
Appendix
A Proof of the Theorems in Section 3

We start by introducing the interchangeability principle Dai et al. [2016b], which plays a fundamental
role for Theorem 1.

Lemma 5 (interchangeability principle Dai et al. [2016b]) Let ξ be a random variable on Ξ and
assume for any ξ ∈ Ξ, function g(·, ξ) : R→ (−∞,+∞) is a proper4 and upper semicontinuous5

concave function. Then
Eξ[max

u∈R
g(u, ξ)] = max

u(·)∈G(Ξ)
Eξ[g(u(ξ), ξ)].

where G(Ξ) = {u(·) : Ξ→ R} is the entire space of functions defined on support Ξ.

The result implies that one can replace the expected value of point-wise optima by the optimum value
over a function space. More general results of interchange between maximization and integration can
be found in [Rockafellar and Wets, 1998, Chapter 14] and [Shapiro et al., 2014, Chapter 7].

Proof of Theorem 1: We apply the Fenchel dual form of KL-divergence, we have

KL (q||p) =

〈
q, log

q

p

〉
= max

ν>0
〈q, log ν〉 − 〈p, ν〉+ 1,

and

ν∗ = argmax
ν>0

〈q, log ν〉 − 〈p, ν〉+ 1 =
q

p
.

In fact, these equations are easy to verify by taking the gradient of the objective function and setting
to zero. Plug such variational form into `θ (q), we have

L (θ) = max
q∈P

min
ν∈H+

Ex∼D
[
Eq [log pθ(x|z)− log ν(x, z)] + Ez∼p(z) [ν(x, z)]

]
− 1, (12)

whereH+ denotes the space which contains all positive functions, i.e.,H+ =
{
h : Rd × Rr → R+

}
.

It is easy to verify (12) is concave-convex, therefore, the strong duality holds, which implies,
L (θ) = min

ν∈H+

max
q∈P

Ex∼D
[
Eq [log pθ(x|z)− log ν(x, z)] + Ez∼p(z) [ν (x, z)]

]
− 1

= min
ν∈H+

max
z(x,ξ)∈F

Ex∼D
[
Eξ∼p(ξ) [log pθ (x|z (x, ξ))− log ν (x, z (x, ξ))] + Ez∼p(z) [ν(x, z)]

]
− 1,

where the second equality comes from reparametrization and F denotes the transport mapping
function space. In other words, as long as the F is flexible enough so that containing the function
z∗ (x, ·) transform p(ξ) to q∗(z|x; θ), the equality holds.

Under the mild condition that log pθ(x|·) and log ν (x, ·) are continuous, by applying the interchange-
able principle in Lemma 5, we arrive the conclusion, i.e.,

L (θ) = min
ν∈H+

Ex∼D
[
Eξ∼p(ξ)

[
max
zx,ξ∈Rr

log pθ (x|zx,ξ)− log ν (x, zx,ξ)

]
+ Ez∼p(z) [ν(x, z)]

]
− 1.

Proof of Theorem 2: We take the derivative to (6) w.r.t. z and set to zero, resulting

ηtg
(
x, zt−1

x,ξ;θ

)
− f (z) + f

(
zt−1
x,ξ;θ

)
= 0

⇒ ztx,ξ;θ = f−1
(
ηtg
(
x, zt−1

x,ξ;θ

)
+ f

(
zt−1
x,ξ;θ

))
.

The f−1 exists due to the property of the strongly convexity of ω (·).

4We say g(·, ξ) is proper when {u ∈ R : g(u, ξ) <∞} is non-empty and g(u, ξ) > −∞ for ∀u.
5We say g(·, ξ) is upper semicontinuous when {u ∈ R : g(u, ξ) < α} is an open set for ∀α ∈ R. Similarly,

we say g(·, ξ) is lower semicontinuous when {u ∈ R : g(u, ξ) > α} is an open set for ∀α ∈ R.
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To prove Theorem 3, we first need the lemma Lemma 6, proved by Liu [2017], to guarantee the
inconvertible of the transform.

