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Abstract

We present MubyNet – a feed-forward, multitask, bottom up system for the inte-
grated localization, as well as 3d pose and shape estimation, of multiple people
in monocular images. The challenge is the formal modeling of the problem that
intrinsically requires discrete and continuous computation, e.g. grouping people vs.
predicting 3d pose. The model identifies human body structures (joints and limbs)
in images, groups them based on 2d and 3d information fused using learned scoring
functions, and optimally aggregates such responses into partial or complete 3d
human skeleton hypotheses under kinematic tree constraints, but without knowing
in advance the number of people in the scene and their visibility relations. We
design a multi-task deep neural network with differentiable stages where the person
grouping problem is formulated as an integer program based on learned body part
scores parameterized by both 2d and 3d information. This avoids suboptimality
resulting from separate 2d and 3d reasoning, with grouping performed based on the
combined representation. The final stage of 3d pose and shape prediction is based
on a learned attention process where information from different human body parts
is optimally integrated. State-of-the-art results are obtained in large scale datasets
like Human3.6M and Panoptic, and qualitatively by reconstructing the 3d shape
and pose of multiple people, under occlusion, in difficult monocular images.

1 Introduction

The recent years have witnessed a resurgence of human sensing methods for body keypoint estimation
[1; 2; 3; 4; 5; 6; 7] as well as 3d pose and shape reconstruction [8; 9; 10; 11; 12; 13; 14; 15; 16; 17;
18; 19; 20; 21]. Some of the challenges are in the level of modeling – shifting towards accurate 3d
pose and shape, not just 2d keypoints or skeletons –, and the integration of 2d and 3d reasoning with
automatic person localization and grouping. The discrete aspect of grouping and the continuous
nature of pose estimation makes the formal integration of such computations difficult. In this
paper we propose a novel, feedforward deep network, supporting different supervision regimes,
that predicts the 3d pose and shape of multiple people in monocular images. We formulate and
integrate human localization and grouping into the network, as a binary linear integer program with
optimal solution based on learned body part compatibility functions constructed using 2d and 3d
information. State-of-the-art results on Human3.6M and Panoptic illustrate the feasibility of the
proposed approach.

Related Work. Several authors focused on integrating different human sensing tasks into a single-
shot end-to-end pipeline[22; 23; 24; 13]. The models are usually designed to handle a single person
and often rely on a prior stage of detection. [13] encode the 3d information of a single person inside
a feature map forcing the network to output 3d joint positions for each semantic body joint at its
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corresponding 2d location. However, if some joints are occluded or hard to recover, their method
may not provide accurate estimates. [9] use a discretized 3d space around the person, from which
they read 3d joint activations. Their method is designed for one person and cannot easily be extended
to handle large, crowded scenes. [25] use Region Proposal Networks [26] to obtain human bounding
boxes and feeds them to predictive networks to obtain 2d and 3d pose. [27] provide a framework for
the 3d human pose and shape estimation of multiple people. They start with a feedforward semantic
segmentation of body parts, and 3d pose estimates based on DMHS [22], then refine the pose and
shape parameters of a human body model [12] using non-linear optimization based on semantic
fitting – a form of feedback. In contrast, we provide an integrated, yet feedforward, bottom up deep
learning framework for multi-person localization as well as 3d pose and shape estimation.

One of the challenges in the visual sensing of multiple people is grouping – identifying the components
belonging to each person, their level of visibility, and the number of people in the scene. Our network
aggregates different body joint proposals represented using both 2d and 3d information, to hypothesize
limbs, and later these are assembled into person instances based on the results of a joint optimization
problem. To address the arguably simpler, yet challenging problem of locating multiple people
in the image (but not in 3d) [1] assign their network the task of regressing an additional feature
map, where a slice encodes either the x or y coordinate of the normalized direction of ground-truth
limbs. The information is redundant, as it is placed on the 2d projection of the ground truth limbs,
within a distance σ from the line segment. Such part affinity fields are used to represent candidate
part detection associations. The authors provide several solutions, one that is global but inefficient
(running times of 6 minutes/image being common) and one greedy. In the greedy algorithm, larger
human body hypotheses (skeletons) are grown incrementally by solving a series of intermediate
bipartite matching problems along kinematic trees. While the algorithm is efficient, it cannot be
immediately formalized as a cost function with global solution, it relies solely on 2d information, and
the affinity functions are handcrafted. In contrast, we provide a method that leverages a volumetric 3d
scene representation with learned scoring functions for the component parts, and an efficient global
linear integer programming solution for person grouping with kinematic constraint generation, and
amenable to efficient solvers (e.g. 30ms/image).

