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Abstract

We consider the problem of multi-objective maximization of monotone sub-
modular functions subject to cardinality constraint, often formulated as
max|A|=k mini∈{1,...,m} fi(A). While it is widely known that greedy methods
work well for a single objective, the problem becomes much harder with multiple
objectives. In fact, Krause et al. (2008) showed that when the number of objectives
m grows as the cardinality k i.e.,m = Ω(k), the problem is inapproximable (unless
P = NP ). On the other hand, when m is constant Chekuri et al. (2010) showed
a randomized (1 − 1/e) − ε approximation with runtime (number of queries to
function oracle) nm/ε

3

.
We focus on finding a fast and practical algorithm that has (asymptotic) approx-
imation guarantees even when m is super constant. We first modify the algo-
rithm of Chekuri et al. (2010) to achieve a (1 − 1/e) − ε approximation for
m = o( k

log3 k
), with ε→ 0 as k →∞. This demonstrates a steep transition from

constant factor approximability to inapproximability around m = Ω(k). Then
using Multiplicative-Weight-Updates (MWU), we find a much faster Õ(n/δ3)
time asymptotic (1 − 1/e)2 − δ approximation. While the above results are all
randomized, we also give a simple deterministic (1− 1/e)− ε approximation with
runtime knm/ε

4

. Finally, we run synthetic experiments using Kronecker graphs
and find that our MWU inspired heuristic outperforms existing heuristics.

1 Introduction

Several well known objectives in combinatorial optimization exhibit two common properties: the
marginal value of any given element is non-negative and it decreases as more and more elements are
selected. The notions of submodularity and monotonicity 1 nicely capture this property, resulting in the
appearance of constrained monotone submodular maximization in a wide and diverse array of modern
applications, including feature selection ([KG05, TCG+09]), network monitoring ([LKG+07]), news
article recommendation ([EAVSG09]), sensor placement and information gathering ([OUS+08,
GKS05, KGGK06, KLG+08]), viral marketing and influence maximization ([KKT03, HK16]),
document summarization ([LB11]) and crowd teaching ([SB14]).

In this paper, we are interested in scenarios where multiple objectives, all monotone submodular, need
to be simultaneously maximized subject to a cardinality constraint. This problem has an established
line of work in both machine learning ([KMGG08]) and the theory community ([CVZ10]). Broadly
speaking, there are two ways in which this paradigm has been applied:

1A set function f : 2N → R on the ground set N is called submodular when f(A+ a)− f(A) ≤ f(B +
a) − f(B) for all B ⊆ A ⊆ N and a ∈ N \ A.. The function is monotone if f(B) ≤ f(A) for all B ⊆ A.
We assume f(∅) = 0, then due to monotonicity we have that f is non-negative.
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When there are several natural criteria that need to be simultaneously optimized: such as in
network monitoring, sensor placement and information gathering [OUS+08, LKG+07, KLG+08,
KMGG08]. For example in the problem of intrusion detection [OUS+08], one usually wants to
maximize the likelihood of detection while also minimizing the time until intrusion is detected, and
the population affected by intrusion. The first objective is often monotone submodular and the latter
objectives are monotonically decreasing supermodular functions [LKG+07, KLG+08]. Therefore,
the problem is often formulated as an instance of cardinality constrained maximization with a small
number of submodular objectives.

When looking for solutions robust to the uncertainty in objective: such as in feature selection
[KMGG08, GR06], variable selection and experimental design [KMGG08], robust influence maxi-
mization [HK16]. In these cases, there is often inherently just a single submodular objective which is
highly prone to uncertainty either due to dependence on a parameter that is estimated from data, or
due to multiple possible scenarios that each give rise to a different objective. Therefore, one often
seeks to optimize over the worst case realization of the uncertain objective, resulting in an instance of
multi-objective submodular maximization. In some applications the number of objectives is given by
the problem structure and can be larger even than the cardinality parameter. However, in applications
such as robust influence maximization, variable selection and experimental design, the number of
objectives is a design choice that trades off optimality with robustness.

