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Abstract

We design a stochastic algorithm to find ε-approximate local minima of any
smooth nonconvex function in rate O(ε−3.25), with only oracle access to stochas-
tic gradients. The best result before this work was O(ε−4) by stochastic gradient
descent (SGD).2

1 Introduction

In diverse world of deep learning research has given rise to numerous architectures for neural net-
works (convolutional ones, long short term memory ones, etc). However, to this date, the underlying
training algorithms for neural networks are still stochastic gradient descent (SGD) and its heuristic
variants. In this paper, we address the problem of designing a new algorithm that has provably faster
running time than the best known result for SGD.

Mathematically, we study the problem of online stochastic nonconvex optimization:

minx∈Rd

{
f(x) := Ei[fi(x)] = 1

n

∑n
i=1 fi(x)

}
(1.1)

where both f(·) and each fi(·) can be nonconvex. We want to study
online algorithms to find appx. local minimum of f(x).

Here, we say an algorithm is online if its complexity is independent of n. This tackles the big-data
scenarios when n is extremely large or even infinite.3

Nonconvex optimization arises prominently in large-scale machine learning. Most notably, train-
ing deep neural networks corresponds to minimizing f(x) of this average structure: each training
sample i corresponds to one loss function fi(·) in the summation. This average structure allows
one to perform stochastic gradient descent (SGD) which uses a random ∇fi(x) —corresponding to
computing backpropagation once— to approximate∇f(x) and performs descent updates.

The standard goal of nonconvex optimization with provable guarantee is to find approximate local
minima. This is not only because finding the global one is NP-hard, but also because there exist rich
literature on heuristics for turning a local-minima finding algorithm into a global one. This includes
random seeding, graduated optimization [25] and others. Therefore, faster algorithms for finding
approximate local minima translate into faster heuristic algorithms for finding global minimum.

On a separate note, experiments [16, 17, 24] suggest that fast convergence to approximate local
minima may be sufficient for training neural nets, while convergence to stationary points (i.e., points
that may be saddle points) is not. In other words, we need to avoid saddle points.
∗The full version of this paper can be found on https://arxiv.org/abs/1708.08694.
2When this manuscript first appeared online, the best rate was T = O(ε−4) by SGD. Several followups

appeared after this paper. This includes stochastic cubic regularization [44] which gives T = O(ε−3.5), and
Neon+SCSG [10, 46] which gives T = O(ε−3.333). These rates are worse than T = O(ε−3.25).

3All of our results in this paper apply to the case when n is infinite, meaning f(x) = Ei[fi(x)], because we
focus on online methods. However, we still introduce n to simplify notations.
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Figure 1: Local minimum (left), saddle point (right) and its negative-curvature direction.

1.1 Classical Approach: Escaping Saddle Points Using Random Perturbation

One natural way to avoid saddle points is to use randomness to escape from it, whenever we meet
one. For instance, Ge et al. [22] showed, by injecting random perturbation, SGD will not be stuck
in saddle points: whenever SGD moves into a saddle point, randomness shall help it escape. This
partially explains why SGD performs well in deep learning.4 Jin et al. [27] showed, equipped with
random perturbation, full gradient descent (GD) also escapes from saddle points. Being easy to
implement, however, we raise two main efficiency issues regarding this classical approach:

• Issue 1. If we want to escape from saddle points, is random perturbation the only way? Moving
in a random direction is “blind” to the Hessian information of the function, and thus can we
escape from saddle points faster?
• Issue 2. If we want to avoid saddle points, is it really necessary to first move close to saddle

points and then escape from them? Can we design an algorithm that can somehow avoid saddle
points without ever moving close to them?

1.2 Our Resolutions

Resolution to Issue 1: Efficient Use of Hessian. Mathematically, instead of using a random
perturbation, the negative eigenvector of ∇2f(x) (a.k.a. the negative-curvature direction of f(·) at
x) gives us a better direction to escape from saddle points. See Figure 1.

To make it concrete, suppose we apply power method on ∇2f(x) to find its most negative eigen-
vector. If we run power method for 0 iteration, then it gives us a totally random direction; if we run
it for more iterations, then it converges to the most negative eigenvector of ∇2f(x). Unfortunately,
applying power method is unrealistic because f(x) = 1

n

∑
i fi(x) can possibly have infinite pieces.

