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Abstract

For an autonomous agent to fulfill a wide range of user-specified goals at test time,
it must be able to learn broadly applicable and general-purpose skill repertoires.
Furthermore, to provide the requisite level of generality, these skills must handle
raw sensory input such as images. In this paper, we propose an algorithm that
acquires such general-purpose skills by combining unsupervised representation
learning and reinforcement learning of goal-conditioned policies. Since the partic-
ular goals that might be required at test-time are not known in advance, the agent
performs a self-supervised “practice” phase where it imagines goals and attempts
to achieve them. We learn a visual representation with three distinct purposes: sam-
pling goals for self-supervised practice, providing a structured transformation of
raw sensory inputs, and computing a reward signal for goal reaching. We also pro-
pose a retroactive goal relabeling scheme to further improve the sample-efficiency
of our method. Our off-policy algorithm is efficient enough to learn policies that
operate on raw image observations and goals for a real-world robotic system, and
substantially outperforms prior techniques.

1 Introduction

Reinforcement learning (RL) algorithms hold the promise of allowing autonomous agents, such as
robots, to learn to accomplish arbitrary tasks. However, the standard RL framework involves learning
policies that are specific to individual tasks, which are defined by hand-specified reward functions.
Agents that exist persistently in the world can prepare to solve diverse tasks by setting their own
goals, practicing complex behaviors, and learning about the world around them. In fact, humans
are very proficient at setting abstract goals for themselves, and evidence shows that this behavior is
already present from early infancy [43], albeit with simple goals such as reaching. The behavior and
representation of goals grows more complex over time as they learn how to manipulate objects and
locomote. How can we begin to devise a reinforcement learning system that sets its own goals and
learns from experience with minimal outside intervention and manual engineering?

In this paper, we take a step toward this goal by designing an RL framework that jointly learns
representations of raw sensory inputs and policies that achieve arbitrary goals under this representation
by practicing to reach self-specified random goals during training. To provide for automated and
flexible goal-setting, we must first choose how a general goal can be specified for an agent interacting
with a complex and highly variable environment. Even providing the state of such an environment
to a policy is a challenge. For instance, a task that requires a robot to manipulate various objects
would require a combinatorial representation, reflecting variability in the number and type of objects
in the current scene. Directly using raw sensory signals, such as images, avoids this challenge, but
learning from raw images is substantially harder. In particular, pixel-wise Euclidean distance is
not an effective reward function for visual tasks since distances between images do not correspond
to meaningful distances between states [36, 49]. Furthermore, although end-to-end model-free
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Figure 1: We train a VAE using data generated by our exploration policy (left). We use the VAE for
multiple purposes during training time (middle): to sample goals to train the policy, to embed the
observations into a latent space, and to compute distances in the latent space. During test time (right),
we embed a specified goal observation og into a goal latent zg as input to the policy. Videos of our
method can be found at sites.google.com/site/visualrlwithimaginedgoals

reinforcement learning can handle image observations, this comes at a high cost in sample complexity,
making it difficult to use in the real world.

We propose to address both challenges by incorporating unsupervised representation learning into
goal-conditioned policies. In our method, which is illustrated in Figure 1, a representation of raw
sensory inputs is learned by means of a latent variable model, which in our case is based on the
variational autoencoder (VAE) [19]. This model serves three complementary purposes. First, it
provides a more structured representation of sensory inputs for RL, making it feasible to learn from
images even in the real world. Second, it allows for sampling of new states, which can be used to
set synthetic goals during training to allow the goal-conditioned policy to practice diverse behaviors.
We can also more efficiently utilize samples from the environment by relabeling synthetic goals
in an off-policy RL algorithm, which makes our algorithm substantially more efficient. Third, the
learned representation provides a space where distances are more meaningful than the original space
of observations, and can therefore provide well-shaped reward functions for RL. By learning to reach
random goals sampled from the latent variable model, the goal-conditioned policy learns about the
world and can be used to achieve new, user-specified goals at test-time.

