
DropBlock: A regularization method for
convolutional networks

Golnaz Ghiasi
Google Brain

Tsung-Yi Lin
Google Brain

Quoc V. Le
Google Brain

Abstract

Deep neural networks often work well when they are over-parameterized and
trained with a massive amount of noise and regularization, such as weight decay
and dropout. Although dropout is widely used as a regularization technique for
fully connected layers, it is often less effective for convolutional layers. This
lack of success of dropout for convolutional layers is perhaps due to the fact that
activation units in convolutional layers are spatially correlated so information
can still flow through convolutional networks despite dropout. Thus a structured
form of dropout is needed to regularize convolutional networks. In this paper, we
introduce DropBlock, a form of structured dropout, where units in a contiguous
region of a feature map are dropped together. We found that applying DropbBlock
in skip connections in addition to the convolution layers increases the accuracy.
Also, gradually increasing number of dropped units during training leads to better
accuracy and more robust to hyperparameter choices. Extensive experiments
show that DropBlock works better than dropout in regularizing convolutional
networks. On ImageNet classification, ResNet-50 architecture with DropBlock
achieves 78.13% accuracy, which is more than 1.6% improvement on the baseline.
On COCO detection, DropBlock improves Average Precision of RetinaNet from
36.8% to 38.4%.

1 Introduction

Deep neural nets work well when they have a large number of parameters and are trained with a
massive amount of regularization and noise, such as weight decay and dropout [1]. Though the first
biggest success of dropout was associated with convolutional networks [2], recent convolutional
architectures rarely use dropout [3, 4, 5, 6, 7, 8, 9, 10]. In most cases, dropout was mainly used at the
fully connected layers of the convolutional networks [11, 12, 13].

We argue that the main drawback of dropout is that it drops out features randomly. While this can be
effective for fully connected layers, it is less effective for convolutional layers, where features are
correlated spatially. When the features are correlated, even with dropout, information about the input
can still be sent to the next layer, which causes the networks to overfit. This intuition suggests that a
more structured form of dropout is needed to better regularize convolutional networks.

In this paper, we introduce DropBlock, a structured form of dropout, that is particularly effective to
regularize convolutional networks. In DropBlock, features in a block, i.e., a contiguous region of a
feature map, are dropped together. As DropBlock discards features in a correlated area, the networks
must look elsewhere for evidence to fit the data (see Figure 1).

In our experiments, DropBlock is much better than dropout in a range of models and datasets. Adding
DropBlock to ResNet-50 architecture improves image classification accuracy on ImageNet from
76.51% to 78.13%. On COCO detection, DropBlock improves AP of RetinaNet from 36.8% to
38.4%.
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Figure 1: (a) input image to a convolutional neural network. The green regions in (b) and (c) include
the activation units which contain semantic information in the input image. Dropping out activations
at random is not effective in removing semantic information because nearby activations contain
closely related information. Instead, dropping continuous regions can remove certain semantic
information (e.g., head or feet) and consequently enforcing remaining units to learn features for
classifying input image.

2 Related work

Since its introduction, dropout [1] has inspired a number of regularization methods for neural
networks such as DropConnect [14], maxout [15], StochasticDepth [16], DropPath [17], Sched-
uledDropPath [8], shake-shake regularization [18], and ShakeDrop regularization [19]. The basic
principle behind these methods is to inject noise into neural networks so that they do not overfit the
training data. When it comes to convolutional neural networks, most successful methods require the
noise to be structured [16, 17, 8, 18, 19, 20]. For example, in DropPath, an entire layer in the neural
network is zeroed out of training, not just a particular unit. Although these strategies of dropping out
layers may work well for layers with many input or output branches, they cannot be used for layers
without any branches. Our method, DropBlock, is more general in that it can be applied anywhere
in a convolutional network. Our method is closely related to SpatialDropout [20], where an entire
channel is dropped from a feature map. Our experiments show that DropBlock is more effective than
SpatialDropout.