We propose to use Oja’s algorithm [37] to approximate power method. Oja’s algorithm can be
viewed as an online variant of power method, and requires only (stochastic) matrix-vector product
computations. In our setting, this is the same as (stochastic) Hessian-vector products —namely,
computing ∇2fi(x) · w for arbitrary vectors w ∈ Rd and random indices i ∈ [n]. It is a known fact
that computing Hessian-vector products is as cheap as computing stochastic gradients, and thus we
can use Oja’s algorithm to escape from saddle points.

(a) (b) (c)
Figure 2: Illustration of Natasha2full — how to swing by a saddle point.

(a) move in a negative curvature direction if there is any (by applying Oja’s algorithm)
(b) swing by a saddle point without entering its neighborhood (wishful thinking)
(c) swing by a saddle point using only stochastic gradients (by applying Natasha1.5full)

4In practice, stochastic gradients naturally incur “random noise” and adding perturbation may not be needed.
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Resolution to Issue 2: Swing by Saddle Points. If the function is sufficiently smooth,5 then any
point close to a saddle point must have a negative curvature. Therefore, as long as we are close to
saddle points, we can already use Oja’s algorithm to find such negative curvature, and move in its
direction to decrease the objective, see Figure 2(a).

Therefore, we are left only with the case that point is not close to any saddle point. Using smoothness
of f(·), this gives a “safe zone” near the current point, in which there is no strict saddle point,
see Figure 2(b). Intuitively, we wish to use the property of safe zone to design an algorithm that
decreases the objective faster than SGD. Formally, f(·) inside this safe zone must be of “bounded
nonconvexity,” meaning that its eigenvalues of the Hessian are always greater than some negative
threshold −σ (where σ depends on how long we run Oja’s algorithm). Intuitively, the greater σ
is, then the more non-convex f(x) is. We wish to design an (online) stochastic first-order method
whose running time scales with σ.

Unfortunately, classical stochastic methods such as SGD or SCSG [30] cannot make use of this
nonconvexity parameter σ. The only known ones that can make use of σ are offline algorithms. In
this paper, we design a new stochastic first-order method Natasha1.5

Theorem 1 (informal). Natasha1.5 finds x with ‖∇f(x)‖ ≤ ε in rate T = O
(

1
ε3 + σ1/3

ε10/3

)
.

Finally, we put Natasha1.5 together with Oja’s to construct our final algorithm Natasha2:

Theorem 2 (informal). Natasha2 finds x with ‖∇f(x)‖ ≤ ε and ∇2f(x) � −δI in rate T =

Õ
(

1
δ5 + 1

δε3 + 1
ε3.25

)
. In particular, when δ ≥ ε1/4, this gives T = Õ

(
1

ε3.25

)
.

In contrast, the convergence rate of SGD was T = Õ(poly(d) · ε−4) [22].

1.3 Follow-Up Results

Since the original appearance of this work, there has been a lot of progress in stochastic nonconvex
optimization. Most notably,

• If one swings by saddle points using Oja’s algorithm and SGD variants (instead of Natasha1.5),
the convergence rate is T = Õ(ε−3.5) [5].

• If one applies SGD and only escapes from saddle points using Oja’s algorithm, the convergence
rate is T = Õ(ε−4) [10, 46].

• If one applies SCSG and only escapes from saddle points using Oja’s algorithm, the convergence
rate is T = Õ(ε−3.333) [10, 46].

• If one applies a stochastic version of cubic regularized Newton’s method, the convergence rate
is T = Õ(ε−3.5) [44].

• If f(x) is of σ-bounded nonconvexity, the SGD4 method [5] gives rate T = Õ(ε−2 + σε−4).

We include these results in Table 1 for a close comparison.

2 Preliminaries

Throughout this paper, we denote by ‖ · ‖ the Euclidean norm. We use i ∈R [n] to denote that i
is generated from [n] = {1, 2, . . . , n} uniformly at random. We denote by ∇f(x) the gradient of
function f if it is differentiable, and ∂f(x) any subgradient if f is only Lipschitz continuous. We
denote by I[event] the indicator function of probabilistic events.