1.1 Related Work

The problem of maximizing a monotone submodular function subject to a cardinality constraint,

P0 := max
A⊆N,|A|≤k

f(A),

goes back to the work of [NWF78, NW78], where they showed that the greedy algorithm gives a
guarantee of (1 − 1/e) and this is best possible in the value-oracle model. Later, [Fei98] showed
that this is also the best possible approximation unless P=NP. While this settled the hardness and
approximability of the problem, finding faster approximations remained an open line of inquiry.
Notably, [BV14] found a faster algorithm for P0 that improved the quadraticO(nk) query complexity
of the classical greedy algorithm to nearly linear complexity, by trading off on the approximation
guarantee. This was later improved by [MBK+15].

For the more general problem maxA∈I f(A), where I is the collection of independent sets of a
matroid; [CCPV11, Von08] in a breakthrough, achieved a (1−1/e) approximation by (approximately)
maximizing the multilinear extension of submodular functions, followed by suitable rounding. Based
on this framework, tremendous progress was made over the last decade for a variety of different
settings [CCPV11, Von08, FNS11, Von13, VCZ11, CVZ10, DV12].

In the multi-objective setting, [KMGG08] amalgamated various applications and formally introduced
the following problem,

P1 = max
A⊆N,|A|≤k

min
i∈{1,2,...,m}

fi(A),

where fi(.) is monotone submodular for every i. They call this the Robust Submodular Observation
Selection (RSOS) problem and show that in general the problem is inapproximable unless P = NP .
Consequently, they proceeded to give a bi-criterion approximation algorithm, called SATURATE,
which achieves the optimal answer by violating the cardinality constraint. Note that their inapprox-
imability result only holds when m = Ω(k). Another bi-criterion approximation was given more
recently in [CLSS17].

On the other hand, [CVZ10] found a randomized (1− 1/e)− ε approximation for constant m in the
more general case of matroid constraint, as an application of a new technique for rounding over a
matroid polytope, called swap rounding. The runtime scales as O(nm/ε

3

+mn8) 2. Note, [CVZ10]
consider a different but equivalent formulation of the problem that stems from the influential paper
on multi-objective optimization [PY00]. The alternative formulation, which we introduce in Section
2, is the reason we call this a multi-objective maximization problem (same as [CVZ10]). For the
special case of cardinality constraint (which will be our focus here), [OSU18] recently showed that
the greedy algorithm can be generalized to achieve a deterministic 1− 1/e− ε approximation for the

2The n8 term could potentially be improved to n5 by leveraging subsequent work [BV14, FW14].
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special case of bi-objective maximization. Their runtime scales as n1+1/ε and ε ≤ 1/2. To the best
of our knowledge, when m = o(k) no constant factor approximation algorithms or inapproximability
results were known prior to this work.

1.2 Our Contributions

Our focus here is on the regime m = o(k). This setting is essential to understanding the approx-
imability of the problem for super-constant m and includes several of the applications we referred
to earlier. For instance, in network monitoring and sensor placement, the number of objectives is
usually a small constant ([KMGG08, LKG+07]). For robust influence maximization, the number of
objectives depends on the underlying uncertainty but is often small ([HK16]). And in settings like
variable selection and experimental design ([KMGG08]), where the number of objectives considered
is a design choice. We show three algorithmic results with asymptotic approximation guarantees for
m = o(k).

1. Asymptotically optimal approximation algorithm: We give a (1− 1/e− ε)(1− m
kε3 ) approx-

imation, which for m = o
(

k
log3 k

)
and ε = min{ 1

8 lnm ,
4
√

m
k } tends to 1 − 1/e as k → ∞. The

algorithm is randomized and outputs such an approximation w.h.p. Observe that this implies a
steep transition around m, due to the inapproximability result (to within any non-trivial factor) for
m = Ω(k).

We obtain this via extending the algorithm of [CVZ10], which relies on the continuous greedy
approach, resulting in a runtime of Õ(mn8). Note that there is no ε dependence in the runtime, unlike
the result from [CVZ10]. The key idea behind the result is quite simple, and relies on exploiting the
fact that we are dealing with a cardinality constraint, far more structured than matroids.

