: The constants o € (0, 3

,%] and 8 € (0,1), parameters €,I",~, 8. The i*" component of
dual gradient chunks: {[Ly,]; }¢&,

Output: step size ;.

Setm; = 0.

Compute 7; = max,{|[Ly.]:|}.

Compute max;{7;} using maximal consensus protocol.

while max, {|[Ly,];|} > (1 — o™)y/mmax;{n;} + 2625 do

end while

Compute m = max;{m;} using maximal consensus protocol.

Set oy = ™.

T
((Lyl)T e (Eydk)T) . Algorithmrequires only O(diam(G)) time steps and conducts only
exact computations. The following Lemma studies the change of step size given by the proposed
backtracking line search procedure:

Lemma 3. Let step size o is chosen according to Algorithm 3| and let g5 be the dual gradient
evaluated at Ag;. Then

L if||gslls < 424) then oy = 1

N N
2. Iflgall2 > 4352 then oy > Boprtal

where B is a constant defined in Lemmall|and p2(L), pu, (L) are the smallest and largest nonzero
eigenvalues of the unweighted Laplacian of G.

Proof. Combining ||g;||2 < ‘2‘%@ with Lemmaimplies:

3 T2
gasllz < (—as) lgsllz + aslleslls + 02B——|le |1
2 ps(L)"

11

Since [[e ||z < e2(8) \fuggnz, llgsll2 < 425) and o, < 1, then

r (c)

3 n(L)
<2 _
sl < (3 -) llulla + et g <

v
3 Mn (£) ‘C) 2
Z <
(2)||gs 2+ . \/ Lllgalla + €) llgsllz <

e A (8] e
} <2

EdkFé fore < %/ Since ||gs11]]2 >

where we denote B = 76% L’ji(ﬁ) VIt

max,.{|[Ly,];|} and ||gs||2 < v/nmax;{n;}, then
3
. < - —
m;ax{|[£yr}z|} < (2 as> fmax{m} + 2€dkF5

Notice that if m; = 0 the % — ™ <1 — g™ Therefore, for m; = 0 we have

max{|[Ly,Li[} < (1 —of™) Vnmax{n} + 26dk1“§

In other words, Algorithmreturns a,=pY=1.

4 L . _ 4 L
For the case ||gs||2 > gférg consider o, = W Because ||gs||2 < /nmax;{n;} and

4
l|gs|l2 > ‘2‘?9(152) then a; < 1. Hence, applying &, with e < -5 /7 for gives:

T2 12
||gs 1||2 (1—a5)||g5||2+a B ||98H2+d5||68||2+5‘53 H‘58||2:
* pd (L) pa(L) e
T2 2
lgsllz + Galleslls + G2B——les|I2 = Gullgsllo [- asB|gs|2} <
e el 210

unﬁ _ L)Tr
lg.ll2 + & E\[II lo+ a2t a0 g

_ HgsHQ M"([’
1— — NIsliz
as|gs|2[o <llglle + a3 T g o+
2
unﬁ
(2()

lgall3 — 3sllgall = (1= %) llgallo+

13 (L)
E) r |lgsll2 ewi(ﬁ)F 1 lgsll3

—llgsll2 pS
(L) oy T 2R max{n,} p3(L) v 450 nmaxi{n?}

(1 S llgulle + B < (1= %) llgalla + 260

In other words, we establishes:

2
ny

1—
lgoslle < (1 = 0a,)llgallz + 2672

Applying again [|g. 1]z > max,{[[Ly,i|} and [|gs|]> < v/nmax;{n;} gives:
2
<(1- 2
max{|[Ly, i} < (1 - oas) Vnmax{n;} + 2¢ dkr 5

Therefore, Algorithmreturns ag > Bas =0 ﬁ%

12

C.2.5 Proof of the Main Theorem

In this appendix we prove Theorem ??:

Theorem Let v, I', § B be the constants defined in Assumption[Ijand Lemmall} p2(L) and p,, (L)
representing the smallest and largest nonzero eigenvalues of the unweighted Laplacian of G, € <

B v? N2(
5 %98 114 (C be the precision parameter for the SDD solver. Consider our iteration scheme with

the step size o is calculated by Algorithm[3| Then, this iteration scheme exhibits two convergence
phases:

1. Strict Decreases Phase If ||gs||2 > ’5%(192) , then

By ps(L)
_ < — P
gst1llz = llgrll2 < 8 v/npd T2 23 (2)

where parameter 3 € (0, 1).