We denote by ‖A‖2 the spectral norm of matrix A. For symmetric matrices A and B, we write
A � B to indicate that A − B is positive semidefinite (PSD). Therefore, A � −σI if and only if
all eigenvalues of A are no less than −σ. We denote by λmin(A) and λmax(A) the minimum and
maximum eigenvalue of a symmetric matrix A.

Definition 2.1. For a function f : Rd → R,

• f is σ-strongly convex if ∀x, y ∈ Rd, it satisfies f(y) ≥ f(x) + 〈∂f(x), y − x〉+ σ
2 ‖x− y‖

2.

5As we shall see, smoothness is necessary for finding approximate local minima with provable guarantees.
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algorithm gradient complexity T variance
bound

Lipschitz
smooth

2nd-order
smooth

convex only

SGD1 [5, 23] O
(
ε−2.667

)
needed needed no

SGD2 [5] O
(
ε−2.5

)
] needed needed no

SGD3 [5] Õ
(
ε−2
)

] needed needed no

approximate
stationary

points

SGD (folklore) O
(
ε−4
)

(see Appendix B) needed needed no

SCSG [30] O
(
ε−3.333

)
needed needed no

Natasha1.5
O
(
ε−3 + σ1/3ε−3.333

)
(see Theorem 1) needed needed no

SGD4 [5] Õ
(
ε−2 + σε−4

)
] needed needed no

perturbed SGD [22] Õ
(
ε−4 · poly(d)

)
needed needed needed

Natasha2 Õ
(
ε−3.25

)
(see Theorem 2) needed needed needed

NEON + SGD [10, 46] Õ
(
ε−4
)

] needed needed needed

cubic Newton [44] Õ
(
ε−3.5

)
] needed needed needed

SGD5 [5] Õ
(
ε−3.5

)
] needed needed needed

approximate
local

minima

NEON + SCSG [10, 46] Õ
(
ε−3.333

)
] needed needed needed

Table 1: Comparison of online methods for finding ‖∇f(x)‖ ≤ ε. Following tradition, in these complexity
bounds, we assume variance and smoothness parameters as constants, and only show the dependency
on n, d, ε and the bounded nonconvexity parameter σ ∈ (0, 1). We use ] to indicate results that
appeared after this paper.

Remark 1. Variance bounds must be needed for online methods.
Remark 2. Lipschitz smoothness must be needed for achieving even approximate stationary points.
Remark 3. Second-order smoothness must be needed for achieving approximate local minima.

• f is of σ-bounded nonconvexity (or σ-nonconvex for short) if ∀x, y ∈ Rd, it satisfies f(y) ≥
f(x) + 〈∂f(x), y − x〉 − σ

2 ‖x− y‖
2. 6

• f is L-Lipschitz smooth (or L-smooth for short) if ∀x, y ∈ Rd, ‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖.
• f is second-order L2-Lipschitz smooth (or L2-second-order smooth for short) if ∀x, y ∈ Rd, it

satisfies ‖∇2f(x)−∇2f(y)‖2 ≤ L2‖x− y‖.

These definitions have other equivalent forms, see textbook [33].

Definition 2.2. For composite function F (x) = ψ(x) + f(x) where ψ(x) is proper convex, given a
parameter η > 0, the gradient mapping of F (·) at point x is

GF,η(x) :=
1

η

(
x− x′

)
where x′ = arg min

y

{
ψ(y) + 〈∇f(x), y〉+

1

2η
‖y − x‖2

}
In particular, if ψ(·) ≡ 0, then GF,η(x) ≡ ∇f(x).

3 Natasha 1.5: Finding Approximate Stationary Points

We first make a detour to study how to find approximate stationary points using only first-order
information. A point x ∈ Rd is an ε-approximate stationary point7 of f(x) if it satisfies ‖∇f(x)‖ ≤
ε. Let gradient complexity T be the number of computations of∇fi(x).

6Previous authors also refer to this notion as “approximate convex”, “almost convex”, “hypo-convex”,
“semi-convex”, or “weakly-convex.” We call it σ-nonconvex to stress the point that σ can be as large as L
(any L-smooth function is automatically L-nonconvex).

