
5 Supplementary

In Section 5.1, we give explicit training details. In Section 5.2, we give explicit architecture details
and describe the losses applied to each component. In Section 5.3, we describe and depict the objects
used in the environment. In Section 5.4, we give the results of an experiment in which we halve
the room’s dimensions and the agents’ maximum speeds, demonstrating the stability of our main
results under these changes. Finally, in Section 5.5, we examine the frequencies with which the agent
interacts with each distinct object.

5.1 Training details

Our training procedure incorporates asynchronous methods [30] and experience replay [27] with a
small buffer, with data gathering threads accumulating histories of data and update threads computing
gradients off of shuffled data from a buffer. We instantiate a world-model !✓ and self-model ⇤�,
each with Xavier initialization. The architecture is used to collect data and world-model loss results
with Ne environments envk in parallel. A separate thread performs updates using data from its Ne

environments, syncing with the global weights, computing gradients, and updating weights with
gradients.

Each data collection thread takes gather_per_batch steps in between enqueueing a batch of size
batch_size /Ne. Each scene lasts a number of environment steps chosen uniformly at random
within [scene_length_l_bound, scene_length_u_bound). At the beginning of each scene, objects
are randomly chosen from our sixteen pairs, and the agent and object(s) are placed at positions
uniformly at random in the room of size 10x10 Unity units (units defined by the Unity development
platform, above referred to as “meters”). The objects are placed at random orientations just above
the ground and fall at the beginning of the scene. The agent is placed upright looking in a random
direction. Each maintains an history buffer hk upon which it stores observations (obtained from the
environment), actions (chosen by the policy), and world-model loss (computed on data as soon as it
is gathered). Policies are computed by sampling K actions uniformly at random, obtaining the policy
⇡ probabilities on each sample as described in Section 2, and sampling from this K-way discrete
distribution. Batches are constructed from slices of data in the history buffer starting at uniformly
randomly-chosen times and are placed in FIFO Queues Qk.

The update thread concatenates batches dequeued from Qk for k = 1 . . . Ne, and computes losses
and gradients. Note that, as outlined in Section 2, different variables have different corresponding
losses. For example, in the LF case, there is an auxiliary ID prediction task with variables ✓ID that
receive gradient updates from LID, separately from the LF prediction task with variables ✓LF that
receive gradient updates from LLF . In either the ID or LF cases, the self-model has variables that
receive gradient updates from L⇤ which computes true-values from world-model losses stored in
the data collection loop. Gradients are applied to the weights using an Adam optimizer with given
learning_rate.

Except where explicitly specified, we take Ne = 16, initial_gather = 250, batch_size = 32,
gather_per_batch = 3 (so with 16 environments, 48 steps are taken in between each batch update),
K = 1000, and learning_rate = .0001. Despite self-model true values depending on the policy the
agent chooses, we find training to be stable for small experience replay buffers of around 100� 1000

environment steps.

5.2 Model architectures and losses

We use convolutional neural networks as the base architecture to learn both world-models !✓ and
self-models ⇤ . In our experiments, these networks have an encoding structure with a common
architecture involving twelve convolutional layers, two-stride max pools every other layer, and one
fully-connected layer, to encode all states into a lower-dimensional latent space, with shared weights
across time. For the inverse dynamics task, the top encoding layer of the network is combined with
actions {at0 | t0 6= t}, fed into a two-layer fully-connected network, on top of which a softmax
classifier is used to predict action at. For the latent space future prediction task, the top convolutional
layer of !ID

✓ID
is used as the latent space L, and the latent model !LF

✓LF
is parametrized by a fully-

connected network that receives, in addition to past encoded images, past actions. See Figure 8 for a
graphical representation.