The developments of these noise injection techniques specific to the architectures are not unique to
convolutional networks. In fact, similar to convolutional networks, recurrent networks require their
own noise injection methods. Currently, Variational Dropout [21] and ZoneOut [22] are two of the
most commonly used methods to inject noise to recurrent connections.

Our method is inspired by Cutout [23], a data augmentation method where parts of the input
examples are zeroed out. DropBlock generalizes Cutout by applying Cutout at every feature map in
a convolutional networks. In our experiments, having a fixed zero-out ratio for DropBlock during
training is not as robust as having an increasing schedule for the ratio during training. In other words,
it’s better to set the DropBlock ratio to be small initially during training, and linearly increase it over
time during training. This scheduling scheme is related to ScheduledDropPath [8].

3 DropBlock

DropBlock is a simple method similar to dropout. Its main difference from dropout is that it drops
contiguous regions from a feature map of a layer instead of dropping out independent random units.
Pseudocode of DropBlock is shown in Algorithm 1. DropBlock has two main parameters which
are block_size and γ. block_size is the size of the block to be dropped, and γ, controls how many
activation units to drop.

We experimented with a shared DropBlock mask across different feature channels or each feature
channel has its DropBlock mask. Algorithm 1 corresponds to the latter, which tends to work better in
our experiments.
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Algorithm 1 DropBlock

1: Input:output activations of a layer (A), block_size, γ, mode
2: if mode == Inference then
3: return A
4: end if
5: Randomly sample mask M : Mi,j ∼ Bernoulli(γ)
6: For each zero position Mi,j , create a spatial square mask with the center being Mi,j , the width,

height being block_size and set all the values of M in the square to be zero (see Figure 2).
7: Apply the mask: A = A×M
8: Normalize the features: A = A× count(M)/count_ones(M)

(a) (b)

Figure 2: Mask sampling in DropBlock. (a) On every feature map, similar to dropout, we first
sample a mask M . We only sample mask from shaded green region in which each sampled entry can
expanded to a mask fully contained inside the feature map. (b) Every zero entry on M is expanded to
block_size× block_size zero block.

Similar to dropout we do not apply DropBlock during inference. This is interpreted as evaluating an
averaged prediction across the exponentially-sized ensemble of sub-networks. These sub-networks
include a special subset of sub-networks covered by dropout where each network does not see
contiguous parts of feature maps.

Setting the value of block_size. In our implementation, we set a constant block_size for all
feature maps, regardless the resolution of feature map. DropBlock resembles dropout [1] when
block_size = 1 and resembles SpatialDropout [20] when block_size covers the full feature map.

Setting the value of γ. In practice, we do not explicitly set γ. As stated earlier, γ controls the
number of features to drop. Suppose that we want to keep every activation unit with the probability
of keep_prob, in dropout [1] the binary mask will be sampled with the Bernoulli distribution with
mean 1 − keep_prob. However, to account for the fact that every zero entry in the mask will be
expanded by block_size2 and the blocks will be fully contained in feature map, we need to adjust γ
accordingly when we sample the initial binary mask. In our implementation, γ can be computed as

γ =
1− keep_prob
block_size2

feat_size2

(feat_size− block_size+ 1)2
(1)

where keep_prob can be interpreted as the probability of keeping a unit in traditional dropout. The
size of valid seed region is (feat_size− block_size+ 1)2 where feat_size is the size of feature
map. The main nuance of DropBlock is that there will be some overlapped in the dropped blocks, so
the above equation is only an approximation. In our experiments, we first estimate the keep_prob to
use (between 0.75 and 0.95), and then compute γ according to the above equation.

Scheduled DropBlock. We found that DropBlock with a fixed keep_prob during training does not
work well. Applying small value of keep_prob hurts learning at the beginning. Instead, gradually
decreasing keep_prob over time from 1 to the target value is more robust and adds improvement for
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the most values of keep_prob. In our experiments, we use a linear scheme of decreasing the value of
keep_prob, which tends to work well across many hyperparameter settings. This linear scheme is
similar to ScheduledDropPath [8].