2. Quadratic Decreases Phase If ||gs||2 < g2B(F2), then for any o > 1:

1 A |22t
|gs+oll2 < W—I—B—i_ﬁ ll]

2
WD) ac L2
where
L1 p3(0)42 L
gL o mL” [pe(l) R DT
2 pn(L)pld [pn(L)V T 2
~ . 4BT? [Br?]
A=B 1+ B O(e)
15(L) 2(£)
Proof. We will proof the above theorem by handling each of the cases separately. We start by
4 4
considering the case when ||gs||2 > ’2‘129(152) Then, according to Lemma|3} s > 8 2B1“2#é;(£<)v{n<} and

Equation (22) we have:

2
lgs+all2 < (1 - *5as)|\gs||2 + 2L

(5F
4
Choosing € < g 735 #%((i)) implies 26p5r < 18a,||gs|2 and
1 gsll2
lgnlls ~ llgells <~ 55lgulla < 8= 121

2 EFZ Vrmax{n;} ~
11 3

- 3B BI'2 -
S NG

1i5(L)
3

o
T2 13(L)

The the quadratic decrease phase we use the result of Lemma |3|and induction:
1. Form = 1 applying a5 = 1 in Equation (22)):
1

BI'2
S

+B

BI? -
|gst1ll2 < WHQsH%‘FB <
2

This result validates the claim for m = 1.

2. Let us assume it is correct for some m > 0.

13

3. Using asym+1 = 1 in Equation and denoting v = 22" gives :

LWHQ Il < [Blﬂm I r+ BI” B <
pd(L) T = (o) TR s ()T
1 . Br? ly—171> B2
+ B + A2] + -
{u 15(L) u ps(L)
1 Brz . - Lw2-1 W21 _u—-2 _.2BI?1
B+ A2 — A2 A B -
@ Eo” T e T VA R
Br2 *| . o1 (u=2) , 1 (u—2)?
B? +2BA A?
(u;%(c)) Hmie A ey e
w5 (L) M%(ﬁ)
Since B + #E(FZ) B? = ;\FQ , then
2 n3(0)
BI?
m||gs+m+1||2 =
1 Brz . - Lw2-1 W21 _u—-2 _.2BI?1
— B+ A2 — A2 A B -
@ T e T VA R
(BF2)2 -1 B 2BA (1 1>+ A2 (w—2)2
1 N2 Br2 B2 \ o9 . 2 2
00 () e ke VY (EE) "
1 Br? . _—(u?-2 A A . BI? 2
- B+ A =2y -1 —+B -
@ T e T { 2 }+ 1 Pt
.~ BI2 21 ., u—-2\> 1 BI? . _(u?-2)
BA [== B+A
u%(ﬁ){)t (2u > TR (Vs AT
A ju 2 /1 1* . BI? 2 - 2.
—(=-1 P —— B —14+Z4A-ZA| =
u? \2)+ (2 u)+ ,LL%,C)|: +u+ u]
1 Br2 . -w?-2) (1 1\’ /: - . B2 - 2
— B+A S (A—A2 - B 1-A)(1-2
F et (3) Bt b (-
1 Br? . -(u*-2) 1 . B2 o [22"T -1
— B+A = B A
@y T e T TRy T | T

The last step follows due to v > 2 and A<y choosing € small enough).

Hence, our claim is correct.

14

	Algorithmic Details
	Additional Experiments
	Additional Results

	Theoretical Guarantees
	Distributed Chebyshev Solver
	Convergence Analysis of Distributed Newton Method
	Primal Dual Transition
	Dual Function Properties
	Dual Gradient Bounds
	Newton Method Proofs
	Proof of the Main Theorem