The main contribution of our work is a framework for learning general-purpose goal-conditioned
policies that can achieve goals specified with target observations. We call our method reinforcement
learning with imagined goals (RIG). RIG combines sample-efficient off-policy goal-conditioned
reinforcement learning with unsupervised representation learning. We use representation learning
to acquire a latent distribution that can be used to sample goals for unsupervised practice and
data augmentation, to provide a well-shaped distance function for reinforcement learning, and to
provide a more structured representation for the value function and policy. While several prior
methods, discussed in the following section, have sought to learn goal-conditioned policies, we
can do so with image goals and observations without a manually specified reward signal. Our
experimental evaluation illustrates that our method substantially improves the performance of image-
based reinforcement learning, can effectively learn policies for complex image-based tasks, and can
be used to learn real-world robotic manipulation skills with raw image inputs. Videos of our method
in simulated and real-world environments can be found at https://sites.google.com/site/
visualrlwithimaginedgoals/.

2 Related Work

While prior works on vision-based deep reinforcement learning for robotics can efficiently learn a
variety of behaviors such as grasping [33, 32, 24], pushing [1, 8, 10], navigation [30, 21], and other
manipulation tasks [26, 23, 30], they each make assumptions that limit their applicability to training
general-purpose robots. Levine et al. [23] uses time-varying models, which requires an episodic setup
that makes them difficult to extend to non-episodic and continual learning scenarios. Pinto et al. [33]
proposed a similar approach that uses goal images, but requires instrumented training in simulation.
Lillicrap et al. [26] uses fully model-free training, but does not learn goal-conditioned skills. As we
show in our experiments, this approach is very difficult to extend to the goal-conditioned setting
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with image inputs. Model-based methods that predict images [48, 10, 8, 28] or learn inverse models
[1] can also accommodate various goals, but tend to limit the horizon length due to model drift. To
our knowledge, no prior method uses model-free RL to learn policies conditioned on a single goal
image with sufficient efficiency to train directly on real-world robotic systems, without access to
ground-truth state or reward information during training.

Our method uses a goal-conditioned value function [40] in order to solve more general tasks [45, 18].
To improve the sample-efficiency of our method during off-policy training, we retroactively relabel
samples in the replay buffer with goals sampled from the latent representation. Goal relabeling has
been explored in prior work [18, 2, 37, 25, 35]. Andrychowicz et al. [2] and Levy et al. [25] use goal
relabeling for sparse rewards problems with known goal spaces, restricting the resampled goals to
states encountered along that trajectory, since almost any other goal will have no reward signal. We
sample random goals from our learned latent space to use as replay goals for off-policy Q-learning
rather than restricting ourselves to states seen along the sampled trajectory, enabling substantially
more efficient learning. We use the same goal sampling mechanism for exploration in RL. Goal
setting for policy learning has previously been discussed [3] and recently Péré et al. [31] have also
proposed using unsupervised learning for setting goals for exploration. However, we use a model-free
Q-learning method that operates on raw state observations and actions, allowing us to solve visually
and dynamically complex tasks.

A number of prior works have used unsupervised learning to acquire better representations for RL.
These methods use the learned representation as a substitute for the state for the policy, but require
additional information, such as access to the ground truth reward function based on the true state
during training time [16, 14, 48, 11, 21, 17], expert trajectories [44], human demonstrations [42],
or pre-trained object-detection features [22]. In contrast, we learn to generate goals and use the
learned representation to obtain a reward function for those goals without any of these extra sources
of supervision. Finn et al. [11] combine unsupervised representation learning with reinforcement
learning, but in a framework that trains a policy to reach a single goal. Many prior works have also
focused on learning controllable and disentangled representations [41, 5, 6, 38, 7, 46]. We use a
method based on variational autoencoders, but these prior techniques are complementary to ours and
could be incorporated into our method.

3 Background

Our method combines reinforcement learning with goal-conditioned value functions and unsupervised
representation learning. Here, we briefly review the techniques that we build on in our method.

