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A Learned Interaction Orders

Shown in Table 4 are statistics of learned interaction orders by NIT corresponding to experiments
in Table 3. Interaction orders at different K are averaged over 5 folds of cross-validation. The
interaction orders of the baselines are the maximum interaction orders they can learn.

Table 4: Interaction order statistics when all repeated interactions and sparsified blocks are ignored.
An order of 1 is a univariate variable.

Model Cal Housing Bike Sharing MIMIC-III CIFAR-10 binary

K order K order K order K order

LR/GAM - 1 - 1 - 1 - 1
GA2M - 2 - 2 - 2 - 2

NIT max 2 2.0± 0.0 2 2.0± 0.0 2 2.0± 0.0 10 10± 0.0
mean 1.70± 0.057 1.83± 0.067 1.5± 0.12 5.8± 0.20
min 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.8± 0.75

max 3 3.0± 0.0 3 3.0± 0.0 4 4.0± 0.0 15 13.6± 0.49
mean 2.2± 0.27 2.69± 0.054 3.0± 0.24 9± 1.1
min 1.2± 0.40 1.6± 0.49 1.2± 0.40 4± 1.9

max 4 3.8± 0.40 4 4.0± 0.0 6 5.6± 0.80 20 19± 1.2
mean 2.8± 0.37 3.6± 0.11 4.1± 0.80 12.7± 0.95
min 1.2± 0.40 1.8± 0.75 1.8± 0.75 4± 2.4

RF/MLP - 8 - 15 - 40 - 3072

B Importance of G

Shown in Table 5 is a comparison between the original prediction performance of NIT and its
performance when the learned gates G within each network block are shuffled before the second
phase of training (§5.2). The lowered predictive performance due to shuffling is more pronounced
for lower interaction orders and different datasets. For example, large performance differences are
observed for the Bike Sharing dataset. The smaller performance differences with the MIMIC-III and
CIFAR-10 binary datasets may be due to high feature correlations.

Table 5: The sensitivity of predictive performance to shuffling of the learned gates G within each
network block.

Model Cal Housing Bike Sharing MIMIC-III CIFAR-10 binary

K RMSE K RMSE K AUC K AUC

original 2 0.448± 0.0080 2 0.31± 0.013 2 0.76± 0.011 10 0.849± 0.0049
shuffled 0.51± 0.089 0.6± 0.13 0.73± 0.019 0.841± 0.0047

original 3 0.437± 0.0077 3 0.26± 0.015 4 0.76± 0.013 15 0.858± 0.0020
shuffled 0.47± 0.013 0.5± 0.15 0.74± 0.022 0.854± 0.0036

original 4 0.43± 0.013 4 0.240± 0.0097 6 0.77± 0.011 20 0.860± 0.0034
shuffled 0.440± 0.0082 0.33± 0.042 0.75± 0.029 0.860± 0.0027

C Performance Without Re-initializing NIT

In §5.2, disentangling proceeds until the desired interaction order is reached for a patience duration,
after which disentangling ends and parameters are re-initialized to complete training. Without re-
initializing, the performance of NIT at K = 2 on Cal-Housing was 0.475 RMSE on average, which
is worse than our 0.448 score. Likewise, other pre-reinitialization scores at the lowest reported Ks
were also worse: Bike-Sharing 0.330, MIMIC-III 0.731, and CIFAR-10 binary 0.746.
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D Hyperparameters

Hyperparameters of NIT not mentioned in the paper body but used in our main experiments (Table 3)
are shown in Table 6. Architecture sizes are from input through each hidden layer to output. λ2 is the
L2 regularization constant we used on the second phase of training NIT after disentangling (§5.2).

Table 6: Hyperparameters of NIT omitted from the main paper corresponding to experiments in
Table 3

hyperparameter Cal Housing Bike Sharing MIMIC-III CIFAR-10 binary

architecture 8-400-300-200-100-1 15-800-600-400-200-1 40-200-100-1 3072-400-300-200-100-1
λ2 1e− 5 1e− 5 1e− 4 1e− 5

The architectures of the MLP baselines vary based on hyperparameter tuning and are shown in Table 7.
As before, the architecture sizes are from the input through each hidden layer to output. All baseline
MLPs are tuned with L2 regularization.