Figure 1: Our multiple person sensing pipeline, MubyNet. The model is feed-forward and supports
simultaneous multiple person localization, as well as 3d pose and shape estimation. Multitask losses
constrain the output of the Deep Volume Encoding, Limb Scoring and 3D Pose & Shape Estimation
modules. Given an image I , the processing stages are as follows: Deep Feature Extractor to compute
features MI , Deep Volume Encoding to regress volumes containing 2d and 3d pose information VI .
Limb Scoring collects all possible kinematic connections between 2d detected joints given their type,
and predicts corresponding scores c, Skeleton Grouping performs multiple person localization, by
assembling limbs into skeletons, Vp

I , by solving a binary integer linear program. For each person,
the 3D Pose Decoding & Shape Estimation module estimates the 3d pose and shape (jp3d,θ

p,βp).

2 Methodology

Our modeling and computational pipeline is shown in fig.1. The image is processed using a deep
convolutional feature extractor to produce a representation MI . This is passed to a deep volume
encoding module containing multiple 2d and 3d feature maps concatenated as VI = MI ⊕M2d ⊕
M3d. The volume encoding is passed to a limb scoring module that identifies different human body
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joint hypotheses and their type in images, connects ones that are compatible (can form parent-child
relations in a human kinematic tree), and assigns them scores 1 given input features sampled in the
deep volume encoding VI , along the spatial direction connecting their putative image locations. The
resulting scores are assembled in a vector c and passed to a binary integer programming module
that optimally computes skeletons for multiple people under kinematic constraints. The output is the
original dense deep volume encoding Vp

I , annotated now with additional person skeleton grouping
information. This is passed to a final stage, producing 3d pose and shape estimates for each person
based on attention maps and deep auto-encoders.

Figure 2: The volume encoding of multiple 3d ground truth skeletons in a scene. We associate a slice
(column) in the volume to each one of the NJ × 3 joint components. We encode each 3d skeleton jp3d
associated to a person p, by writing each of its components in the corresponding slice, but only for
columns ‘intercepting’ spatial locations associated with the image projection of the skeleton.

Figure 3: (a) Detailed view of a single stage t of our multi-stage Deep Volume Encoding (2d/3d)
module. The image features MI , as well as predictions from the previous stage, Mt−1

3d and Mt−1
2d ,

are used to refine the current representations Mt
3d and Mt

2d. The multi-stage module outputs VI ,
which represents the concatenation of MI , M2d =

∑
t M

t
2d and M3d =

∑
t M

t
3d. (b) Detail of the

3D Pose Decoding & Shape Estimation module. Given the estimated volume encoding VI , and the
additional information from the estimation of person partitions Vp

I , we decode the 3d pose jp3d. By
using auto-encoders, we recover the model pose and shape parameters (θp,βp).

Given a monocular RGB image I ∈ Rh×w×3, our goal is to recover the set of persons P present
in the image, where (jp2d, j

p
3d,θ

p,βp, tp) ∈ P with 1 ≤ p ≤ |P |, j2d ∈ R2NJ×1 is the 2d skeleton,
j3d ∈ R3NJ×1 is the 3d skeleton, (θ,β) ∈ R82×1 is the SMPL [12] shape embedding, and t ∈ R3×1

is the person’s scene translation.

2.1 Deep Volume Encoding (2d/3d)

Given the resolution of the input image, the resolution of the final maps produced by the network
is H × W with the network resolution of final maps h × w. For the 2d and 3d skeletons, we
adopt the Human3.6M [28] representation, with NJ = 17 joints and NL = 16 limbs. We refer to
K ∈ {0, 1}NJ×NJ as the kinematic tree, where K(i, j) = 1 means that nodes i and j are endpoints
of a limb, in which i is the parent and j the child node. We denote by MI ∈ Rh×w×128 the image

1At this stage there is no person assignment so body joints very far apart have a putative connection as long
as they are kinematically compatible.