13

Init :
Dynamics prediction problem D, In,Out, ◆ : D! In, ⌧ : D! Out, L
World-model !✓
Self-model ⇤�
Environments envk for k = 1 . . . Ne

batch FIFO Queues Qk(capacity = c) for k = 1 . . . Ne

History lists hk(length = initial_gather) for k = 1 . . . Ne

gather_per_batch, scene_length_l_bound, scene_length_u_bound, batch_size
action_dim (8 in 1-object case, 14 in 2-object case)
number of actions to sample K
summary map �
learning_rate

Run gather threads for each envk, in parallel.
begin

Fill history list hk with null observations, actions, and losses.
while True do

num_this_batch = 0

while num_this_batch < gather_per_batch or total_gathered < history_len do
reset scene if needed

if num_this_scene � scene_length then
observation = envk.set_new_scene()
delete oldest from history hk

store observation, null action, and zero loss in hk

num_this_scene = 0

scene_length ⇠
Uniform(scene_length_l_bound, scene_length_u_bound)

end
take an action

begin
action_sample ⇠ Uniform([�1, 1]K⇥action_dim

)

for i = 0 . . .K � 1 do
(p1, p2 . . . pT)[i] = ⇤�(action_sample[i], last two observations),

end
policy ⇡(i|current state) = exp(��((p1, p2 . . . pT)[i])), normalized over i
sample i_chosen ⇠ ⇡(i|current state)
action_chosen = action_sample[i]
observation = envk.step(action_chosen)

end
calculate !✓ loss

world-model prediction = !✓(◆(most recent history slice))

world-model loss =

L(world-model prediction, ⌧(most recent history slice))

manage history
delete oldest from history hk

store observation, action_chosen, world-model loss
num_this_batch num_this_batch + 1

total_gathered total_gathered + 1

num_this_scene num_this_scene + 1

end
store batch for update

choose batch_size/Ne slices of hk

batch = ◆(slices), ⌧(slices),world-model losses

Q.enqueue(batch)
end

end

14

Run update thread in parallel with gather threads.
while True do

for k = 1 . . . Ne do
batch_k = Qk.dequeue()

end
batch = concatenate(batch_k for k = 1 . . . Ne)

compute loss(es) and gradient for !✓ (including auxiliary ID model for LF task)
compute loss and gradient for ⇤� using cached losses in batch
update ✓ and � with computed gradients using Adam(learning_rate)

end

The ID model (whether or not it is auxiliary to the LF world-model) is supervised by loss LID in
which we make a 3-class classification task by thresholding each dimension of the action by �.1 and
.1:

thresh(a)i = 1ai>�.1 + 1ai>.1, i = 1 . . . action_dim
and then averaging softmax cross-entropy loss over each dimension. The LF model, if used, is
supervised by `2 loss.

The self-model is supervised by thresholding world-model losses computed in the data gathering
loop (Section 5.1) by c 2 C:

threshC(lt) =
X

c2C

1l>c

and averaging softmax cross-entropy loss over T successive timesteps. In the 1-object setting, we
took C = {.28} for the ID-SP case and C = {.13} for the LF-SP case, tuned for object attention (in
practice, this appears to matter only in that it satisfies a constraint: below almost all 1-object play
losses, for a ID-RP/LF-RP model, but above almost all ego-motion losses, between the first 10000-
30000 steps). In the 2-object setting, we chose C = {.28, .44, .59} for ID-SP and C = {.13, .26, .59}
for LF-SP.

To summarize the optimization criteria, in the ID-only case (ID-SP), two objectives are optimized:
min
✓ID

LID +min

L⇤,ID,

where LID is a sum, across dimension, of softmax cross-entropy losses on 3-way discretizations of
each action dimension, and L⇤,ID is a sum, across T timesteps, of softmax cross-entropy losses on
C-way discretizations of !ID loss. In the LF case (LF-SP), three objectives are optimized:

min
✓ID

LID +min
✓LF

LLF +min

L⇤,LF ,

where LLF is `2-loss on the latent space and L⇤,LF is like L⇤,ID but with !ID loss replaced with
!LF .

5.3 Object details

In Figure 5.5, we depict the objects used and give a breakdown of play frequency per object. Shapes
are given equal mass (1 Unity unit of mass) and are blue of the same texture. Their geometries
consists of varied aspect ratios of four types of shape: sphere, cube, cone, and cylinder, with four per
type.