2. Fast and practical approximation algorithm: In practice, n can range from tens of thousands
to millions ([OUS+08, LKG+07]), which makes the above runtime intractable. To this end, we
develop a fast O( nδ3 logm log n

δ ) time (1 − 1/e)2(1 −m/kε3) − ε − δ approximation. Under the
same asymptotic conditions as above, the guarantee simplifies to (1− 1/e)2 − δ. We achieve this via
the Multiplicative-Weight-Updates (MWU) framework, which replaces the bottleneck continuous
greedy process. This costs us another factor of (1− 1/e) in the guarantee but allows us to leverage
the runtime improvements for P0 achieved in [BV14, MBK+15].

MWU has proven to be a vital tool in the past few decades ([GK94, AK07, Bie06, Fle00, GK04,
GK07, KY07, You95, You01, PST91, AHK12]). Linear functions and constraints have been the
primary setting of interest in these works, but recent applications have shown its usefulness when
considering non-linear and in particular submodular objectives ([AG12, CJV15]). Unlike these recent
applications, we instead apply the MWU framework in vein of the Plotkin-Shmoys-Tardos scheme
for linear programming ([PST91]), essentially showing that the non-linearity only costs us a another
factor of (1−1/e) in the guarantee and yields a nearly linear time algorithm. Independently, [CLSS17]
applied the MWU framework in a similar manner and gave a new bi-criterion approximation. We
further discuss how our result differs from theirs in Section 3.2.

3. Finding a deterministic approximation for smallm: While the above results are all randomized,
we also show a simple greedy based deterministic 1− 1/e− ε approximation with runtime knm/ε

4

.
This follows by establishing an upper bound on the increase in optimal solution value as a function of
cardinality k, which also resolves a weaker version of a conjecture posed in [OSU18].

Outline: We start with definitions and preliminaries in Section 2, where we also review relevant
parts of the algorithm in [CVZ10] that are essential for understanding the results here. In Section 3,
we state and prove the main results. Since the guarantees we present are asymptotic and technically
converge to the constant factors indicated as k becomes large, in Section 4 we test the performance of
a heuristic closely inspired by our MWU based algorithm on Kronecker graphs [LCK+10] of various
sizes and find improved performance over previous heuristics even for small k and large m.
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2 Preliminaries

2.1 Definitions & review

We work with a ground set N of n elements and recall that we use P0 to denote the single objective
(classical) problem. [NWF78, NW78] showed that the natural greedy algorithm for P0 summarized
as, starting with ∅, at each step add to the current set an element which adds the maximum marginal
value until k elements are chosen, achieves a guarantee of 1−1/e for P0 and that this is best possible.
Formally, given set A the marginal increase in value of function f due to inclusion of set X is given
by, f(X|A) = f(A ∪X)− f(A).

We use the notation xS for the support vector of a set S (1 along dimension i if i ∈ S and 0 otherwise).
We also use the short hand |x| to denote the `1 norm of x. Given f : 2N → R, recall that its multilinear
extension over x = (x1, . . . , xn) ∈ [0, 1]n is defined as, F (x) =

∑
S⊆N f(S)

∏
i∈S xi

∏
j 6∈S(1−

xj). This function acts as a natural replacement for the original function f in the continuous greedy
algorithm ([CCPV11]). Like the greedy algorithm, the continuous version always moves in a feasible
direction that best increases the value of function F . While evaluating the exact value of this
function is naturally hard in general, for the purpose of using this function in optimization algorithms,
approximations obtained using a sampling based oracle suffice ([BV14, CVZ10, CCPV11]). Given
two vectors x,y ∈ [0, 1]n, let x∨y denote the component wise maximum. Then we define marginals
for this function as, F (x|y) = F (x ∨ y)− F (y).