Lemma 6 ([Liu, 2017]) Let B be a square matrix and ‖B‖F be the Forbenius norm. Let ε be
a positive number such that 0 6 ε 6 1

ρ(B+B>)
, where ρ (·) denotes the spectrum radius. Then,

I + ε
(
B +B>

)
is positive definite, and

log |det (I + εB)| > ε tr (B)− ε2
‖B‖2F

1− ερ (B +B>)
.

Therefore, take an even small ε such that 0 6 ε 6 1
2ρ(B+B>)

, we get

log |det (I + εB)| > ε tr (B)− 2ε2 ‖B‖2F .

Proof of Theorem 3: The conclusion can be obtained by directly applying the Fokker-Planck
Equation. We prove the result by infinitesimal analysis similar to Liu [2017][Appendix A.3].

For a fixed x, recall Tx (z) = z + ηg (x, z), we denote z ∼ q (z|x). With a sufficient small η,
∇Tx (z) = I + η∇g (x, z) is positive definite by lemma Lemma 6. Therefore, we have the inverse
function of T −1

x (z) as

T −1
x (z) = z − ηg (x, z) + o (η) .

The density of Tx (z) can be calculated by change of variables formula,

q′ (z|x) = q
(
T −1
x (z) |x

)
·
∣∣det

(
∇T −1

x (z)
)∣∣ .

Then, we have
log q′ (z|x) = log q

(
T −1
x (z) |x

)
+ log

∣∣det
(
∇T −1

x (z)
)∣∣

= log q (z − ηg (x, z) |x) + log det (z − η∇zg (x, z) + o (η)) + o (η)

= log q (z|x)− η∇z log q (z|x)
>
g (x, z)− η tr (∇zg (x, z)) + o (η)

where the third equation comes from Taylor expansion.

Therefore, by the definition of the derivative of log (·), we have
q′ (z|x)− q (z|x)

η
=

q (z|x) (log q′ (z|x)− log q (z|x))

η
+ o (η)

= −q (z|x)
(
η∇z log q (z|x)

>
g (x, z) + η tr (∇zg (x, z))

)
+ o (η)

= −∇ · (q (z|x) g (x, z)) + o (η) ,

which results the PDE as
∂qt (z|x)

∂t
= −∇ · (qt (z|x) gt (x, z)) .

Recall νt (x, z) = qt(z|x)
p(z) as proved in Theorem 1, we have the PDE as

∂qt (z|x)

∂t
= −∇ ·

(
qt (z|x)∇ log

pθ (x, z)

qt (z|x)

)
= −∇ · (qt (z|x)∇ log pθ (x, z)) + ∆qt (z|x)

= −dKL (qt (z|x) ||pθ (x, z))

dt

=

∥∥∥∥∇ log

(
qt (z|x)

pθ (x, z)

)∥∥∥∥2

Lqt

.

Therefore, the PDE can be viewed as a gradient flow of KL-divergence under 2-Wasserstein met-
ric [Otto, 2001].
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Proof of Theorem 4: The gradient estimator (11) can be directly obtained by applying the chain-
rule with Danskin’s theorem [Bertsekas, 1999]. We provide the derivation below for completeness.

∂L̃ (θ)

∂θ
= Ex∼DEξ∼p(ξ)

[
∂ log pθ (x|z)

∂θ

∣∣∣
z=zTθ (x,ξ)

+
∂ log pθ (x|z)

∂z

∣∣∣
z=zTθ (x,ξ)

∂zTθ (x, ξ)

∂θ

]
− Ex∼DEξ∼p(ξ)

[
∂ log ν∗θ (x, z)

∂z

∣∣∣
z=zTθ (x,ξ)

∂zTθ (x, ξ)

∂θ

]
+ Ex∼DEz∼p(z)

[
∂ν∗θ (x, z)

∂θ

]
− Ex∼DEξ∼p(ξ)

[
∂ log ν∗θ (x, z)

∂θ

∣∣∣
z=zTθ (x,ξ)

]
.