Table 7: Archiectures of the MLP baselines
Cal Housing Bike Sharing MIMIC-III CIFAR-10 binary

8-140-100-60-20-1 15-100-100-100-1 40-300-200-100-1 3072-200-200-1

Finally, in our approach of disentangling interactions through all layers (§5.5), we set λ = 5e− 3 for
both Cal Housing and Bike Sharing. We also use a regularization constant in front of the max term in
Eq. 5, which is 0.5 for Cal Housing and 0.05 for Bike Sharing. As before, the learning rate is set to
5e− 2. All other hyperparameters were already mentioned in §5.5 and §5.1.

E Interaction Orders from Multiplying Layer-wise Gate Matrices

Below, we provide theoretical support for matrix multiplying gate matrices G(`) of each layer
` = 1, 2, . . . , L in our estimation of interaction orders, to disentangle interactions through all layers.

Lemma 2 (Paths From Multiplying Gate Matrices). Let f(·) be a feedforward neural network.
Assume that in general, weights in W(`) are nonzero ∀` = 1, . . . , L+ 1. Let G(1),G(2), . . . ,G(L)

be masks for corresponding weight matrices W(1),W(2), . . . ,W(L), where the elements of each
mask are binary {0, 1}. Let G̃ ∈ RpL×p be given by the matrix multiplications G(L)G(L−1) . . .G(1).
Then a nonzero value of G̃ij indicates that there is a nonzero weighted path from feature j to neuron
i in the L-th hidden layer, and a zero value of G̃ij indicates there is no such path.

Proof. In the case that f(·) has a single hidden layer (L = 1), G̃ = G(1) directly gives the zero and
nonzero paths from features to the L-th hidden layer.

In cases where f(·) has more than one hidden layer, first consider the weight connectivity between
input features and the second hidden layer. Since a feedforward neural network is a directed acyclic
graph where a hop transitions from one layer to the next, we can view the connectivity from input
features to the second hidden layer as two hops or two applications of an adjacency matrix, A,
comprising of G(1) and G(2) as:

A =


0

(
G(1)

)> 0
0 0

(
G(2)

)>
0 0 0



12



Therefore, the adjacency matrix for two hops is:

A2 =


0 0

(
G(2)G(1)

)>
0 0 0
0 0 0


Since the elements of A2 are the number of paths between graph vertices in two hops, the nonzero
elements of G(2)G(1) represent the existence of paths from features to the second hidden layer,
and the zero elements represent the lack of such paths. We can therefore repeatedly add hops up to
the L-th hidden layer, yielding G(L)G(L−1) . . .G(1) to represent the zero and nonzero paths from
features to the neurons in the L-th layer.

It follows that the feature interaction order at neuron i in hidden layer L can be calculated as k̂i =∑p
j=1 σ(G̃)ij , where in this case σ(·) serves the purpose of setting all nonzero elements in G̃ to

one. We note that the matrix multiplications in calculating G̃ can cause numeric overflow; therefore,
we recommend normalizing the result of each matrix multiplication, i.e. dividing the result by its
maximum magnitude.

F Runtime Considerations

The runtime of NIT depends on the size of networks and the number of blocks, B, used during
training. In our main experiments (§5.4) where B is always 20, runtime advantages are primarily
seen when p is large, such as the case for MIMIC-III (p = 40) and CIFAR-10 binary (p = 3072)
experiments. For example, the average runtime of NIT across K values in Table 3 is 1.5 hours for
MIMIC-III (versus 45 hours using GA2M) and 55 minutes for CIFAR-10 binary (versus 10 hours
using GAM without interactions). In the cases where p is small such as Cal Housing and Bike
Sharing, the training time caused by large networks (Appendix D) and the task itself can dominate. In
particular for regression tasks, we recommend using the variant of NIT that disentangles interactions
through all layers (§5.5) to speed up training as this approach does not require large networks that
arise from B blocks.
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