4 Experiments

In the following sections, we empirically investigate the effectiveness of DropBlock for image classi-
fication, object detection, and semantic segmentation. We apply DropBlock to ResNet-50 [4] with
extensive experiments for image classification. To verify the results can be transferred to a different
architecture, we perform DropBlock on a state-of-the-art model architecture, AmoebaNet [10], and
show improvements. In addition to image classification, We show DropBlock is helpful in training
RetinaNet [24] for object detection and semantic segmentation.

4.1 ImageNet Classification

The ILSVRC 2012 classification dataset [25] contains 1.2 million training images, 50,000 validation
images, and 150,000 testing images. Images are labeled with 1,000 categories. We used horizontal
flip, scale, and aspect ratio augmentation for training images as in [12, 26]. During evaluation, we
applied a single-crop rather than averaging results over multiple crops. Following the common
practice, we report classification accuracy on the validation set.

Implementation Details We trained models on Tensor Processing Units (TPUs) and used the
official Tensorflow implementations for ResNet-501 and AmoebaNet2. We used the default image
size (224× 224 for ResNet-50 and 331× 331 for AmoebaNet), batch size (1024 for ResNet-50 and
2048 for AmoebaNet) and hyperparameters setting for all the models. We only increased number
of training epochs from 90 to 300 for ResNet-50 architecture. The learning rate was decayed by
the factor of 0.1 at 100, 200 and 265 epochs. AmoebaNet models were trained for 340 epochs
and exponential decay scheme was used for scheduling learning rate. Since baselines are usually
overfitted for the longer training scheme and have lower validation accuracy at the end of training,
we report the highest validation accuracy over the full training course for fair comparison.

4.1.1 DropBlock in ResNet-50

ResNet-50 [4] is a widely used Convolutional Neural Network (CNN) architecture for image recogni-
tion. In the following experiments, we apply different regularization techniques on ResNet-50 and
compare the results with DropBlock. The results are summarized in Table 1.

Model top-1(%) top-5(%)
ResNet-50 76.51 ± 0.07 93.20 ± 0.05
ResNet-50 + dropout (kp=0.7) [1] 76.80 ± 0.04 93.41 ± 0.04
ResNet-50 + DropPath (kp=0.9) [17] 77.10 ± 0.08 93.50 ± 0.05
ResNet-50 + SpatialDropout (kp=0.9) [20] 77.41 ± 0.04 93.74 ± 0.02
ResNet-50 + Cutout [23] 76.52 ± 0.07 93.21 ± 0.04
ResNet-50 + AutoAugment [27] 77.63 93.82
ResNet-50 + label smoothing (0.1) [28] 77.17 ±0.05 93.45 ±0.03

ResNet-50 + DropBlock, (kp=0.9) 78.13 ± 0.05 94.02 ± 0.02
ResNet-50 + DropBlock (kp=0.9) + label smoothing (0.1) 78.35 ± 0.05 94.15 ± 0.03

Table 1: Summary of validation accuracy on ImageNet dataset for ResNet-50 architecture. For
dropout, DropPath, and SpatialDropout, we trained models with different keep_prob values and
reported the best result. DropBlock is applied with block_size = 7. We report average over 3 runs.
The code of these results is in https://github.com/tensorflow/tpu/tree/master/models/
official/resnet.

1https://github.com/tensorflow/tpu/tree/master/models/official/resnet
2https://github.com/tensorflow/tpu/tree/master/models/experimental/amoeba_net
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Figure 3: ImageNet validation accuracy against keep_prob with ResNet-50 model. All methods drop
activation units in group 3 and 4.
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Figure 4: Comparison of ResNet-50 trained on ImageNet when DropBlock is applied to group 4 or
groups 3 and 4. From left to right, we show performance of applying DropBlock on convolution
branches only and progressively improve it by applying DropBlock on skip connections and adding
scheduling keep_prob. The best accuracy is achieved by using block_size = 7 (bottom right figure).

Where to apply DropBlock. In residual networks, a building block consists of a few convolution
layers and a separate skip connection that performs identity mapping. Every convolution layer is
followed by batch normalization layer and ReLU activation. The output of a building block is the
sum of outputs from the convolution branch and skip connection.