Goal-conditioned reinforcement learning. In reinforcement learning, the goal is to learn a policy

π(st) = at that maximizes expected return, which we denote as Rt = E[
∑T

i=t γ
(i−t)ri], where

ri = r(si, ai, si+1) and the expectation is under the current policy and environment dynamics. Here,
s ∈ S is a state observation, a ∈ A is an action, and γ is a discount factor. Standard model-free RL
learns policies that achieve a single task. If our aim is instead to obtain a policy that can accomplish a
variety of tasks, we can construct a goal-conditioned policy and reward, and optimize the expected
return with respect to a goal distribution: Eg∼G[Eri,si∼E,ai∼π[R0]], where G is the set of goals and
the reward is also a function of g. A variety of algorithms can learn goal-conditioned policies, but to
enable sample-efficient learning, we focus on algorithms that acquire goal-conditioned Q-functions,
which can be trained off-policy. A goal-conditioned Q-function Q(s, a, g) learns the expected return
for the goal g starting from state s and taking action a. Given a state s, action a, next state s′, goal g,
and correspond reward r, one can train an approximate Q-function parameterized by w by minimizing
the following Bellman error

E(w) =
1

2
||Qw(s, a, g)− (r + γmax

a′
Qw̄(s

′, a′, g))||2 (1)

where w̄ indicates that w̄ is treated as a constant. Crucially, one can optimize this loss using off-policy
data (s, a, s′, g, r) with a standard actor-critic algorithm [26, 13, 27].

Variational Autoencoders. Variational autoencoders (VAEs) have been demonstrated to learn
structured latent representations of high dimensional data [19]. The VAE consists of an encoder qφ,
which maps states to latent distributions, and a decoder pψ , which maps latents to distributions over
states. The encoder and decoder parameters, φ and ψ respectively, are jointly trained to maximize

L(ψ, φ; s(i)) = −βDKL(qφ(z|s
(i))||p(z)) + Eqφ(z|s(i))[log pψ(s

(i) | z)], (2)
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where p(z) is some prior, which we take to be the unit Gaussian, DKL is the Kullback-Leibler
divergence, and β is a hyperparameter that balances the two terms. The use of β values other than one
is sometimes referred to as a β-VAE [15]. The encoder qφ parameterizes the mean and log-variance

diagonal of a Gaussian distribution, qφ(s) = N (µφ(s), σ
2
φ(s)). The decoder pψ parameterizes a

Bernoulli distribution for each pixel value. This parameterization corresponds to training the decoder
with cross-entropy loss on normalized pixel values. Full details of the hyperparameters are in the
Supplementary Material.

4 Goal-Conditioned Policies with Unsupervised Representation Learning

To devise a practical algorithm based on goal-conditioned value functions, we must choose a suitable
goal representation. In the absence of domain knowledge and instrumentation, a general-purpose
choice is to set the goal space G to be the same as the state observations space S . This choice is fully
general as it can be applied to any task, and still permits considerable user control since the user can
choose a “goal state” to set a desired goal for a trained goal-conditioned policy. But when the state
space S corresponds to high-dimensional sensory inputs such as images 1 learning a goal-conditioned
Q-function and policy becomes exceedingly difficult as we illustrate empirically in Section 5.

Our method jointly addresses a number of problems that arise when working with high-dimensional
inputs such as images: sample efficient learning, reward specification, and automated goal-setting.
We address these problems by learning a latent embedding using a β-VAE. We use this latent space
to represent the goal and state and retroactively relabel data with latent goals sampled from the
VAE prior to improve sample efficiency. We also show that distances in the latent space give us a
well-shaped reward function for images. Lastly, we sample from the prior to allow an agent to set
and “practice” reaching its own goal, removing the need for humans to specify new goals during
training time. We next describe the specific components of our method, and summarize our complete
algorithm in Section 4.5.

4.1 Sample-Efficient RL with Learned Representations

One challenging problem with end-to-end approaches for visual RL tasks is that the resulting policy
needs to learn both perception and control. Rather than operating directly on observations, we embed
the state st and goals g into a latent space Z using an encoder e to obtain a latent state zt = e(st)
and latent goal zg = e(g). To learn a representation of the state and goal space, we train a β-VAE by

executing a random policy and collecting state observations, {s(i)}, and optimize Equation (2). We

then use the mean of the encoder as the state encoding, i.e. z = e(s) , µφ(s).

After training the VAE, we train a goal-conditioned Q-function Q(z, a, zg) and corresponding policy
πθ(z, zg) in this latent space. The policy is trained to reach a goal zg using the reward function
discussed in Section 4.2. For the underlying RL algorithm, we use twin delayed deep deterministic
policy gradients (TD3) [13], though any value-based RL algorithm could be used. Note that the
policy (and Q-function) operates completely in the latent space. During test time, to reach a specific
goal state g, we encode the goal zg = e(g) and input this latent goal to the policy.