Denote l (θ) = minν∈H+ Ex∼DEz∼p(z) [ν (x, z)] − Ex∼DEξ∼p(ξ)
[
log ν

(
x, zTθ (x, ξ)

)]
, we can

rewrite the third term as
∂l (θ)

∂ν

∣∣∣
ν=ν∗θ

∂ν

∂θ
= Ex∼DEz∼p(z)

[
∂ν∗θ (x, z)

∂θ

]
− Ex∼DEξ∼p(ξ)

[
∂ log ν∗θ (x, z)

∂θ

∣∣∣
z=zTθ (x,ξ)

]
.

Recall the optimality of ν∗θ (x, z), it is easy to verify that ∂l(θ)∂ν

∣∣∣
ν=ν∗θ

= 0, and thus, the third term in

∂L̃(θ)
∂θ is zero.

B Several Variants of CVB

In Section 3, we mainly discussed the most general setting for zTθ (x, ξ), i.e., we conduct optimization
embedding for each pair of (x, ξ) ∈ Rd × Ξ without any disributional form assumption. This
provides the most flexible family for the variational distribution with the extra cost in fitting the dual
function νV (x, z). In this section, we show several variants of CVB which are derived from applying
optimization embedding to the posteriors for each pair with pre-fixed density forms, including
Gaussian, categorical, and flow-based distributions in Section B.1, Section B.2, and Section B.3,
respectively. In other words, we extend the optimization embedding under particular distribution
assumption for each q (z|x). We emphasize that it is still nonparametric since for each x, it owns a
separate posterior. It is different from the vanilla amortized inference in VAE where the posterior
parametrization are shared across all the samples. As we will see, these variants of CVB for pre-fixed
parametric variational family will lead to Kim et al. [2018], Marino et al. [2018] as special cases of
the framework. Finally, we apply the general optimization embedding technique to the parameters in
the vanilla amortized VAE in Section B.4, resulting the parametric CVB.

These variants of CVB sacrifice the approximate ability for better computational efficiency, while still
keep better sample complexity. In summary, we have the variants of CVB illustrated in Algorithm 2.

Algorithm 2 CVB for Parametric Variational Posterior

1: Initialize θ and W randomly, set length of steps T and mirror update f .
2: for epoch k = 1, . . . ,K do
3: Sample mini-batch {xi}mi=1 from dataset D and {ξi}mi=1 from N (0, I).
4: Compute the

{
zTθ (xi, ξi)

}m
i=1

via (16) for Gaussian latent variables, or via (22) for categorical
latent variables, or via (27) for flow-based latent variables.

5: Update θ and W by stochastic gradient ascend with corresponding gradient estimator
∇θL̃ (θ,W ) and∇W L̃ (θ,W ).

6: end for

B.1 Optimization Embedding for Gaussian Latent Variables

We first illustrate applying the optimization embedding for continuous latent variables whose posterior
is assumed as Gaussian, i.e., q (z|x) = N

(
z|φx,diag

(
ψ2
x

))
where {φx, ψx} denote the parameters

depend on x. Therefore, we have z(x, ξ) = φx+ψx ·ξ with ξ ∼ N (0, I). With such parametrization,
the KL-divergence term in the ELBO will have closed-form, therefore, we do not need to introduce
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the dual function ν (x, z). The EBLO, L (θ) becomes

Ex∼DEξ∼N (0,I)

max
φx,ψx

log pθ (x|φx + ψx · ξ) +
1

2
· 1>

(
2 logψx − φ2

x − ψ2
x

)
︸ ︷︷ ︸

`θ(φx,ψx)

 . (13)

Then, we can embed the optimization algorithm for φx, ψx to build up the connection between z(x, ξ)
with θ. Specifically, we write out the updates for φx and ψx,

φt+1
x,θ = f−1

(
ηtgφtx (x, θ) + f

(
φtx,θ

))
, (14)

ψt+1
x,θ = f−1

(
ηtgψtx (x, θ) + f

(
ψtx,θ

))
, (15)

where gφtx (x, θ) and gψtx (x, θ) denote the gradient of `θ (φx, ψx) w.r.t. φx and ψx, respectively. We

can also initialize the
[
φ0
x,θ, ψ

0
x,θ

]
= hW (x), where W will be learned together by SGD. Therefore,

after T steps of the iteration, we have the function zTθ (x, ξ) from Rd × Ξ to Rp as

zTθ (x, ξ) = φTx,θ + ψTx,θ · ξ, ξ ∼ N (0, I) . (16)

Comparing the (16) with the most general (7), although zTθ (x, ξ) is still nonparametric in the sense z
changes individually for each pair (x, ξ), the effect of the parametrization of posterior restricts the
zTθ (x, ξ) to be a special form as derived in (16).