A residual network can be represented by building groups based on the spatial resolution of feature
activation. A building group consists of multiple building blocks. We use group 4 to represent the
last group in residual network (i.e., all layers in conv5_x) and so on.

In the following experiments, we study where to apply DropBlock in residual networks. We ex-
perimented with applying DropBlock only after convolution layers or applying DropBlock after
both convolution layers and skip connections. To study the performance of DropBlock applying to
different feature groups, we experimented with applying DropBlock to Group 4 or to both Groups 3
and 4.

DropBlock vs. dropout. The original ResNet architecture does not apply any dropout in the
model. For the ease of discussion, we define the dropout baseline for ResNet as applying dropout
on convolution branches only. We applied DropBlock to both groups 3 and 4 with block_size = 7
by default. We decreased γ by factor 4 for group 3 in all the experiments. In Figure 3-(a), we show
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that DropBlock outperforms dropout with 1.3% for top-1 accuracy. The scheduled keep_prob makes
DropBlock more robust to the change of keep_prob and adds improvement for the most values of
keep_prob (3-(b)).

With the best keep_prob found in Figure 3, we swept over block_size from 1 to size covering full
feature map. Figure 4 shows applying larger block_size is generally better than applying block_size
of 1. The best DropBlock configuration is to apply block_size = 7 to both groups 3 and 4.

In all configurations, DropBlock and dropout share the similar trend and DropBlock has a large gain
compared to the best dropout result. This shows evidence that the DropBlock is a more effective
regularizer compared to dropout.

DropBlock vs. SpatialDropout. Similar as dropout baseline, we define the SpatialDropout [20]
baseline as applying it on convolution branches only. SpatialDropout is better than dropout but
inferior to DropBlock. In Figure 4, we found SpatialDropout can be too harsh when applying to
high resolution feature map on group 3. DropBlock achieves the best result by dropping block with
constant size on both groups 3 and 4.

Comparison with DropPath. Following ScheduledDropPath [8] we applied scheduled DropPath
on all connections except the skip connections. We trained models with different values for keep_prob
parameter. Also, we trained models where we applied DropPath in all groups and similar to our other
experiments only at group 4 or at group 3 and 4. We achieved best validation accuracy of 77.10%
when we only apply it to group 4 with keep_prob = 0.9.

Comparison with Cutout. We also compared with Cutout [23] which is a data augmentation
method and randomly drops a fixed size block from the input images. Although Cutout improves
accuracy on the CIFAR-10 dataset as suggested by [23], it does not improve the accuracy on the
ImageNet dataset in our experiments.

Comparison with other regularization techniques. We compare DropBlock to data augmentation
and label smoothing, which are two commonly used regularization techniques. In Table 1, DropBlock
has better performance compared to strong data augmentation [27] and label smoothing [28]. The
performance improves when combining DropBlock and label smoothing and train for 330 epochs,
showing the regularization techniques can be complimentary when we train for longer.

4.1.2 DropBlock in AmoebaNet

We also show the effectiveness of DropBlock on a recent AmoebaNet-B architecture which is a
state-of-art architecture, found using evolutionary architecture search [10]. This model has dropout
with keep probability of 0.5 but only on the the final softmax layer.

We apply DropBlock after all batch normalization layers and also in the skip connections of the last
50% of the cells. The resolution of the feature maps in these cells are 21x21 or 11x11 for input image
with the size of 331x331. Based on the experiments in the last section, we used keep_prob of 0.9 and
set block_size = 11 which is the width of the last feature map. DropBlock improves top-1 accuracy
of AmoebaNet-B from 82.25% to 82.52% (Table 2).

Model top-1(%) top-5(%)

AmoebaNet-B (6, 256) 82.25 95.88
AmoebaNet-B (6, 256) + DropBlock 82.52 96.07

Table 2: Top-1 and top-5 validation accuracy of AmoebaNet-B architecture trained on ImageNet.

