
This is the supplementary material for the NIPS 2018 paper: “Efficient Algorithms for Non-convex
Isotonic Regression through Submodular Optimization”, by Francis Bach.

A Parametric max-flow formulation for isotonic regression

In this section, we provide descriptions of algorithms for isotonic regression with the quadratic cost,
that is, the problem of solving:

min

x2Rn

1

2

kx� zk2
2

such that 8(i, j) 2 E, xi > xj , (7)

For more details, see [22, 1]. Note that in this section, we strongly leverage the submodular properties
of cut functions.

The problem in Eq. (7) can be solved by considering the following penalized problem

min

x2Rn

1

2

kx� zk2
2

+ �
X

(i,j)2E

(xj � xi)+, (8)

for a large value of �. Note that as opposed to the general submodular case, having a large value does
not impact running-time complexity because we are using combinatorial algorithms for min-cut /
max-flow.

The function g(x) =
P

(i,j)2E(xj � xi)+ is known to be the continuous Lovász extension of the cut
function defined on {0, 1}n with the exact same formula (see, e.g., [1]). Thus the problem in Eq. (8)
is equivalent to

min

x2Rn

1

2

kxk2 � x>z + g(x), (9)

which is the minimization of the Lovász extension g(x) penalized by a separable function. This is
known to be equivalent to the parameterized family of binary submodular function minimization
problems

min

x2{0,1}n
↵ · 1>n x� x>z + g(x), (10)

for ↵ 2 R. More precisely (see, e.g., [1, Prop. 8.3]), one can obtain the unique solution x 2 Rn of
Eq. (9) from solutions x↵ 2 {0, 1}n of Eq. (10) through xi = sup

�
{↵ 2 R, (x↵)i = 1}

�
.

Since the problem in Eq. (10) is a minimum cut problem, because of the equivalence with maximum
flow we obtain a parametric max-flow problem.

B Pseudo-codes of algorithms

The paper proposes two discretization schemes: the naive one in Section 4.2 (which is the same as
in [2] except with the added isotonic constraints) and the new improved one in Section 5.

B.1 Naive discretization scheme

We consider the discretization of [0, 1] with k elements i
k�1

, i 2 {0, . . . , k � 1}. This defines a
function F on {0, . . . , k � 1}n as

F (i
1

, . . . , in) = H
⇣ i

1

k � 1

, . . . ,
in

k � 1

⌘
.

Following [2], we can define an extension in a space of product measures on {0, . . . , k � 1}. We
can parameterize that space through ⇢ 2 Rn⇥(k�1) which corresponds to the n reverse cumulative
distribution functions; minimizing F (which leads to an approximate minimizer of H) is equivalent
to minimizing a convex extension f#(⇢) with respect to ⇢ 2 [0, 1]n \ S \ T (S corresponds to the
monotonicity of the cumulative distributions functions and T to the additional isotonic constraint).
The only difference with the non-isotonic case is the extra-projection step onto T.
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Projected subgradient method. A subgradient of f# may be obtained by the greedy algorithm
of [2], which sorts all values of the components of the matrix ⇢, and computes differences of values
of F (and thus of H). The optimization algorithm is thus as follows (this is the subgradient method):

• Initialization: Choose discretization order k, maximum number of iterations T , step-size �,
and set ⇢0ij = 1/2 for all (i, j)

• Subgradient iterations: for t = 1 to T ,
– Compute a subgradient wt�1 2 Rn⇥(k�1) of f# at ⇢t�1 using the greedy algorithm of [2]
– Take a step ⇢̃t = ⇢t�1 � �p

t
wt�1

– Compute the projection ⇢t of ⇢̃t onto [0, 1]n \ S \ T using any parametric max-flow
algorithm (this is an isotonic regression problem with quadratic cost)

• Output:
�

i1
k�1

, . . . , in
k�1

�
such that (i

1

, . . . , in) leads to the maximal value of F (i
1

, . . . , in) in
the greedy algorithm for computing wT .