7Historically, in first-order literatures, x is called ε-approximate if ‖∇f(x)‖2 ≤ ε; in second-order litera-
tures, x is ε-approximate if ‖∇f(x)‖ ≤ ε. We adapt the latter notion following Polyak and Nesterov [34, 36].
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Figure 3: Comparison of first-order methods for finding ε-approximate stationary points of a σ-nonconvex
function. For simplicity, in the plots we let L = 1 and V = 1. The results SGD2/3/4 appeared after
this work.

Before 2015, nonconvex first-order methods give rise to two convergence rates. SGD converges in
T = O(ε−4) and GD converges T = O(nε−2). The proofs of both are simple (see Appendix B for
completeness). In particular, the convergence of SGD relies on two minimal assumptions

f(x) has bounded variance V , meaning Ei[‖∇fi(x)−∇f(x)‖2] ≤ V , and (A1)
f(x) is L-Lipschitz smooth, meaning ‖∇f(x)−∇f(y)‖ ≤ L · ‖x− y‖. (A2’)

Remark 3.1. Both assumptions are necessary to design online algorithms for finding stationary
points.8 For offline algorithms —like GD— the first assumption is not needed.

Since 2016, the convergence rates have been improved to T = O(n + n2/3ε−2) for offline meth-
ods [6, 38], and to T = O(ε−10/3) for online algorithms [30]. Both results are based on the SVRG
(stochastic variance reduced gradient) method, and assume additionally (note (A2) implies (A2’))

each fi(x) is L-Lipschitz smooth. (A2)

Lei et al. [30] gave their algorithm a new name, SCSG (stochastically controlled stochastic gradient).

Bounded Non-Convexity. In recent works [3, 13], it has been proposed to study a more refined
convergence rate, by assuming that f(x) is of σ-bounded nonconvexity (or σ-nonconvex), meaning

all the eigenvalues of∇2f(x) lie in [−σ, L] (A3)
for some σ ∈ (0, L]. This parameter σ is analogous to the strong-convexity parameter µ in convex
optimization, where all the eigenvalues of∇2f(x) lie in [µ,L] for some µ > 0.

In our illustrative process to “swing by a saddle point,” the function inside safe zone —see
Figure 2(b)— is also of bounded nonconvexity. Since larger σ means the function is “more non-
convex” and thus harder to optimize, can we design algorithms with gradient complexity T as an
increasing function of σ ?
Remark 3.2. Most methods (SGD, SCSG, SVRG and GD) do not run faster in theory if σ < L.

In the offline setting, two methods are known to make use of parameter σ. One is repeatSVRG,
implicitly in [13] and formally in [3]. The other is Natasha1 [3]. repeatSVRG performs better
when σ ≤ L/

√
n and Natasha1 performs better when σ ≥ L/

√
n. See Figure 3(a) and Table 2.

Before this work, no online method is known to take advantage of σ.

3.1 Our Theorem

We show that, under (A1), (A2) and (A3), one can non-trivially extend Natasha1 to an online
version, taking advantage of σ, and achieving better complexity than SCSG.

Let ∆f be any upper bound on f(x0) − f(x∗) where x0 is the starting point. In this section, to
present the simplest results, we use the big-O notion to hide dependency in ∆f and V . In Section 6,

8For instance, if the variance V is unbounded, we cannot even tell if a point x satisfies ‖∇f(x)‖ ≤ ε using
finite samples. Also, if f(x) is not Lipschitz smooth, it may contain sharp turning points (e.g., behaves like
absolute value function |x|); in this case, finding ‖∇f(x)‖ ≤ ε can be as hard as finding ‖∇f(x)‖ = 0, and is
NP-hard in general.
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Algorithm 1 Natasha1.5(F, x∅, B, T ′, α)

Input: f(·) = 1
n

∑n
i=1 fi(x), starting vector x∅, epoch length B ∈ [n], epoch count T ′ ≥ 1,

learning rate α > 0.
1: x̂← x∅; p← Θ((σ/εL)2/3); m← B/p; X ← [];
2: for k ← 1 to T ′ do � T ′ epochs each of length B
3: x̃← x̂; µ← 1

B

∑
i∈S ∇fi(x̃) where S is a uniform random subset of [n] with |S| = B;