4.2 Experimental Analysis

DropBlock demonstrates strong empirical results on improving ImageNet classification accuracy
compared to dropout. We hypothesize dropout is insufficient because the contiguous regions in
convolution layers are strongly correlated. Randomly dropping a unit still allows information to
flow through neighboring units. In this section, we conduct an analysis to show DropBlock is more
effective in dropping semantic information. Subsequently, the model regularized by DropBlock is
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Figure 5: ResNet-50 model trained with block_size = 7 and keep_prob = 0.9 has higher accuracy
compared to the ResNet-50 model trained with block_size = 1 and keep_prob = 0.9: (a) when we
apply DropBlock with block_size = 1 at inference with different keep_prob or (b) when we apply
DropBlock with block_size = 7 at inference with different keep_prob. The models are trained and
evaluated with DropBlock at groups 3 and 4.
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Figure 6: Class activation mapping (CAM) [29] for ResNet-50 model trained without DropBlock and
trained with DropBlock with the block_size of 1 or 7. The model trained with DropBlock tends to
focus on several spatially distributed regions.

more robust compared to model regularized by dropout. We study the problem by applying DropBlock
with block_size of 1 and 7 during inference and observing the differences in performance.

DropBlock drops more semantic information. We first took the model trained without any regu-
larization and tested it with DropBlock with block_size = 1 and block_size = 7. The green curves
in Figure 5 show the validation accuracy reduced quickly with decreasing keep_prob during inference.
This suggests DropBlock removes semantic information and makes classification more difficult. The
accuracy drops more quickly with decreasing keep_prob, for block_size = 1 in comparison with
block_size = 7 which suggests DropBlock is more effective to remove semantic information than
dropout.

Model trained with DropBlock is more robust. Next we show that model trained with large block
size, which removes more semantic information, results in stronger regularization. We demonstrate
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the fact by taking model trained with block_size = 7 and applied block_size = 1 during inference
and vice versa. In Figure 5, models trained with block_size = 1 and block_size = 7 are both robust
with block_size = 1 applied during inference. However, the performance of model trained with
block_size = 1 reduced more quickly with decreasing keep_prob when applying block_size = 7
during inference. The results suggest that block_size = 7 is more robust and has the benefit of
block_size = 1 but not vice versa.

DropBlock learns spatially distributed representations. We hypothesize model trained with
DropBlock needs to learn spatially distributed representations because DropBlock is effective in
removing semantic information in a contiguous region. The model regularized by DropBlock should
learn multiple discriminative regions instead of only focusing on one discriminative region. We use
class activation maps (CAM) introduced in [29] to visualize conv5_3 class activations of ResNet-50
on ImageNet validation set. Figure 6 shows the class activations of original model and models
trained with DropBlock with block_size = 1 and block_size = 7. In general, models trained with
DropBlock learn spatially distributed representations that induce high class activations on multiple
regions, whereas model without regularization tends to focus on one or few regions.

4.3 Object Detection in COCO

DropBlock is a generic regularization module for CNNs. In this section, we show DropBlock can
also be applied for training object detector in COCO dataset [30]. We use RetinaNet [24] framework
for the experiments. Unlike an image classifier that predicts single label for an image, RetinaNet runs
convolutionally on multiscale Feature Pyramid Networks (FPNs) [31] to localize and classify objects
in different scales and locations. We followed the model architecture and anchor definition in [24] to
build FPNs and classifier/regressor branches.

Where to apply DropBlock to RetinaNet model. RetinaNet model uses ResNet-FPN as its back-
bone model. For simplicity, we apply DropBlock to ResNet in ResNet-FPN and use the best
keep_prob we found for ImageNet classification training. DropBlock is different from recent work
[32] which learns to drop a structured pattern on features of region proposals.