5.4 Stability under varied setups.

In this section, we present results in which we vary both the environment and the agent’s maximum
ego-motions, demonstrating stability under this change of emergent “developmental milestones”
and dynamics prediction problem performance gains under the antagonistic policy of Section 2 We
make the room 5 by 5 meters (halving each dimension) and divide the agent’s maximum ego-motion
(forward/backward vfwd and planar angular v✓) by two while keeping the maximum interaction
distance � = 2 fixed. The same 16 objects are placed in 16 environments, one per environment,
as in the 1-object experiments of Section 3. We find (Figure 10) that the same sorts of milestones
(ego-motion learning, object attention, improved object dynamics prediction) emerge, with similar
comparisons to baseline, only approximately 4 times as fast. Interestingly, after some time, the

15

ot-1:t, concatenated by channel

3x3 conv, 64
Relu

3x3 conv, 64

2-stride pool
Relu

3x3 conv, 64
Relu

3x3 conv, 64

2-stride pool
Relu

3x3 conv, 128
Relu

3x3 conv, 128

2-stride pool
Relu

3x3 conv, 128
Relu

3x3 conv, 128

2-stride pool
Relu

3x3 conv, 192
Relu

3x3 conv, 192

2-stride pool
Relu

3x3 conv, 192
Relu

3x3 conv, 192

2-stride pool
Relu

fc, 512
Relu

shared encoding

ot-2:t-1

shared encoding

ot-3:t-2

shared encoding

fc, 512

fc, 3 * action_dim

ot:t+1

at-2, at-1, at

ot-1:t, concatenated by channel

3x3 conv, 64
Relu

3x3 conv, 64

2-stride pool
Relu

3x3 conv, 64
Relu

3x3 conv, 64

2-stride pool
Relu

3x3 conv, 64
Relu

3x3 conv, 64

2-stride pool
Relu

3x3 conv, 64
Relu

3x3 conv, 64

2-stride pool
Relu

3x3 conv, 64
Relu

3x3 conv, 64

2-stride pool
Relu

3x3 conv, 64
Relu

3x3 conv, 64

2-stride pool
Relu

fc, 512
Relu

fc, 512

fc, T * |C|

action_sample

Relu

Relu

fc, 1152
Relu

fc, 1152
Relu

fc, 1152

Convolution

Max Pool

Fully-connected

Concatenate

ID Self-model

LF

a
t-2 , a

t-1

e(o
t-2:t-1), e(o

t-1:t)

Figure 8: The ID, LF, and self-model architectures.

16

Arrow Asymmetric cone Capsule Cone

Cube Cuboid Cylinder Disk

Ellipsoid Flat cone Mentos Pyramid

Rectangular stick Round stick Spear Sphere

Figure 9: The objects.

world-model loss dipped, and we hypothesize (but due to computational constraints, did not run out
sufficiently long, given this 4x heuristic) that we would see this behavior in our main setup, as well.

5.5 Object frequency breakdown.

To measure how learned object attention depends on shape, we modify our training procedure,
assigning each of our 16 environments a unique shape — each environment is assigned a single shape
that it uses for each reset, so that at all points in training, each shape is in exactly one environment.
The environment and agent parameters are as described in Section 5.4, differing in environment
dimensions and agent speeds from our main experimental setups. We then measure object play
frequency broken down by object (Figure 5.5). Note the heterogeneity — while most objects have
similar play frequency graphs, others have inconsistent play frequency. This suggests that the control
problem of finding an object, and keeping it in view, is not learned with equal success across objects.

17

ID-SP ID-RP

Steps (in thousands)

Tr
ai

ni
ng

 L
os

s

1
O

bj
ec

t F
re

qu
en

cy

Va
lid

at
io

n
Lo

ss

Va
lid

at
io

n
Lo

ss
(a) World-model training loss

(b) Object Frequency

(c) Easy data (ego motion) (d) Hard data (object play)

Steps (in thousands)

Steps Steps

Figure 10: Single-object experiments, smaller room and speed. (a) World-model training loss.
(b) Percentage of frames in which an object is present. (c) World-model test-set loss on “easy”
ego-motion-only data, with no objects present. (d) World-model test-set loss on “hard” validation
data, with object present, where agent must solve object physics prediction. This experiment differs
from those in the main text (compare with Figure 4) by halving both the room size and maximum
ego-motion speeds while keeping the maximum interaction distance fixed.

18

Figure 11: Object in view frequency across all objects and for each of the tested 16 objects individu-
ally.

19

	Introduction
	Environment and Architecture
	Experiments
	Emergent behaviors
	Dynamics prediction tasks
	Task transfers

	Discussion
	Supplementary
	Training details
	Model architectures and losses
	Object details
	Stability under varied setups.
	Object frequency breakdown.