4: for s← 0 to p− 1 do � p sub-epochs each of length m
5: x0 ← x̂; X ← [X, x̂];
6: for t← 0 to m− 1 do
7: ∇̃ ← ∇fi(xt)−∇fi(x̃) + µ+ 2σ(xt − x̂) where i ∈R [n]

8: xt+1 = xt − α∇̃;
9: end for

10: x̂← a random choice from {x0, x1, . . . , xm−1}; � in practice, choose the average
11: end for
12: end for
13: ŷ← a random vector in X . � in practice, simply return ŷ
14: g(x) := f(x) + σ‖x− ŷ‖2 and use convex SGD to minimize g(x) for Tsgd = T ′B iterations.
15: return xout ← the output of SGD.

we shall add back such dependency and as well as support the existence of a proximal term. (That
is, to minimize ψ(x) + f(x) where ψ(x) is a proper convex simple function.)

Under such simplified notations, our main theorem can be stated as follows.

Theorem 1 (simple). Under (A1), (A2) and (A3), using the big-O notion to hide dependency in ∆f

and V , we have for every ε ∈ (0, σL ], letting

B = Θ
(

1
ε2

)
, T = Θ

(
L2/3σ1/3

ε10/3

)
and α = Θ

(
ε4/3

σ1/3L2/3

)
we have that Natasha1.5(f, x∅, B, T/B, α) outputs a point xout with E[‖∇f(xout)‖] ≤ ε, and
needs O(T ) computations of stochastic gradients. (See also Figure 3(b).)

We emphasize that the additional factor σ1/3 in the numerator of T shall become our key to achieve
faster algorithm for finding approximate local minima in Section 4. Also, if the requirement ε ≤ σ

L

is not satisfied, one can replace σ with εL; accordingly, T becomes O
(
L
ε3 + L2/3σ1/3

ε10/3

)
We note that the SGD4 method of [5] (which appeared after this paper) achieves T = O

(
L
ε2 + σ

ε4

)
.

It is better than Natasha1.5 only when σ ≤ εL. We compare them in Figure 3(b), and emphasize
that it is necessary to use Natasha1.5 (rather than SGD4) to design Natasha2 of the next section.

Extension. In fact, we show Theorem 1 in a more general proximal setting. That is, to minimize
F (x) := f(x)+ψ(x) where ψ(x) is proper convex function that can be non-smooth. For instance, if
ψ(x) is the indicator function of a convex set, then Problem (1.1) becomes constraint minimization;
and if ψ(x) = ‖x‖1, we encourage sparsity. At a first reading of its proof, one can assume ψ(x) ≡ 0.

3.2 Our Intuition

We first recall the main idea of the SVRG method [28, 48], which is an offline algorithm. SVRG divides
iterations into epochs, each of length n. It maintains a snapshot point x̃ for each epoch, and computes
the full gradient ∇f(x̃) only for snapshots. Then, in each iteration t at point xt, SVRG defines
gradient estimator ∇̃f(xt) := ∇fi(xt)−∇fi(x̃) +∇f(x̃) which satisfies Ei[∇̃f(xt)] = ∇f(xt),
and performs proximal update xt+1 ← xt − α∇̃f(xt) for learning rate α.

For minimizing non-convex functions, SVRG does not take advantage of parameter σ even if the
learning rate can be adapted to σ. This is because SVRG (and in fact SGD and GD too) rely on
gradient-descent analysis to argue for objective decrease per iteration. This is blind to σ.9

9These results argue for objective decrease per iteration, of the form f(xt) − f(xt+1) ≥ α
2
‖∇f(xt)‖2 −

α2L
2

E
[
‖∇f(xt) − ∇̃f(xt)‖2

]
. Unlike mirror-descent analysis, this inequality cannot take advantage of the
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The prior work Natasha1 takes advantage of σ. Natasha1 is similar to SVRG, but it further divides
each epoch into sub-epochs, each with a starting vector x̂. Then, it replaces ∇̃f(xt) with ∇̃f(xt) +
2σ(xt− x̂). This is equivalent to replacing f(x) with f(x) +σ‖x− x̂‖2, where the center x̂ changes
every sub-epoch. We view this additional term 2σ(xt − x̂) as a type of retraction. Conceptually,
it stabilizes the algorithm by moving a bit in the backward direction. Technically, it enables us to
perform only mirror-descent type of analysis, and thus bypass the issue of SVRG.