3



features, by M2d ∈ Rh×w×NJ the 2d human joint activation maps, and by M3d ∈ Rh×w×3NJ a
volume that densely encodes 3d information.

We start with a deep feature extractor (e.g. VGG-16, module MI ). Our pipeline progressively
encodes volumes of intermediate 2d and 3d signals (i.e. M2d and M3d) which are decoded by
specialized layers later on. An illustration is given in fig. 3. The processing in modules such as Deep
Volume Encoding is multi-stage [29; 22]. The input and the results of previous stages of processing
are iteratively fed into the next, for refinement. We use different internal representations than [29; 22],
and rely on a single supervised loss at the end of the multi-stage chain of processing, where outputs
(activation maps) are fused and compared against ground truth. We found this approach to converge
faster and produce slightly better results than the more standard per-stage supervision [29; 22].

We construct a representation combining 2d and 3d information capable of encoding multiple people
in the following way: given an input image I , our Deep Volume Encoding module produces an
output tensor M3d containing the 3d structure of all people present in the image. At training
time, for any ground-truth person p with gp

2d, gp
3d joints, kinematic tree structure K, and limbs

L2d = {(i, j)|K(i, j) = 1, i, j ∈ N, 1 ≤ i, j ≤ Nj}, we define a ground-truth volume G3d.
For all points (x, y) on the line segment of any limb l ∈ L2d connecting joints in gp

2d, we set
G3d(x, y) = (gp

3d)
>. The procedure is illustrated in fig. 2. This module also produces M2d, which

encodes 2d joints activations. The corresponding ground-truth volume, G2d, will be composed of
confidence maps, one for each joint type aggregating Gaussian peaks placed at the corresponding 2d
joint positions. The loss function will then measure the error between the predicted M3d,M2d and
the ground-truth G3d,G2d

LI =
∑

1≤x≤h,1≤y≤w

ρ2d(M2d(x, y),G2d(x, y)) +
∑

1≤x≤h,1≤y≤w
G3d(x,y) is valid

ρ3d(M3d(x, y),G3d(x, y)) (1)

We choose ρ2d to be the squared Euclidean loss, and ρ3d the mean per-joint 3d position error
(MPJPE). We explicitly train the network to output redundant 3d information along the 2d projection
of a person’s limbs. In this way, occlusion, blurry or hard-to-infer cases do not negatively impact the
final, estimated {jp3d}, in a significant way.

2.2 Skeleton Grouping

Our skeleton grouping strategy relies on detecting potential human body joints and their type in
images, assembling putative limbs, scoring them using trainable functions, and solving a global,
optimal assignment problem (binary integer linear program) to find all connected components
satisfying strong kinematic tree constraints – each component being a different person.

Limb Scoring

By accessing the M2d maps in VI we extract, via non-max suppression, N joint proposals J =
{i|1 ≤ i ≤ N}, with t an index set of J such that if i ∈ J , t(i) ∈ {1, . . . , NJ} is the joint type of
i (e.g. shoulder, elbow, knee, etc.). The list of all the feasible kinematic connections (i.e. limbs) is
then L = {(i, j)|K(i, j) = 1, i, j ∈ N, 1 ≤ i, j ≤ |J |}. One needs a function to assess the quality of
different limb hypotheses. In order to learn the scoring c, an additional network layer Limb Scoring is
introduced. This takes as input the volume encoding map VI , and passes the result through a series
of Conv/ReLU operations to build a map Mc ∈ Rh×w×128. A subsequent process over Mc and M2d

builds the candidate limb list L by sampling a fixed number Nsamples of features from Mc for every
l ∈ L, along the 2d direction of l. The resulting features have dimensions NL×Nsamples× 128, and
are passed to a multi-layer perceptron head followed by a softmax non-linearity to regress the final
scoring c ∈ [0, 1]NL×1. Supervision is applicable on outputs of Limb Scoring, via a cross-entropy
loss Lc. Any dataset containing 2d annotations of human body limbs can be used for training.