Now, we briefly discuss another formulation of the multi-objective maximization problem, call it P2,
introduced in [CVZ10]. In P2 we are given a target value Vi (positive real) with each function fi
and the goal is to find a set S∗ of size at most k, such that fi(S∗) ≥ Vi, ∀i ∈ {1, . . . ,m} or certify
that no S∗ exists. More feasibly one aims to efficiently find a set S ∈ I such that fi(S) ≥ αVi for
all i and some factor α, or certify that there is no set S∗ such that fi(S∗) ≥ Vi, ∀i. Observe that
w.l.o.g. we can assume Vi = 1,∀i (since we can consider functions fi(.)/Vi instead) and therefore
P2 is equivalent to the decision version of P1: Given t > 0, find a set S∗ of size at most k such that
mini fi(S

∗) ≥ t, or give a certificate of infeasibility.

When considering formulation P2, since we can always consider the modified submodular objectives
min{fi(.), Vi}, we w.l.o.g. assume that fi(S) ≤ Vi for every set S and every function fi. Finally,
for both P1, P2 we use Sk to denote an optimal/feasible set (optimal for P1, and feasible for P2) to
the problem and OPTk to denote the optimal solution value for formulation P1. We now give an
overview of the algorithm from [CVZ10] which is based on P2. To simplify the description we focus
on cardinality constraint, even though it is designed more generally for matroid constraint. We refer
to it as Algorithm 1 and it has three stages. Recall, the algorithm runs in time O(nm/ε

3

+mn8).

Stage 1: Intuitively, this is a pre-processing stage with the purpose of picking a small initial set
consisting of elements with ’large’ marginal values, i.e. marginal value at least ε3Vi for some function
fi. This is necessary for technical reasons due to the rounding procedure in Stage 3.

Given a set S of size k, fix a function fi and index elements in S = {s1, . . . , sk} in the or-
der in which the greedy algorithm would pick them. There are at most 1/ε3 elements such
that fi(sj |{s1, . . . , sj−1}) ≥ ε3Vi, since otherwise by monotonicity fi(S) > Vi (violating our
w.l.o.g. assumption that fi(S) ≤ Vi ∀i). In fact, due to decreasing marginal values we have,
fi(sj |{s1, . . . , sj−1}) < ε3Vi for every j > 1/ε3. Therefore, we focus on sets of size ≤ m/ε3

(at most 1/ε3 elements for each function) to find an initial set such that the remaining elements have
marginal value ≤ ε3Vi for fi, for every i. In particular, one can try all possible initial sets of this
size (i.e. run subsequent stages with different starting sets), leading to the nm/ε

3

term in the runtime.
Stages 2,3 have runtime polynomial in m (in fact Stage 3 has runtime independent of m), hence Stage
1 is really the bottleneck. It is not obvious at all if one can do better than brute force enumeration
over all possible starting sets and still retain the approximation guarantee, since the final solution
must be an independent set of a matroid. However, as we show later, for cardinality constraints one
can easily avoid enumeration.

Stage 2: Given a starting set S from stage one, this stage works with the ground set N − S and runs
the continuous greedy algorithm. If a feasible set Sk exists for the problem, then for the right starting
set S1 ∈ Sk, this stage outputs a fractional point x(k1) ∈ [0, 1]n with |x(k1)| = k1 = k − |S| such
that Fi(x(k1)|xN−S) ≥ (1 − 1/e − ε)(Vi − fi(S1)) for every i, where ε = 1/Ω(k). The stage is
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computationally expensive and takes time Õ(mn8). We refer the interested reader to [CVZ10] for
further details (which will not be necessary for subsequent discussion).

Stage 3: For the right starting set S1 (if one exists), Stage 2 successfully outputs a point x(k1). Stage
3 now follows a random process that converts x(k1) into a set S2 of size k1 such that, S2 ∈ N − S1

and fi(S1 ∪S2) ≥ (1− 1/e)(1− ε)Vi,∀i as long as ε < 1/8 lnm. The rounding procedure is called
swap rounding and we include a specialized version of the formal lemma below.
Lemma 1. ([CVZ10] Theorem 1.4, Theorem 7.2) Given m monotone submodular functions fi(.)
with the maximum value of singletons in [0, ε3Vi] for every i; a fractional point x and ε < 1

8γ lnm .
Swap Rounding yields a set R with cardinality |x|, such that,∑

i

Pr[fi(R) < (1− ε)Fi(x)] < me−1/8ε < 1/mγ−1.