Our Algorithm. Both SVRG and Natasha1 are offline methods, because the gradient estimator
requires the full gradient computation ∇f(x̃) at snapshots x̃. A natural fix —originally studied by
practitioners but first formally analyzed by Lei et al. [30]— is to replace the computation of ∇f(x̃)
with 1

|S|
∑
i∈S ∇fi(x̃), for a random batch S ⊆ [n] with fixed cardinality B := |S| � n. This

allows us to shorten the epoch length from n to B, thus turning SVRG and Natasha1 into online
methods.

How large should we pick B? By Chernoff bound, we wish B ≈ 1
ε2 because our desired accuracy

is ε. One can thus hope to replace the parameter n in the complexities of SVRG and Natasha1.5
(ignoring the dependency on L):

T = O
(
n+

n2/3

ε2

)
and T = O

(
n+

n1/2

ε2
+
σ1/3n2/3

ε2

)
with B ≈ 1

ε2 . This “wishful thinking” gives

T = O
(
ε−10/3

)
and T = O

(
ε−3 + σ1/3ε−10/3

)
.

These are exactly the results achieved by SCSG [30] and to be achieved by our new Natasha1.5.

Unfortunately, Chernoff bound itself is not sufficient in getting such rates. Let
e := 1

|S|
∑
i∈S ∇fi(x̃)−∇f(x̃)

denote the bias of this new gradient estimator, then when performing iterative updates, this bias
e gives rise to two types of error terms: “first-order error” terms —of the form 〈e, x − y〉— and
“second-order error” term ‖e‖2. Chernoff bound ensures that the second-order error ES [‖e‖2] ≤ ε2

is bounded. However, first-order error terms are the true bottlenecks.

In the offline method SCSG, Lei et al. [30] carefully performed updates so that all “first-order errors”
cancel out. To the best of our knowledge, this analysis cannot take advantage of σ even if the
algorithm knows σ. (Again, for experts, this is because SCSG is based on gradient-descent type of
analysis but not mirror-descent.)

In Natasha1.5, we use the aforementioned retraction to ensure that all points in a single sub-epoch
are close to each other (based on mirror-descent type of analysis). Then, we use Young’s inequality
to bound 〈e, x− y〉 by 1

2‖e‖
2 + 1

2‖x− y‖
2. In this equation, ‖e‖2 is already bounded by Chernoff

concentration, and ‖x− y‖2 can also be bounded as long as x and y are within the same sub-epoch.
This summarizes the high-level technical contribution of Natasha1.5.

We formally state Natasha1.5 in Algorithm 1, and it uses big-O notions to hide dependency in L,
∆f , and V . The more general code to take care of the proximal term is in Algorithm 3 of Section 6.

4 Natasha 2: Finding Approximate Local Minima

Stochastic gradient descent (SGD) find approximate local minima [22], under (A1), (A2) and an
additional assumption (A4):

f(x) is second-order L2-Lipschitz smooth, meaning ‖∇2f(x)−∇2f(y)‖2 ≤ L2 · ‖x− y‖.
(A4)

Remark 4.1. (A4) is necessary to make the task of find appx. local minima meaningful, for the same
reason Lipschitz smoothness was needed for finding stationary points.

Definition 4.2. We say x is an (ε, δ)-approximate local minimum of f(x) if10

‖∇f(x)‖ ≤ ε and ∇2f(x) � −δI ,

bounded nonconvexity parameter of f(x). For readers interested in the difference between gradient and mirror
descent, see [11].

10The notion “∇2f(x) � −δI” means all the eigenvalues of∇2f(x) are above −δ.
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or ε-approximate local minimum if it is (ε, ε1/C)-approximate local minimum for constant C ≥ 1.