Strongly-convex subgradient method. Here, we minimize f#(⇢) +
1

2

k⇢k2F with respect to ⇢ 2
S\ T, with the following subgradient method with an explicit step-size for strongly-convex problems
(Frank-Wolfe could also be used for the dual problem):

• Initialization: Choose discretization order k, maximum number of iterations T , and set ⇢0ij = 0

for all (i, j)
• Subgradient iterations: for t = 1 to T ,

– Compute a subgradient wt�1 2 Rn⇥(k�1) of f# at ⇢t�1 using the greedy algorithm of [2]
– Take a step ⇢̃t = (1� 2

t+1

)⇢t�1 � 2

t+1

wt�1

– Compute the projection ⇢t of ⇢̃t onto S \ T using any parametric max-flow algorithm (this
is an isotonic regression problem with quadratic cost)

• Output:
�

i1
k�1

, . . . , in
k�1

�
such that (i

1

, . . . , in) leads to the maximal value of F (i
1

, . . . , in) in
the greedy algorithm for computing wT .

B.2 Improve discretization scheme

We are still here minimizing a function on {0, . . . , k � 1}n, but this time we aim at minimizing with
respect to z 2 {0, . . . , k � 1}n \ X the submodular function

˜H(z) = min

x2
Qn

i=1 Azi

H(x) such that 8(i, j) 2 E, xi > xj ,

where A
0

= [0, 1

k ), A1

= [

1

k ,
2

k ), . . . , Ak�1

= [

k�1

k , 1]. It can be approximated using a Taylor
expansion by

ˆH(z) = min

x2
Qn

i=1 Azi

H(

z+1/2
k ) +

q�1X

r=1

X

|↵|=r

1

↵!
(x� z+1/2

k )

↵H(↵)
(

z+1/2
k ) s. t. 8(i, j) 2 E, xi > xj ,

which only requires accesses to H and its derivatives at z+1/2
k . This is trivial for q = 1, and can

be approximated by a semidefinite program for q = 2 (see Section 5.2). We can then apply the
subgradient method to ˆH as follows:

• Initialization: Choose discretization order k, maximum number of iterations T , step-size � and
set ⇢0ij = 1/2 for all (i, j),

• Subgradient iterations: for t = 1 to T ,

– Compute a subgradient wt�1 2 Rn⇥(k�1) of ˆh# at ⇢t�1 using the greedy algorithm of [2]
– Take a step ⇢̃t = ⇢t�1 � �p

t
wt�1

– Compute the projection ⇢t of ⇢̃t onto [0, 1]n \ S \ T using any parametric max-flow
algorithm (this is an isotonic regression problem with quadratic cost)

• Output:
� i1+1/2

k , . . . , in+1/2
k

�
such that (i

1

, . . . , in) leads to the maximal value of
ˆH(i

1

, . . . , in) in the greedy algorithm for computing wT .
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C Additional experimental results

We first present here additional results, for robustness of isotonic regression to corrupted data in
Figure 4, where we show that up to 75% of corrupted data, the non-convex loss (solved exactly using
submodularity) still finds a reasonable answer (but does not for 90% of corruption). Then, in Figure 5,
we present the effect of adding a smoothness term on top of isotonic constraints: we indeed get a
smoother function as expected, and the higher-order algorithms perform significantly better.

D Approximate optimization for high-order discretization

In this section, we consider the set-up of Section 5, and we consider the minimization of the extension
˜h# on S\T\[0, 1]n⇥(k�1). We consider the projected subgradient method, which uses an approximate
subgradient not from ˜h# but from the approximation ˆh#, which we know is obtained from a function
ˆH such that | ˆH(z)� ˜H(z)| 6 ⌘ for all z, and for ⌘ = (nLq/2k)q/q!.

The main issue is that the extension ˆh# is not convex when ˆH is not submodular (which could be
the case because it is only an approximation of a submodular function). In order to show that the
same projected subgradient method converges to an ⌘-minimizer of ˜h# (and hence of ˜H), we simply
consider a minimizer ⇢⇤ of ˜h# (which is convex) on S \ T \ [0, 1]n⇥(k�1). Because of properties of
submodular optimization problems, we may choose ⇢⇤ so that it takes values only in {0, 1}n⇥(k�1).