Remark: For any γ > 1, the above can be converted to a result w.h.p. by standard repetition. Also
this is a simplified version of the matroid based result in [CVZ10].

3 Main Results

3.1 Asymptotic (1− 1/e) approximation for m = o
(

k
log3 k

)
We replace the enumeration in Stage 1 with a single starting set, obtained by scanning once over
the ground set. The main idea is simply that for the cardinality constraint case, any starting set that
fulfills the Stage 3 requirement of small marginals will be acceptable (not true for general matroids).

New Stage 1: Start with S1 = ∅ and pass over all elements once in arbitrary order. For each element
e, add it to S1 if for some i, fi(e|S1) ≥ ε3Vi. Note that we add at most m/ε3 elements (at most
1/ε3 for each function). When the subroutine terminates, for every remaining element e ∈ N\S1,
fi(e|S1) < ε3Vi,∀i (as required by Lemma 1). Let k1 = k − |S1| and note k1 ≥ k −m/ε3.

Stage 2 remains the same as Algorithm 1 and outputs a fractional point x(k1) with |x(k1)| = k1.
Using basic properties of the multilinear extension and the continuous greedy framework we show
for ε′ = 1/Ω(k),

Fi(x(k1)|xS1
) ≥ k1

k
(1− 1/e− ε′)(Vi − fi(S1))∀i. (1)

The details are deferred to the supplementary material. Stage 3 rounds x(k1) to S2 of size k1, and
final output is S1 ∪ S2.
Theorem 2. For ε = min{ 1

8 lnm ,
4
√

m
k } we have, fi(S1 ∪S2) ≥ (1− ε)(1− 1/e)(1−m/kε3)Vi ∀i

with constant probability. For m = o
(
k/ log3 k

)
, the guarantee approaches (1−1/e) asymptotically

and the algorithm makes Õ(mn8) queries.

Proof. From (1) and applying Lemma 1 we have, fi(S2|S1) ≥ (1−ε)(1−1/e−ε′)(1−m/kε3)(Vi−
fi(S1)),∀i. Therefore, fi(S1∪S2) ≥ (1−ε)(1−1/e−ε′)(1−m/kε3)Vi,∀i. To refine the guarantee,
we choose ε = min{ 1

8 lnm ,
4
√

m
k }, where the 1

8 lnm is due to Lemma 1 and the 4
√

m
k term is to balance

ε and m/kε3. Also ε′ = 1/Ω(k) therefore, the resulting guarantee becomes (1 − 1/e)(1 − h(k)),
where the function h(k)→ 0 as k →∞, so long as m = o

(
k

log3 k

)
.

Note that the runtime is now independent of ε. The first stage makes O(mn) oracle queries, the
second stage runs the continuous greedy algorithm on all functions simultaneously and makes Õ(n8)
queries to each function oracle, contributing O(mn8) to the runtime. Stage 2 results in a fractional
solution that can be written as a convex combination of O(nk2) sets of cardinality k each (bases) (ref.
Appendix A in [CCPV11]). For cardinality constraint, swap rounding can merge two bases in O(k)
time hence, the last stage takes time O(nk3).

3.2 Fast, asymptotic (1− 1/e)2 − δ approximation for m = o
(

k
log3 k

)
While the previous algorithm achieves the best possible asymptotic guarantee, it is infeasible to use
in practice. The main underlying issue was our usage of the continuous greedy algorithm in Stage 2
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which has runtime Õ(mn8), but the flexibility offered by continuous greedy was key to maximizing
the multilinear extensions of all functions at once. To improve the runtime we avoid continuous
greedy and find an alternative in Multiplicative-Weight-Updates (MWU) instead. MWU allows us to
combine multiple submodular objectives together into a single submodular objective and utilize fast
algorithms for P0 at every step.