As the policy improves, it may visit parts of the state space that the VAE was never trained on,
resulting in arbitrary encodings that may not make learning easier. Therefore, in addition to procedure

described above, we fine-tune the VAE using both the randomly generated state observations {s(i)}
and the state observations collected during exploration. We show in Section 8.3 that this additional
training helps the performance of the algorithm.

4.2 Reward Specification

Training the goal-conditioned value function requires defining a goal-conditioned reward r(s, g).
Using Euclidean distances in the space of image pixels provides a poor metric, since similar configu-
rations in the world can be extremely different in image space. In addition to compactly representing
high-dimensional observations, we can utilize our representation to obtain a reward function based

1We make the simplifying assumption that the system is Markovian with respect to the sensory input, and
one could incorporate memory into the state for partially observed tasks.
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on a metric that better reflects the similarity between the state and the goal. One choice for such a
reward is to use the negative Mahalanobis distance in the latent space:

r(s, g) = −||e(s)− e(g)||A = −||z − zg||A,

where the matrix A weights different dimensions in the latent space. This approach has an appealing
interpretation when we set A to be the precision matrix of the VAE encoder, qφ. Since we use a
Gaussian encoder, we have that

r(s, g) = −||z − zg||A ∝
√

log eφ(zg | s) (3)

In other words, minimizing this squared distance in the latent space is equivalent to rewarding
reaching states that maximize the probability of the latent goal zg . In practice, we found that setting
A = I, corresponding to Euclidean distance, performed better than Mahalanobis distance, though its
effect is the same — to bring z close to zg and maximize the probability of the latent goal zg given
the observation. This interpretation would not be possible when using normal autoencoders since
distances are not trained to have any probabilistic meaning. Indeed, we show in Section 5 that using
distances in a normal autoencoder representation often does not result in meaningful behavior.

4.3 Improving Sample Efficiency with Latent Goal Relabeling

To further enable sample-efficient learning in the real world, we use the VAE to relabel goals. Note
that we can optimize Equation (1) using any valid (s, a, s′, g, r) tuple. If we could artificially generate
these tuples, then we could train our entire RL algorithm without collecting any data. Unfortunately,
we do not know the system dynamics, and therefore have to sample transitions (s, a, s′) by interacting
with the world. However, we have the freedom to relabel the goal and reward synthetically. So if we
have a mechanism for generating goals and computing rewards, then given (s, a, s′), we can generate
a new goal g and new reward r(s, a, s′, g) to produce a new tuple (s, a, s′, g, r). By artificially
generating and recomputing rewards, we can convert a single (s, a, s′) transition into potentially
infinitely many valid training datums.

For image-based tasks, this procedure would require generating goal images, an onerous task on its
own. However, our reinforcement learning algorithm operates directly in the latent space for goals
and rewards. So rather than generating goals g, we generate latent goals zg by sampling from the
VAE prior p(z). We then recompute rewards using Equation (3). By retroactively relabeling the goals
and rewards, we obtain much more data to train our value function. This sampling procedure is made
possible by our use of a latent variable model, which is explicitly trained so that sampling from the
latent distribution is straightforward.

In practice, the distribution of latents will not exactly match the prior. To mitigate this distribution
mismatch, we use a fitted prior when sampling from the prior: we fit a diagonal Gaussian to the latent
encodings of the VAE training data, and use this fitted prior in place of the unit Gaussian prior.

Retroactively generating goals is also explored in tabular domains by Kaelbling [18] and in continuous
domains by Andrychowicz et al. [2] using hindsight experience replay (HER). However, HER is
limited to sampling goals seen along a trajectory, which greatly limits the number and diversity of
goals with which one can relabel a given transition. Our final method uses a mixture of the two
strategies: half of the goals are generated from the prior and half from goals use the “future” strategy
described in Andrychowicz et al. [2]. We show in Section 5 that relabeling the goal with samples
from the VAE prior results in significantly better sample-efficiency.