Plug (16) into L (θ), we have the surrogate objective L̃ (θ,W ) defined as

Ex∼DEξ∼N (0,I)

[
log pθ

(
x|zTθ (x, ξ)

)
+

1

2
· 1>

(
2 logψTx,θ −

(
φTx,θ

)2 − (ψTx,θ))2
]
.

Notice that in L̃ (θ,W ), we use optimization embedding cancel the max-operator on {φx, ψx}. More
importantly, we explicitly couple these parameters in the variational distributions with the parameter θ
in the generative model. Then, we can apply the SGD for learning the θ andW . Similar to Theorem 4,
we can derive the gradient estimator of θ as

∂L̃ (θ,W )

∂θ
= Ex∼DEξ∼N (0,I)

[
∂ log pθ (x|z)

∂θ

∣∣∣
z=zTθ (x,ξ)

+
∂ log pθ (x|z)

∂z

∣∣∣
z=zTθ (x,ξ)

∂zTθ (x, ξ)

∂θ

]
+ Ex∼DEξ∼N (0,I)

[
1

2
· 1>

((
2

ψTx,θ
− 2ψTx,θ

)
∂ψTx,θ
∂θ

− 2φTx,θ
∂φTx,θ
∂θ

)]
(17)

As we can see, the first term in (17) and (11) is the same, while the second term is different. Due to
the closed-form of KL-divergence in Gaussian parametrization, we can calculate the gradient w.r.t. θ
of the KL-divergence term in ELBO directly as in (17), while in the general case (11), we need to fit
the ν (x, ξ) for approximating the KL-divergence.

B.2 Optimization Embedding for Categorical Latent Variables

Similarly, the optimization embedding can also be applied to categorical latent variables mod-
els. To ensure the gradient is valid, we approximate the categorical latent variables with Gumbel-
Softmax [Jang et al., 2016, Maddison et al., 2016], i.e.,

qφ (z|x) = Γ (r) τ r−1

(
r∑
i=1

πx,φ,i
zτi

)−r r∏
i=1

(
πx,φ,i

zτ+1
i

)
, (18)

and

zφ,i (x, ξ) =
exp ((φx,i + ξi) /τ)∑r
i=1 exp ((φx,i + ξi) /τ)

, ξi ∼ G (0, 1) , i ∈ {1, . . . , r} , (19)
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with πx,φ,i =
exp(φx,i)∑p
i=1 exp(φx,i)

and G (0, 1) denotes the Gumbel distribution. Denote the initialization
function parametrized by W , follow the same derivation, we have the ELBO, L(θ), as

Ex∼DEξ∼G(0,I)

max
φx

log pθ (x, zφ (x, ξ)) + p log

(
1>

πx,φ
(zφ (x, ξ))

τ

)
− 1> log

πx,φ

(zφ (x, ξ))
τ+1︸ ︷︷ ︸

`θ(φx)

 .
(20)

Similarly, we embed the optimization procedure for φx, resulting

φt+1
x,θ = f−1

(
ηtgφtx,θ (x, θ) + f

(
φtx,θ

))
, (21)

gφtx,θ (x, θ) denotes the gradient of `θ (φx) w.r.t. φ. Therefore, after T steps of the iteration, we have
the function zTθ (x, ξ) from Rd × Ξ to Rr as

zTθ,i (x, ξ) =
exp

((
φTx,θ,i + ξi

)
/τ
)

∑p
i=1 exp

((
φTx,θ,i + ξi

)
/τ
) , ξi ∼ G (0, 1) , i ∈ {1, . . . , r} , (22)

where φ0
x,θ = hW (x). Plug (22) into L (θ), we have the surrogate objective L̃ (θ) defined as

Ex∼DEξ∼G(0,I)

[
log pθ

(
x, zTθ (x, ξ)

)
+ p log

(
1>

πφTx,θ(
zTθ (x, ξ)

)τ
)
− 1> log

πφTx,θ(
zTθ (x, ξ)

)τ+1

]
.