Training object detector from random initialization. Training object detector from random
initialization has been considered as a challenging task. Recently, a few papers tried to address the
issue using novel model architecture [33], large minibatch size [34], and better normalization layer
[35]. In our experiment, we look at the problem from the model regularization perspective. We
tried DropBlock with keep_prob = 0.9, which is the identical hyperparamters as training image
classification model, and experimented with different block_size. In Table 3, we show that the model
trained from random initialization surpasses ImageNet pre-trained model. Adding DropBlock gives
additional 1.6% AP. The results suggest model regularization is an important ingredient to train object
detector from scratch and DropBlock is an effective regularization approach for object detection.

Model AP AP50 AP75
RetinaNet, fine-tuning from ImageNet 36.5 55.0 39.1
RetinaNet, no DropBlock 36.8 54.6 39.4
RetinaNet, keep_prob = 0.9, block_size = 1 37.9 56.1 40.6
RetinaNet, keep_prob = 0.9, block_size = 3 38.3 56.4 41.2
RetinaNet, keep_prob = 0.9, block_size = 5 38.4 56.4 41.2
RetinaNet, keep_prob = 0.9, block_size = 7 38.2 56.0 40.9

Table 3: Object detection results trained from random initialization in COCO using RetinaNet and
ResNet-50 FPN backbone model.

Implementation details. We use open-source implementation of RetinaNet3 for experiments. The
models were trained on TPU with 64 images in a batch. During training, multiscale jitter was applied
to resize images between scales [512, 768] and then the images were padded or cropped to max
dimension 640. Only single scale image with max dimension 640 was used during testing. The batch

3https://github.com/tensorflow/tpu/tree/master/models/official/retinanet
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normalization layers were applied after all convolution layers, including classifier/regressor branches.
The model was trained using 150 epochs (280k training steps). The initial learning rate 0.08 was
applied for first 120 epochs and decayed 0.1 at 120 and 140 epochs. The model with ImageNet
initialization was trained for 28 epochs with learning decay at 16 and 22 epochs. We used α = 0.25
and γ = 1.5 for focal loss. We used a weight decay of 0.0001 and a momentum of 0.9. The model
was trained on COCO train2017 and evaluated on COCO val2017.

4.4 Semantic Segmentation in PASCAL VOC

We show DropBlock also improves semantic segmentation model. We use PASCAL VOC 2012
dataset for experiments and follow the common practice to train with augmented 10,582 training
images [36] and report mIOU on 1,449 test set images. We adopt open-source RetinaNet implementa-
tion for semantic segmentation. The implementation uses the ResNet-FPN backbone model to extract
multiscale features and attaches fully convolution networks on top to predict segmentation. We use
default hyperparameters in open-source code for training.

Following the experiments for object detection, we study the effect of DropBlock for training model
from random initialization. We trained model started with pre-trained ImageNet model for 45 epochs
and model with random initialization for 500 epochs. We experimented with applying DropBlock to
ResNet-FPN backbone model and fully convolution networks and found apply DropBlock to fully
convolution networks is more effective. Applying DropBlock greatly improves mIOU for training
model from scratch and shrinks performance gap between training from ImageNet pre-trained model
and randomly initialized model.

Model mIOU
fine-tuning from ImageNet 74.6
no DropBlock 47.2
keep_prob = 0.2, block_size = 1 51.0
keep_prob = 0.2, block_size = 4 53.2
keep_prob = 0.2, block_size = 16 53.4

Table 4: Semantic segmentation results trained from random initialization in PASCAL VOC 2012
using ResNet-101 FPN backbone model.

5 Discussion

In this work, we introduce DropBlock to regularize training CNNs. DropBlock is a form of structured
dropout that drops spatially correlated information. We demonstrate DropBlock is a more effective
regularizer compared to dropout in ImageNet classification and COCO detection. DropBlock consis-
tently outperforms dropout in an extensive experiment setup. We conduct an analysis to show that
model trained with DropBlock is more robust and has the benefits of model trained with dropout.
The class activation mapping suggests the model can learn more spatially distributed representations
regularized by DropBlock.

Our experiments show that applying DropBlock in skip connections in addition to the convolution
layers increases the accuracy. Also, gradually increasing number of dropped units during training
leads to better accuracy and more robust to hyperparameter choices.
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