4.4 Automated Goal-Generation for Exploration

If we do not know which particular goals will be provided at test time, we would like our RL agent to
carry out a self-supervised “practice” phase during training, where the algorithm proposes its own
goals, and then practices how to reach them. Since the VAE prior represents a distribution over latent
goals and state observations, we again sample from this distribution to obtain plausible goals. After
sampling a goal latent from the prior zg ∼ p(z), we give this to our policy π(z, zg) to collect data.

4.5 Algorithm Summary

We call the complete algorithm reinforcement learning with imagined goals (RIG) and summarize it
in Algorithm 1. We first collect data with a simple exploration policy, though any exploration strategy
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Algorithm 1 RIG: Reinforcement learning with imagined goals

Require: VAE encoder qφ, VAE decoder pψ , policy
πθ , goal-conditioned value function Qw.

1: Collect D = {s(i)} using exploration policy.
2: Train β-VAE on D by optimizing (2).

3: Fit prior p(z) to latent encodings {µφ(s
(i))}.

4: for n = 0, ..., N − 1 episodes do
5: Sample latent goal from prior zg ∼ p(z).
6: Sample initial state s0 ∼ E.
7: for t = 0, ..., H − 1 steps do
8: Get action at = πθ(e(st), zg) + noise.
9: Get next state st+1 ∼ p(· | st, at).

10: Store (st, at, st+1, zg) into replay buffer R.
11: Sample transition (s, a, s′, zg) ∼ R.

12: Encode z = e(s), z′ = e(s′).
13: (Probability 0.5) replace zg with z′g ∼ p(z).
14: Compute new reward r = −||z′ − zg||.
15: Minimize (1) using (z, a, z′, zg, r).
16: end for
17: for t = 0, ..., H − 1 steps do
18: for i = 0, ..., k − 1 steps do
19: Sample future state shi

, t < hi ≤ H − 1.
20: Store (st, at, st+1, e(shi

)) into R.
21: end for
22: end for
23: Fine-tune β-VAE every K episodes on mixture

of D and R.
24: end for

could be used for this stage, including off-the-shelf exploration bonuses [29, 4] or unsupervised
reinforcement learning methods [9, 12]. Then, we train a VAE latent variable model on state
observations and finetune it over the course of training. We use this latent variable model for multiple
purposes: We sample a latent goal zg from the model and condition the policy on this goal. We embed
all states and goals using the model’s encoder. When we train our goal-conditioned value function,
we resample goals from the prior and compute rewards in the latent space using Equation (3). Any
RL algorithm that trains Q-functions could be used, and we use TD3 [13] in our implementation.

5 Experiments

Our experiments address the following questions:

1. How does our method compare to prior model-free RL algorithms in terms of sample
efficiency and performance, when learning continuous control tasks from images?

2. How critical is each component of our algorithm for efficient learning?
3. Does our method work on tasks where the state space cannot be easily specified ahead of

time, such as tasks that require interaction with variable numbers of objects?
4. Can our method scale to real world vision-based robotic control tasks?

For the first two questions, we evaluate our method against a number of prior algorithms and ablated
versions of our approach on a suite of the following simulated tasks. Visual Reacher: a MuJoCo [47]
environment with a 7-dof Sawyer arm reaching goal positions. The arm is shown the left of Figure
2. The end-effector (EE) is constrained to a 2-dimensional rectangle parallel to a table. The action
controls EE velocity within a maximum velocity. Visual Pusher: a MuJoCo environment with a 7-dof
Sawyer arm and a small puck on a table that the arm must push to a target push. Visual Multi-Object
Pusher: a copy of the Visual Pusher environment with two pucks. Visual Door: a Sawyer arm with a
door it can attempt to open by latching onto the handle. Visual Pick and Place: a Sawyer arm with
a small ball and an additional dimension of control for opening and closing the gripper. Detailed
descriptions of the environments are provided in the Supplementary Material.

Figure 2: (Left) The simulated pusher, door opening, and pick-and-place environments are pictured.
(Right) Test rollouts from our learned policy on the three pushing environments. Each row is one
rollout. The right two columns show a goal image g and its VAE reconstruction ĝ. The images to
their left show frames from a trajectory to reach the given goal.
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Figure 3: Simulation results, final distance to goal vs simulation steps2. RIG (red) consistently
outperforms the baselines, except for the oracle which uses ground truth object state for observations
and rewards. On the hardest tasks, only our method and the oracle discover viable solutions.