Before our work, Ge et al. [22] is the only result that gives provable online complexity for finding
approximate local minima. Other previous results, including SVRG, SCSG, Natasha1, and even
Natasha1.5, do not find approximate local minima and may be stuck at saddle points.11 Ge et al.
[22] showed that, hiding factors that depend on L, L2 and V , SGD finds an ε-approximate local
minimum of f(x) in gradient complexity T = O(poly(d)ε−4). This ε−4 factor seems necessary
since SGD needs T ≥ Ω(ε−4) for just finding stationary points (see Appendix B and Table 1).
Remark 4.3. Offline methods are often studied under (ε, ε1/2)-approximate local minima. In the
online setting, Ge et al. [22] used (ε, ε1/4)-approximate local minima, thus giving T = O

( poly(d)
ε4 +

poly(d)
δ16

)
. In general, it is better to treat ε and δ separately to be more general, but nevertheless,

(ε, ε1/C)-approximate local minima are always better than ε-approximate stationary points.

4.1 Our Theorem

We propose a new method Natasha2full which, very informally speaking, alternatively

• finds approximate stationary points of f(x) using Natasha1.5, or
• finds negative curvature of the Hessian∇2f(x), using Oja’s online eigenvector algorithm.

In this section, we define gradient complexity T to be the number of stochastic gradient computa-
tions plus Hessian-vector products. Let ∆f be any upper bound on f(x0) − f(x∗) where x0 is the
starting point. In this section, to present the simplest results, we use the big-O notion to hide de-
pendency in L, L2, ∆f , and V . In Section 7, we shall add back such dependency for a more general
description of the algorithm. Our main result can be stated as follows:

Theorem 2 (informal). Under (A1), (A2) and (A4), for any ε ∈ (0, 1) and δ ∈ (0, ε1/4),
Natasha2(f, y0, ε, δ) outputs a point xout so that, with probability at least 2/3:

‖∇f(xout)‖ ≤ ε and ∇2f(xout) � −δI .

Furthermore, its gradient complexity is T = Õ
(

1
δ5 + 1

δε3

)
.12

Remark 4.4. If δ > ε1/4 we can replace it with δ = ε1/4. Therefore, T = Õ
(

1
δ5 + 1

δε3 + 1
ε3.25

)
.

Remark 4.5. The follow-up work [10] replaced Hessian-vector products in Natasha2 with only
stochastic gradient computations, turning Natasha2 into a pure first-order method. That paper is
built on ours and thus all the proofs of this paper are still needed.

Corollary 4.6. T = Õ(ε−3.25) for finding (ε, ε1/4)-approximate local minima. This is better than
T = O(ε−10/3) of SCSG for finding only ε-approximate stationary points.

Corollary 4.7. T = Õ(ε−3.5) for finding (ε, ε1/2)-approximate local minima. This was not known
before and is matched by several follow-up works using different algorithms [5, 10, 44, 46].

4.2 Our Intuition

It is known that the problem of finding (ε, δ)-approximate local minima, at a high level, “reduces”
to (repeatedly) finding ε-approximate stationary points for an O(δ)-nonconvex function [1, 13].
Specifically, Carmon et al. [13] proposed the following procedure. In every iteration at point yk,
detect whether the minimum eigenvalue of∇2f(yk) is below −δ:

• if yes, find the minimum eigenvector of∇2f(yk) approximately and move in this direction.

• if no, let F k(x) := f(x)+L
(

max
{

0, ‖x−yk‖− δ
L2

})2
, which can be proven as 5L-smooth and

3δ-nonconvex; then find an ε-approximate stationary point of F k(x) to move there. Intuitively,
F k(x) penalizes us from moving out of the “safe zone” of

{
x : ‖x− yk‖ ≤ δ

L2

}
.

11These methods are based on the “variance reduction” technique to reduce the random noise of SGD. They
have been criticized by practitioners for performing poorer than SGD on training neural networks, because the
noise of SGD allows it to escape from saddle points. Variance-reduction based methods have less noise and
thus cannot escape from saddle points.

12Throughout this paper, we use the Õ notion to hide at most one logarithmic factor in all the parameters
(namely, n, d, L, L2,V, 1/ε, 1/δ).
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Algorithm 2 Natasha2(f, y0, ε, δ)

Input: function f(x) = 1
n

∑n
i=1 fi(x), starting vector y0, target accuracy ε > 0 and δ > 0.