The algorithm consists of 3 stages as before. Stage 1 remains the same as the New Stage 1 introduced
in the previous section. Let S1 be the output of this stage as before. Stage 2 is replaced with a fast
MWU based subroutine that runs for T = O( lnm

δ2 ) rounds and solves an instance of SO during
each round. Here δ is an artifact of MWU and manifests as a subtractive term in the approximation
guarantee. The currently fastest algorithm for SO, in [MBK+15], has runtime O(n log 1

δ′ ) and
an expected guarantee of (1 − 1/e) − δ′. However, the slightly slower, but still nearly linear
time O( nδ′ log n

δ′ ) thresholding algorithm in [BV14], has (the usual) deterministic guarantee of
(1− 1/e)− δ′. Both of these are known to perform well in practice and using either would lead to a
runtime of T × Õ(n/δ) = Õ( nδ3 ), which is a vast improvement over the previous algorithm.

Now, fix some algorithm A for P0 with guarantee α, and let A(f, k) denote the set it outputs given
monotone submodular function f and cardinality constraint k as input. Note that α can be as large as
1− 1/e, and we have k1 = k − |S1| as before. Then the new Stage 2 is,

Algorithm 2 Stage 2: MWU

1: Input: δ, T = 2 lnm
δ2 , λ1

i = 1/m, f̃i(.) = fi(.|S1)
Vi−fi(S1)

2: while 1 ≤ t ≤ T do gt(.) =
∑m
i=1 λ

t
if̃i(.)

3: Xt = A(gt, k1)

4: mt
i = f̃i(X

t)− α
5: λt+1

i = λti(1− δmt
i)

6: t = t+ 1
7: Output: x2 = 1

T

∑T
t=1X

t

The point x2 obtained above is rounded to a set S2 in Stage 3 (which remains unchanged). The final
output is S1 ∪ S2. Note that by abuse of notation we used the sets Xt to also denote the respective
support vectors. We continue to use Xt and xXt interchangeably in the below.

This application of MWU is unlike [AG12, CJV15], where broadly speaking the MWU framework
is applied in a novel way to determine how an individual element is picked (or how a direction
for movement is chosen in case of continuous greedy). In contrast, we use standard algorithms
for P0 and pick an entire set before changing weights. Also, [CJV15] uses MWU along with the
continuous greedy framework to tackle harder settings, but for our setting using the continuous greedy
framework eliminates the need for MWU altogether and in fact, we use MWU as a replacement for
continuous greedy. Subsequent to our work we discovered a resembling application of MWU in
[CLSS17]. Their application differs from Stage 2 above only in minor details, but unlike our result
they give a bi-criterion approximation where the output is a set S of cardinality up to k logm

V ε2 such
that fi(S) ≥ (1− 1/e− 2ε)V .

Now, consider the following intuitive schema. We would like to find a set X of size k such that
fi(X) ≥ αVi for every i. While this seems hard, consider the combination

∑
i λifi(.), which is also

monotone submodular for non-negative λi. We can easily find a set Xλ such that
∑
i λifi(Xλ) ≥∑

i λiVi, since this is a single objective problem and we have fast approximations for P0. However,
for a fixed set of scalar weights λi, solving the P0 problem instance need not give a set that has
sufficient value for every individual function fi(.). This is where MWU comes into the picture.
We start with uniform weights for functions, solve an instance of P0 to get a set X1. Then we
change weights to undermine the functions for which fi(X1) was closer to the target value and
stress more on functions for which fi(X1) was small, and repeat now with new weights. After
running many rounds of this, we have a collection of sets Xt for t ∈ {1, . . . , T}. Using tricks
from standard MWU analysis ([AHK12]) along with submodularity and monotonicity, we show that∑
t
fi(X

t|S1)
T ' (1− 1/e)(Vi − fi(S1)). Thus far, this resembles how MWU has been used in the

literature for linear objectives, for instance the Plotkin-Shmoys-Tardos framework for solving LPs.
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However, a new issue now arises due to the non-linearity of functions fi. As an example, suppose
that by some coincidence x2 = 1

T

∑T
t=1X

t turns out to be a binary vector, so we easily obtain the
set S2 from x2. We want to lower bound fi(S2|S1), and while we have a good lower bound on∑
t
fi(X

t|S1)
T , it is unclear how the two quantities are related. More generally, we would like to show

that Fi(x2|xS1) ≥ β
∑
t
fi(X

t|S1)
T and this would then give us a βα = β(1− 1/e) approximation

using Lemma 1. Indeed, we show that β ≥ (1− 1/e), resulting in a (1− 1/e)2 approximation. In
the lemmas that follow, we state this more concretely (proofs deferred to supplementary material).
Lemma 3. gt(Xt) ≥ k1

k α
∑
i λ

t
i,∀t.