Solving these tasks directly from images poses a challenge since the controller must learn both
perception and control. The evaluation metric is the distance of objects (including the arm) to their
respective goals. To evaluate our policy, we set the environment to a sampled goal position, capture
an image, and encode the image to use as the goal. Although we use the ground-truth positions for
evaluation, we do not use the ground-truth positions for training the policies. The only inputs
from the environment that our algorithm receives are the image observations. For Visual Reacher, we
pretrained the VAE with 100 images. For other tasks, we used 10,000 images.

We compare our method with the following prior works. L&R: Lange and Riedmiller [20] trains an
autoencoder to handle images. DSAE: Deep spatial autoencoders [11] learns a spatial autoencoder and
uses guided policy search [23] to achieve a single goal image. HER: Hindsight experience replay [2]
utilizes a sparse reward signal and relabeling trajectories with achieved goals. Oracle: RL with direct
access to state information for observations and rewards.

To our knowledge, no prior work demonstrates policies that can reach a variety of goal images
without access to a true-state reward function, and so we needed to make modifications to make the
comparisons feasible. L&R assumes a reward function from the environment. Since we have no
state-based reward function, we specify the reward function as distance in the autoencoder latent
space. HER does not embed inputs into a latent space but instead operates directly on the input, so we
use pixel-wise mean squared error (MSE) as the metric. DSAE is trained only for a single goal, so we
allow the method to generalize to a variety of test goal images by using a goal-conditioned Q-function.
To make the implementations comparable, we use the same off-policy algorithm, TD3 [13], to train
L&R, HER, and our method. Unlike our method, prior methods do not specify how to select goals
during training, so we favorably give them real images as goals for rollouts, sampled from the same
distribution that we use to test.
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Figure 4: Reward type ablation re-
sults. RIG (red), which uses latent
Euclidean distance, outperforms the
other methods.

We see in Figure 3 that our method can efficiently learn policies
from visual inputs to perform simulated reaching and pushing,
without access to the object state. Our approach substantially
outperforms the prior methods, for which the use of image
goals and observations poses a major challenge. HER struggles
because pixel-wise MSE is hard to optimize. Our latent-space
rewards are much better shaped and allow us to learn more
complex tasks. Finally, our method is close to the state-based
“oracle" method in terms of sample efficiency and performance,
without having any access to object state. Notably, in the
multi-object environment, our method actually outperforms
the oracle, likely because the state-based reward contains local
minima. Overall, these result show that our method is capable
of handling raw image observations much more effectively
than previously proposed goal-conditioned RL methods. Next,

2In all our simulation results, each plot shows a 95% confidence interval of the mean across 5 seeds.
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Figure 7: (Left) Our method compared to the HER baseline and oracle on a real-world visual reaching
task. (Middle) Our robot setup is pictured. (Right) Test rollouts of our learned policy.

we perform ablations to evaluate our contributions in isolation. Results on Visual Pusher are shown
but see the Supplementary Material (section 8) for experiments on all three simulated environments.

Reward Specification Comparison We evaluate how effective distance in the VAE latent space
is for the Visual Pusher task. We keep our method the same, and only change the reward function
that we use to train the goal-conditioned valued function. We include the following methods for
comparison: Latent Distance, which uses the reward used in RIG, i.e. A = I in Equation (3); Log
Probability, which uses the Mahalanobis distance in Equation (3), where A is the precision matrix of
the encoder; and Pixel MSE, which uses mean-squared error (MSE) between state and goal in pixel
space. 3 In Figure 4, we see that latent distance significantly outperforms log probability. We suspect
that small variances of the VAE encoder results in drastically large rewards, making the learning more
difficult. We also see that latent distances results in faster learning when compared to pixel MSE.
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Figure 5: Relabeling ablation.