1: if ε1/3

δ ≥ 1 then L̃ = σ̃ ← Θ( ε
1/3

δ ) ≥ 1; � the boundary case for large L2

2: else L̃← 1 and σ̃ ← Θ
(
ε
δ3

)
∈ [δ, 1].

3: X ← [];
4: for k ← 0 to∞ do
5: Apply Oja’s algorithm to find minEV v of ∇2f(yk) for Θ̃( 1

δ2 ) iterations
� see Lemma 5.3

6: if v ∈ Rd is found s.t. v>∇2f(yk)v ≤ − δ2 then
7: yk+1 ← yk ± δ

L2
v where the sign is random.

8: else � it satisfies∇2f(yk) � −δI
9: F k(x) := f(x) + L(max{0, ‖x− yk‖ − δ

L2
})2.

10: run Natasha1.5
(
F k, yk,Θ(ε−2), 1,Θ(εδ)

)
. � F k(·) is L̃-smooth and σ̃-nonconvex

11: let ŷk, yk+1 be the vector ŷ and x̂ when Line 13 is reached in Natasha1.5.
12: X ← [X, (yk, ŷk)];
13: break the for loop if have performed Θ

(
1
δε

)
first-order steps.

14: end if
15: end for
16: (y, ŷ)← a random pair in X . � in practice, simply output ŷk
17: define convex function g(x) := f(x) + L(max{0, ‖x− y‖ − δ

L2
})2 + σ̃‖x− ŷ‖2.

18: use SGD to minimize g(x) for Θ̃( 1
ε2 ) steps and output xout.

Previously, it was thought necessary to achieve high accuracy for both tasks above. This is
why researchers have only been able to design offline methods: in particular, the shift-and-invert
method [21] was applied to find the minimum eigenvector, and repeatSVRG was applied to find a
stationary point of F k(x).13

In this paper, we apply efficient online algorithms for the two tasks: namely, Oja’s algorithm
(see Section 5.1) for finding minimum eigenvectors, and our new Natasha1.5 algorithm (see
Section 3.2) for finding stationary points. More specifically, for Oja’s, we only decide if there is
an eigenvalue below threshold −δ/2, or conclude that the Hessian has all eigenvalues above −δ.
This can be done in an online fashion using O(δ−2) Hessian-vector products (with high probability)
using Oja’s algorithm. For Natasha1.5, we only apply it for a single epoch of length B = Θ(ε−2).
Conceptually, this shall make the above procedure online and run in a complexity independent of n.

Unfortunately, technical issues arise in this “wishful thinking.”

Most notably, the above process finishes only if Natasha1.5 finds an approximate stationary point
x of F k(x) that is also inside the safe zone

{
x : ‖x − yk‖ ≤ δ

L2

}
. This is because F k(x) = f(x)

inside the safe zone and therefore ‖∇F k(x)‖ ≤ ε also implies ‖∇f(x)‖ ≤ 2ε.

What can we do if we move out of the safe zone? To tackle this case, we show an additional property
of Natasha1.5 (see Lemma 6.5). That is, the amount of objective decrease —i.e., f(yk) − f(x) if
x moves out of the safe zone— must be proportional to the distance ‖x − yk‖2 we travel in space.
Therefore, if x moves out of the safe zone, then we can decrease sufficiently the objective. This is
also a good case. This summarizes some high-level technical ingredient of Natasha2.

We formally state Natasha2 in Algorithm 2, and it uses the big-O notion to hide dependency in L,
L2, V and ∆f . The more general code to take care of all the parameters can be found in Algorithm 5
of Section 7.

Finally, we stress that although we borrowed the construction of f(x)+L
(

max
{

0, ‖x−yk‖− δ
L2

})2
from the offline algorithm of Carmon et al. [13], our Natasha2 algorithm and analysis are different
from them in all other aspects.

13repeatSVRG is an offline algorithm, and finds an ε-approximate stationary point for a function f(x) that
is σ-nonconvex. It is divided into stages. In each stage t, it considers a modified function ft(x) := f(x) +
σ‖x− xt‖2, and then apply the accelerated SVRG method to minimize ft(x). Then, it moves to xt+1 which is
a sufficiently accurate minimizer of ft(x).
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