At iteration t, given ⇢t�1 2 S \ T \ [0, 1]n⇥(k�1), we compute an approximate subgradient ŵt�1

using the greedy algorithm of [2] applied to ŵt�1. This leads to a sequence of indices (i(s), j(s)) 2
{1, . . . , n}⇥ {0, . . . , k � 1} and elements zs 2 {0, . . . , k � 1}n so that

ˆh#(⇢
t�1

)� ˆH(0) = hŵt�1, ⇢t�1i =
n(k�1)X

s=1

⇢i(s)j(s)
⇥
ˆH(zs)� ˆH(zs�1

)

⇤
,

where all ⇢i(s)j(s) are arranged in non-increasing order. Because ˆh# and ˜h# are defined as expectations
of evaluations of ˆH and ˜H , they differ from at most ⌘. We denote by w̃t�1 the subgradient obtained
from ˜H .

We consider the iteration ⇢t = ⇧S\T\[0,1]n⇥(k�1)(⇢t�1 � �ŵt�1

), where ⇧S\T\[0,1]n⇥(k�1) is the
orthogonal projection on S \ T \ [0, 1]n⇥(k�1). From the usual subgradient convergence proof (see,
e.g., [23]), we have:

k⇢t � ⇢⇤k2F 6 k⇢t�1 � ⇢⇤k2F � 2�h⇢t�1 � ⇢⇤, ŵt�1i+ �2kŵt�1k2F
6 k⇢t�1 � ⇢⇤k2F � 2�h⇢t�1 � ⇢⇤, ŵt�1i+ �2B2

= k⇢t�1 � ⇢⇤k2F � 2�
⇥
ˆh#(⇢

t�1

)� ˆH(0)

⇤
+ 2�h⇢⇤, ŵt�1i+ �2B2,

using the bound kŵt�1k2F 6 B2 6 nk
⇥
L
1

/k + 2(nLq/k)q/q!
⇤
. Moreover, we have

h⇢⇤, ŵt�1i = h⇢⇤, ŵt�1 � w̃t�1i+ ˜h#(⇢
⇤
)� ˜H(0).

Since ⇢⇤ 2 {0, 1}n, there is a single element s so that ⇢i(s)j(s) � ⇢i(s+1)j(s+1)

is different from zero,
and thus h⇢⇤, ŵt�1 � w̃t�1i is the difference between two function values of ˜H and ˆH . Thus overall,
we get:

k⇢t � ⇢⇤k2F 6 k⇢t�1 � ⇢⇤k2F � 2�
⇥
˜h#(⇢

s�1

)� ˜h#(⇢
⇤
)� 2⌘

⇤
+ �2B2,

which leads to the usual bound for the projected subgradient method, with an extra 2⌘ factor, as if
(up to the factor of 2) ˜H was submodular.

E Quadratic submodular functions

In this section, we consider the case where the function H is a second-order polynomial, as described
in Section 5.2 of the main paper.
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Figure 4: Robust isotonic regression with decreasing constraints (observation in pink crosses, and
results of isotonic regression with various losses in red, blue and black), from 25% to 90% of
corrupted data. The dashed black line corresponds to majorization-minimization algorithm started
from the observations.
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Figure 5: Left: Effect of adding additional regularization (n = 200). Right: Non-separable problems
(n = 25), distance to optimality in function values (and log-scale) for two discretization values
(k = 32 and k = 100) and two orders of approximation (q = 1 and q = 2).
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E.1 Without isotonic constraints

We first consider the program without isotonic constraints, which is the convex program outlined in
Section 5.2. Let (Y, y) be a solution of the following minimization problem, where diag(A) = 0 and
A 6 0:

min

Y,y

1

2

tr(A+Diag(b))Y + c>y such that 8i, Yii 6 yi

8i 6= j, Yij 6 yi, Yij 6 yj ,

8i 6= j,

 
Yii Yij yi
Yij Yjj yj
yi yj 1

!
< 0.

Some subcases are worth considering, showing that it is tight in these situations, that is, (a) the
optimal values are the same as minimizing H(x) and (b) one can recover an optimal x 2 [0, 1]n from
a solution of the problem above:

– “Totally” submodular: if c 6 0, then, following [18], if we take Y
SDP

=

�
(Y, y), 8i 6=

j, Y 2

ij 6 YiiYjj , 8i, y2i 6 Yii 6 1, yi > 0

 
, then by considering any minimizer (Y, y) 2 Y

SDP

and taking x = diag(Y )

1/2 2 [0, 1]n (point-wise square root), we have H(x) = 1

2

b> diag(Y )+

1

2

P
i 6=j AijY

1/2
ii Y 1/2

jj +

P
i ciY

1/2
ii , and since Aij 6 0 and ci 6 0, it is less than trY (A +

Diag(b)) + c>y 6 infx2[0,1]n H(x), and thus x is a minimizer.