We can follow the chain-rule to calculate the gradient estimator w.r.t. θ and W for L̃ (θ,W ), and
apply the SGD to optimize L̃ (θ,W ) w.r.t. both θ and W .

B.3 Optimization Embedding for Flow-based Latent Variables

In this section, we derive the optimization embedding for the distributions generated by change-
of-variables, i.e., flow-based models. Specifically, we assume that the latent variables follow the
distribution generated by change of variables, i.e.,

qφ (z|x) = p
(
µ−1
φx

(z)
) ∣∣∣∣∣det

∂µ−1
φx

(z)

∂z

∣∣∣∣∣ . (23)

where µφx (·) denotes the bijective function and p (·) denotes some simple distribution. Then, we can
sample z as

zφ (x, ξ) = µφx (ξ) , ξ ∼ p (ξ) . (24)
It is easy to see that the Gaussian and categorical distributed latent variable are just special cases
of the general change-of-variables. There are several carefully designed simple parametric forms
of µφx have been proposed to compromise the invertible requirement and tractability of Jacobian,
e.g., normalizing flow [Rezende and Mohamed, 2015, Tomczak and Welling, 2016], autoregressive
flow [Kingma et al., 2016], and partition flow [Dinh et al., 2016]. The optimization embedding can
be applied to all of these parametrizations. Follow the same derivation, we have the ELBO, L (θ), as

Ex∼DEξ∼p(ξ)

max
φx

log pθ (x, µφx (ξ)) + log p (ξ)− log

∣∣∣∣det
∂µφx (ξ)

∂ξ

∣∣∣∣︸ ︷︷ ︸
`θ(φx)

 . (25)

Similarly, we embed the optimization procedure for the φx, resulting

φt+1
x,θ = f−1

(
ηtgφtx,θ (x, θ) + f

(
φtx,θ

))
, (26)

gφtx,θ (x, θ) denotes the gradient of `θ (φx) w.r.t. φ. Therefore, after T steps of the iteration, we have
the function zTθ (x, ξ) from Rd × Ξ to Rr as

zTθ (x, ξ) = µφTx (ξ) , ξ ∼ p (ξ) , (27)
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where φ0
x = hW (x). Plug (27) into L (θ), we have the surrogate objective L̃ (θ,W ) defined as

Ex∼DEξ∼p(ξ)

log pθ
(
x, µφTx (ξ)

)
+ log p (ξ)− log

∣∣∣∣det
∂µφx (ξ)

∂ξ

∣∣∣∣
∣∣∣∣∣
φx=φTx

 ,
where log

∣∣∣det
∂µφx (ξ)
∂ξ

∣∣∣ ∣∣∣∣∣
φx=φTx

denotes the log-determinant value of ∂µφx (ξ)
∂ξ with φx set to be φTx .

We can follow the chain-rule to calculate the gradient estimator w.r.t. θ and W for L̃ (θ,W ), and
apply the SGD to optimize L̃ (θ,W ) w.r.t. both θ and W .

B.4 Parametric Optimization Embedding

We have demonstrated the optimization embedding to generate the nonparametric variational distribu-
tions, either in the form of arbitrary flow or individual pre-fixed distribution for each sample. In fact,
the optimization embedding is so general that its stochastic variant can be even applied to the parame-
ters of the vanilla amortized VAE. Specifically, we take qφ (z|x) = N

(
µφ1

(x) ,diag
(
σ2
φ2

(x)
))

as
an example, the ELBO becomes

max
φ

Ex∼DEξ∼N (0,I)

[
log pθ (x|µφ1

(x) + σφ2
(x) · ξ) +

1

2
· 1>

(
2 log σφ2

(x)− µφ1
(x)− σ2

φ2
(x)
)]
.