Relabeling Strategy Comparison As described in section
4.3, our method uses a novel goal relabeling method based
on sampling from the generative model. To isolate how much
our new goal relabeling method contributes to our algorithm,
we vary the resampling strategy while fixing other compo-
nents of our algorithm. The resampling strategies that we
consider are: Future, relabeling the goal for a transition by
sampling uniformly from future states in the trajectory as done
in Andrychowicz et al. [2]; VAE, sampling goals from the VAE
only; RIG, relabeling goals with probability 0.5 from the VAE
and probability 0.5 using the future strategy; and None, no
relabeling. In Figure 5, we see that sampling from the VAE and Future is significantly better than not
relabeling at all. In RIG, we use an equal mixture of the VAE and Future sampling strategies, which
performs best by a large margin. Appendix section 8.1 contains results on all simulated environments,
and section 8.4 considers relabeling strategies with a known goal distribution.
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Figure 6: Training curve for learning
with varying number of objects.

Learning with Variable Numbers of Objects A major ad-
vantage of working directly from pixels is that the policy input
can easily represent combinatorial structure in the environment,
which would be difficult to encode into a fixed-length state
vector even if a perfect perception system were available. For
example, if a robot has to interact with different combinations
and numbers of objects, picking a single MDP state represen-
tation would be challenging, even with access to object poses.
By directly processing images for both the state and the goal,
no modification is needed to handle the combinatorial struc-
ture: the number of pixels always remains the same, regardless
of how many objects are in the scene.

We demonstrate that our method can handle this difficult scenario by evaluating on a task where the
environment, based on the Visual Multi-Object Pusher, randomly contains zero, one, or two objects
in each episode during testing. During training, each episode still always starts with both objects in
the scene, so the experiments tests whether a trained policy can handle variable numbers of objects at
test time. Figure 6 shows that our method can learn to solve this task successfully, without decrease

3To compute the pixel MSE for a sampled latent goal, we decode the goal latent using the VAE decoder, pψ ,
to generate the corresponding goal image.
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Figure 8: (Left) The learning curve for real-world pushing. (Middle) Our robot pushing setup is
pictured, with frames from test rollouts of our learned policy. (Right) Our method compared to the
HER baseline on the real-world visual pushing task. We evaluated the performance of each method
by manually measuring the distance between the goal position of the puck and final position of the
puck for 15 test rollouts, reporting mean and standard deviation.

in performance from the base setting where both objects are present (in Figure 3). Developing and
demonstrating algorithms that solve tasks with varied underlying structure is an important step toward
creating autonomous agents that can handle the diversity of tasks present “in the wild.”

5.1 Visual RL with Physical Robots

RIG is a practical and straightforward algorithm to apply to real physical systems: the efficiency of
off-policy learning with goal relabeling makes training times manageable, while the use of image-
based rewards through the learned representation frees us from the burden of manually design reward
functions, which itself can require hand-engineered perception systems [39]. We trained policies for
visual reaching and pushing on a real-world Sawyer robotic arm, shown in Figure 7. The control
setup matches Visual Reacher and Visual Pusher respectively, meaning that the only input from the
environment consists of camera images.

We see in Figure 7 that our method is applicable to real-world robotic tasks, almost matching the
state-based oracle method and far exceeding the baseline method on the reaching task. Our method
needs just 10,000 samples or about an hour of real-world interaction time to solve visual reaching.

Real-world pushing results are shown in Figure 8. To solve visual pusher, which is more visually
complicated and requires reasoning about the contact between the arm and object, our method requires
about 25,000 samples, which is still a reasonable amount of real-world training time. Note that unlike
previous results, we do not have access to the true puck position during training so for the learning
curve we report test episode returns on the VAE latent distance reward. We see RIG making steady
progress at optimizing the latent distance as learning proceeds.

6 Discussion and Future Work

In this paper, we present a new RL algorithm that can efficiently solve goal-conditioned, vision-based
tasks without access to any ground truth state or reward functions. Our method trains a generative
model that is used for multiple purposes: we embed the state and goals using the encoder; we sample
from the prior to generate goals for exploration; we also sample latents to retroactively relabel goals
and rewards; and we use distances in the latent space for rewards to train a goal-conditioned value
function. We show that these components culminate in a sample efficient algorithm that works
directly from vision. As a result, we are able to apply our method to a variety of simulated visual
tasks, including a variable-object task that cannot be easily represented with a fixed length vector,
as well as real world robotic tasks. Algorithms that can learn in the real world and directly use raw
images can allow a single policy to solve a large and diverse set of tasks, even when these tasks
require distinct internal representations.
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