– Combinatorial: if b 6 0, then we have: H(x) =
P

i 6=j Aijxixj +
1

2

Pn
i=1

(�bi)xi(1� xi) +

(c+ b/2)>x. Since xixj 6 inf{xi, xj}, Aij 6 0, xi(1� xi) > 0 and bi 6 0, we have

inf

x2[0,1]n
H(x) > inf

x2[0,1]n

X

i 6=j

Aij inf{xi, xj}+ (c+ b/2)>x.

Since the problem above is the Lovász extension of a submodular function the infimum may
be restricted to {0, 1}n. Since for such x, xixj = inf{xi, xj} and xi(1 � xi) = 0, this is
the infimum of H(x) on {0, 1}n, which is itself greater than (or equal) to the infimum on
[0, 1]n. Thus, all infima are equal. Therefore, the usual linear programming relaxation, with
Y
LP

=

�
(Y, y), 8i 6= j, Yij 6 inf{yi, yj}, 8i, Yii 6 yi, 0 6 yi 6 1

 
is tight. We can get a

candidate x 2 {0, 1}n by simple rounding.

– Convex: if A + Diag(b) < 0, we can use the relaxation
�
(Y, y), Y < yy>, y 2 [0, 1]n

 

(which trivally leads to a solution with x = y). But we can also consider the relaxation

Y
cvx

=

�
(Y, y), 8i 6= j,

✓
Yii � y2i Yij � yiyj
Yij � yiyj Yjj � y2j

◆
, 8i, Yii 6 yi

 
. We have then

1

2

tr(A+Diag(b))Y + y>c =

1

2

X

i 6=j

Aij(Yij � yiyj)

+

1

2

X

i

bi(Yii � y2i ) + y>c+
1

2

y>(A+Diag(b))y

=

1

2

X

i 6=j

Aij

q
Yii � y2i

q
Yjj � y2j

+

1

2

X

i

bi(Yii � y2i ) + y>c+
1

2

y>(A+Diag(b))y,

once we minimize with respect to Yij , from which we have, since Aij 6 0, Yij = yiyj +p
Yii � y2i

q
Yjj � y2j . If we denote �i =

p
Yii � y2i , we get an objective functiion equal to

1

2

�>
(A+Diag(b))� +

1

2

y>(A+Diag(b))y + c>y, which is minimized when � = 0 and thus
y is a minimizer of the original problem.
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E.2 Counter-example

By searching randomly among problems with n = 3, and obtaining solutions by looking at all
3

n
= 3

3

= 27 patterns for the n variables being 0, 1 and in (0, 1), for the following function:

H(x
1

, x
2

, x
3

) =

1

200

 
x
1

x
2

x
3

!> �193 �100 �100

�100 317 �100

�100 �100 �45

! 
x
1

x
2

x
3

!
+

1

100

 
x
1

x
2

x
3

!> �146

136

�216

!
,

the global optimum is

 
x
1

x
2

x
3

!
⇡
 

1

0.7445
0

!
, the minimal value of H is approximately �0.3835,

while the optimal value of the semidefinite program is �0.3862. This thus provides a counter-
example.

E.3 With isotonic constraints

We consider the extra constraints: for all (i, j) 2 E, yi > yj , Yii > Yjj , Yij > max{Yjj , yj �
yi + Yii} and Yij 6 max{Yii, yi � yj + Yjj}, which corresponds to xi > xj , x2

i > x2

j , xixj > x2

j ,
xi(1� xi) 6 xi(1� xj), xixj 6 x2

i , and xi(1� xj) > xj(1� xj).

In the three cases presented above, the presence of isotonic constraints leads to the following
modifications:

– “Totally” submodular: because of the extra constraints Yii > Yjj , for all (i, j) 2 E, the potential
solution x = diag(Y )

1/2 satisfies the isotonic constraint and hence we get a global optimum.
– Combinatorial: nothing is changed, the solution is constrained to be in {0, 1}n with the extra

isotonic constraint, implied by yi 6 yj , for all (i, j) 2 E.
– Convex: the original problem is still a convex problem where the constraints yi 6 yj , for all
(i, j) 2 E, are sufficient to impose the isotonic constraints.
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