Lemma 4. ∑
t f̃i(X

t)

T
≥ k1

k
(1− 1/e)− δ ,∀i.

Lemma 5. Given monotone submodular function f , its multilinear extension F , sets Xt for t ∈
{1, . . . , T}, and a point x =

∑
tX

t/T , we have,

F (x) ≥ (1− 1/e)
1

T

T∑
t=1

f(Xt).

Theorem 6. For ε = min{ 1
8 lnm ,

4
√

m
k }, the algorithm makes O( nδ3 logm log n

δ ) queries, and with
constant probability outputs a feasible (1−ε)(1−1/e)2(1− m

kε3 )−δ approximate set. Asymptotically,
(1− 1/e)2 − δ approximate for m = o

(
k/ log3 k

)
.

Proof. Combining Lemmas 4 & 5 we have, F̃i(x2) ≥ (1− 1/e)
∑

t f̃i(X
t)

T ≥ k1
k (1− 1/e)2 − δ ,∀i.

The asymptotic result follows just as in Theorem 2. For runtime, note that Stage 1 takes time O(n).
Stage 2 runs an instance of A(.), T times, leading to an upper bound of O((nδ log n

δ ) × logm
δ2 ) =

O( nδ3 logm log n
δ ), if we use the thresholding algorithm in [BV14] (at the cost of a multiplicative

factor of (1− δ) in the approximation guarantee). Finally, swap rounding proceeds in T rounds and
each round takes O(k) time, leading to total runtime O( kδ2 logm) for Stage 3. Combining all three
we get a runtime of O( nδ3 logm log n

δ ).

3.3 Variation in optimal solution value and derandomization

Consider the problem P0 with cardinality constraint k. Given an optimal solution Sk with value
OPTk for the problem, it is not difficult to see that for arbitrary k′ ≤ k, there is a subset Sk′ ⊆ Sk
of size k′, such that f(Sk′) ≥ k′

k OPTk. For instance, indexing the elements in Sk using the
greedy algorithm, and choosing the set given by the first k′ elements gives such a set. This implies
OPTk′ ≥ k′

k OPTk, and the bound is easily seen to be tight.

This raises a natural question: Can we generalize this bound on variation of optimal solution value
with varying k, for multi-objective maximization? A priori, this isn’t obvious even for modular
functions. In particular, note that indexing elements in order they are picked by the greedy algorithm
doesn’t suffice since there are many functions and we need to balance values amongst all. We show
that one can indeed derive such a bound (proof in supplementary material).
Lemma 7. Given that there exists a set Sk such that fi(Sk) ≥ Vi,∀i and ε < 1

8 lnm . For every
k′ ∈ [m/ε3, k], there exists Sk′ ⊆ Sk of size k′, such that,

fi(Sk′) ≥ (1− ε)
(k′ −m/ε3
k −m/ε3

)
Vi,∀i.

Conjecture in [OSU18]: Note that this resolves a slightly weaker version of the conjecture in
[OSU18] for constant m. The original conjecture states that for constant m and every k′ ≥ m,
there exists a set S of size k′, such that fi(S) ≥ k′−Θ(1)

k Vi,∀i. Asymptotically, both k′−m/ε3
k−m/ε3

and k′−Θ(1)
k tend to k′

k . This implies that for large enough k′, we can choose sets of size k′ (k′-
tuples) at each step to get a deterministic (asymptotically) (1− 1/e)− ε approximation with runtime
O(knm/ε

4

) for the multi-objective maximization problem, when m is constant (all previously known
approximation algorithms, as well as the ones presented earlier, are randomized). We defer the proof
to supplementary material.
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Theorem 8. For k′ = m
ε4 , choosing k′-tuples greedily w.r.t. h(.) = mini fi(.) is asymptotically

(1− 1/e)(1− 2ε) approximate, while making knm/ε
4

queries.