(28)
Since the variable φ is global, the calculation of the gradient w.r.t. φ requires visiting the whole
dataset. However, we can use stochastic gradient. Then, the stochastic optimization procedure for
global parameter φ from φ0 can be embedded as

φt+1
θ = f−1

(
ηtĝφtθ (θ) + f

(
φtθ
))
, (29)

where ĝ denote the stochastic approximation of the true gradient. Plug φT (θ) into L
(
θ, φ0

)
, we

have the surrogate objective L̃
(
θ, φ0

)
defined as

Ex∼DEξ∼N (0,I)

[
log pθ

(
x|µφT

1,θ
(x) + σφT

2,θ
(x) · ξ

)
+

1

2
· 1>

(
2 log σφT

2,θ
(x)− µφT

1,θ
(x)− σ2

φT
2,θ

(x)
)]
.

We can follow the chain-rule to calculate the gradient estimator for L̃
(
θ, φ0

)
, and apply the SGD to

optimize w.r.t. θ and φ0.

The significant difference between the parametric CVB and the CVB with Gaussian latent variable
in Section B.1 is the optimization embedding objects: the former is w.r.t. the global amortized
variational distribution parameters, while the latter one is w.r.t. the local variables for each sample x.
Meanwhile, the key difference between parametric CVB and the vanilla amortized VAE is that the
calculation of the gradient w.r.t. θ now need to back-propagate through φTθ . With the increasing of T ,
the computation cost will be increasing. Therefore, in practice, one needs to balance the embedding
accuracy and the computational cost by tuning T .

C Hybrid CVB

As we discussed in Section 4, the optimization embedding with optimal dual and the Langevin
dynamics are all follows the gradient flow in 2-Wasserstein metric, just with different Fokker-Plank
equations. Therefore, it is nature to combine the proposed optimization embedding with Langevin
dynamcis, therefore, we have a stochastic mapping from Rd × Ξ→ Rr as

ztx,ξ0;θ = (1− λ) f−1
(
ηtg
(
x, zt−1

x,ξ0;θ

)
+ f

(
zt−1
x,ξ0;θ

))
(30)

+ λ
(
zt−1
x,ξ;θ + ηt∇ log pθ (x, z) + 2

√
ηξt−1

)
, (31)

where ξi ∼ N (0, I) and λ ∈ {0, 1}.
We can replace the optimization embedding in Algorithm 1 with the hybrid embedding, which
achieves the hybrid CVB.

17



0 10 20 30 40 50 60 70 80
# training epochs

100

110

120

130

140

te
st

 E
LB

O

MNIST Categorical Latent
CVB
Gumbel-ST

0 10 20 30 40 50 60 70 80
# training epochs

115
120
125
130
135
140
145
150

te
st

 E
LB

O

MNIST Bernoulli Latent
CVB
Gumbel-ST

Figure 4: Convergence speed comparison in terms of number epoch on MNIST for discrete latent
variable models. The CVB achieves better test ELBO with faster convergence speed comparing to
the original Gumbel-Softmax parametrization for both categorial and Bernoulli distributed latent
variables.

D Additional Experiments

D.1 Generality on Discrete Latent Variable Models

We test the CVB on categorical and binary latent variable model on MNIST. We utilize the Gumbel-
Softmax to relax the distribution over the discrete latent variables and apply the optimization em-
bedding variant introduced in Section B.2. We conduct comparison between the CVB on discrete
latent variable models with the VAE with Gumbel-Softmax reparametrization trick [Jang et al., 2016],
which is the current state-of-the-art. The results are illustrated in Figure 4. We can see that the
parametrized CVB achieves better performance in a faster speed.

D.2 Additional Results on Generative Ability

The additional experimental results on MNIST and CelebA via the variants of CVB in Appendix B.1
and Appendix B.4, respectively, are illustrated in Figure 5 and Figure 6.
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Figure 5: Generated images for MNIST dataset by CVB.
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Figure 6: Generated images for CelebA dataset by CVB.
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