4 Experiments on Kronecker Graphs

We choose synthetic experiments where we can control the parameters to see how the algorithm
performs in various scenarios, esp. since we would like to test how the MWU algorithm performs
for small values of k and m = Ω(k). We work with formulation P1 of the problem and consider a
multi-objective version of the max-k-cover problem on graphs. Random graphs for our experiments
were generated using the Kronecker graph framework introduced in [LCK+10]. These graphs exhibit
several natural properties and are considered a good approximation for real networks (esp. social
networks [HK16]).

We compare three algorithms: (i) A baseline greedy heuristic, labeled GREEDY, which focuses on one
objective at a time and successively picks k/m elements greedily w.r.t. each function (formally stated
in supplementary material). (ii) A bi-criterion approximation called SATURATE from [KMGG08],
to the best of our knowledge this is considered state-of-the-art for the problem. (iii) We compare these
algorithms to a heuristic inspired by our MWU algorithm. This heuristic differs from the algorithm
discussed earlier in two ways. Firstly, we eliminate Stage 1 which was key for technical analysis
but in practice makes the algorithm perform similar to GREEDY. Second, instead of simply using
the the swap rounded set S2, we output the best set out of {X1, . . . , XT } and S2. Also, for both
SATURATE and MWU we estimate target value t using binary search and consider capped functions
min{fi(.), t}. Also, for the MWU stage, we tested δ = 0.5 or 0.2.

Algorithm 3 GREEDY
1: Input: k,m, fi(.) for i ∈ [m]
2: S = ∅, i = 1
3: while |S| ≤ k − 1 do
4: S = S + arg maxx∈N−S fi(x|S)
5: i = i+ 1 mod m+ 1
6: Output: S

Algorithm 4 SATURATE
1: Input: k, t, f1, . . . , fm and set A = ∅
2: g(.) =

∑
i min{fi(.), t}

3: while |A| < k do A = A+ argmax
x∈N−A

g(x|A)

4: Output: A

We pick Kronecker graphs of sizes n ∈ {64, 512, 1024} with random initiator matrix 3 and for each
n, we test for m ∈ {10, 50, 100}. Note that each graph here represents an objective, so for a fixed
n, we generate m Kronecker graphs to get m max-cover objectives. For each setting of n,m we
evaluate the solution value for the heuristics as k increases and show the average performance over
30 trials for each setting. All experiments were done using MATLAB.

3To generate a Kronecker graph one needs a small initiator matrix. Using [LCK+10] as a guideline we use
random matrices of size 2× 2, each entry chosen uniformly randomly (and independently) from [0, 1]. Matrices
with sum of entries smaller than 1 are discarded to avoid highly disconnected graphs.
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Figure 1: Plots for graphs of size 64. Number of objectives increases from left to right. The X axis
is the cardinality parameter k and Y axis is difference between # vertices covered by MWU and
SATURATE minus the # vertices covered by GREEDY for the same k. MWU outperforms the other
algorithms in all cases, with a max. gain (on SATURATE) of 9.80% for m = 10, 12.14% for m = 50
and 16.12% for m = 100.

Figure 2: Plots for graphs of size 512. MWU outperforms SATURATE in all cases with a max. gain
(on SATURATE) of 7.95% for m = 10, 10.08% for m = 50 and 10.01% for m = 100.

Figure 3: Plots for graphs of size 1024. MWU outperforms SATURATE in all cases, with max. gain
(on SATURATE) of 6.89% for m = 10, 5.02% for m = 50 and 7.4% for m = 100.

5 Open Problems

A natural open question here is whether one can achieve similar approximations for a general matroid
constraint. Additionally, it also of interest to ask if there are fast algorithms with guarantee closer
to 1− 1/e, in contrast to the guarantee of (1− 1/e)2 shown here. Further, it is unclear if one can
extend the results right up to m = o(k).
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