People Grouping as a Binary Integer Programming Problem

The problem of identifying the skeletons of multiple people is posed as estimating the optimal L∗ ⊆ L
such that graphG = (J, L∗) has properties (i) any connected component ofG falls on a single person,
(ii) ∀p, q ∈ L∗, p = (i1, j1) and q = (i2, j2) with t(i1) = t(i2) and t(j1) = t(j2): if j1 = j2 then
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i1 6= i2 and if i1 = i2 then j1 6= j2 – these constraints ensure that connected components select at
most one joint of a given type, and (iii) the connected components are as large as possible.

Computing L∗ is equivalent to finding a binary indicator x ∈ {0, 1}|L|×1 in the set L. We can encode
the kinematic constraints (ii), by iterating over all limbs p ∈ L, and finding all the limbs q ∈ L
that connect the same type of joints as p, and also share an end-point with it. Clearly, for any p,
the solution x can select at most one of these limbs q. This can be written row-by-row, as a sparse
matrix A ∈ {0, 1}|L|×|L|, that constrains x such that Ax ≤ b, where b is the all-ones vector 1|L|.
In order to satisfy requirement (i), we need a cost that well qualifies the semantic and geometrical
relationships between elements of the scene, learned as explained in the Limb Scoring paragraph
above. The limb score c(l),∀l ∈ L measures how likely is that l is a limb of a person with the
particular joint endpoint types. To satisfy requirement (iii), we need to encourage the selection of as
many limbs as possible while still satisfying kinematic constraints. Given all these, the problem can
naturally be modeled as a binary integer program

x∗(c) = argmax
x

c>x, subject to Ax ≤ b,x ∈ {0, 1}NL×1 (2)

where an approximation to the optimal c∗ = argmaxc x
∗(c)>gc is learned within the Limb Scoring

module. At testing time, given the learned scoring c, we apply (2) to compute the final, binarized
solution x∗ obeying all constraints. The global solution is very fast and accurate taking in the order
of milliseconds per images with multiple people, as shown in the experimental section.

2.3 3d Pose Decoding and Shape Estimation

An immediate way of decoding the M3d volume into 3d pose estimates for all the persons in the
image, is to simply average 3d skeleton predictions at spatial locations given by the limbs selected
by the people grouping module. However, this does not take into account the differences in joint
visibility. We propose to learn a function that selectively attends to different regions in the M3d

volume, when decoding the 3d position for each joint. Given the feature volume Vp
I of a person and

its identified skeleton, we collect a fixed number of samples along the direction of each 2d limb (see
fig. 3 (b)). We train a multilayer perceptron to assign a score (weight) to each sample and for each
3d joint. The final predicted 3d skeleton jp3d is the weighted sum of the 3d samples encoded in Mp

3d.
The loss Lp

3d is computed as the MPJPE between jp3d and the ground truth skeleton gp
3d.

In order to further represent the 3d shape of each person, we use a SMPL-based human model
representation [12] controlled by a set of parameters θ ∈ R72×1, which encode joint angle rotations,
and β ∈ R10×1 body dimensions, respectively. The model vertices are obtained as a function
V(θ,β) ∈ R6890×3, and the joints as the product js = Rvec(V) ∈ R3NJ×1, where R is a regression
matrix and V is the matrix of all 3d vertices in the final mesh. Our goal is to map the predicted j3d
into a pair (θ,β) that best explains the 3d skeleton. Previous approaches [14] formulated this task
as a supervised problem of regressing (θ,β), or forcing the projection of js to match 2d estimates
j2d. The problem is at least two-fold: 1) θ encode axis-angle transformations that are cyclic in the
angle and not unique in the axis, 2) regression on (θ,β) does not balance the importance of each
parameter (e.g., the global rotation encoded in θ0 is more important than the right foot rotation,
encoded in a θi) in correctly inferring the full 3d body model. To address such difficulties, we model
the problem as unsupervised auto-encoding inside a deep network, where the code is (θ,β), and the
decoder is Rvec(V(θ,β)), which is a specialized layer. This is a natural approach, as the loss is then
simply Ls

3d = ρ3d(j3d, js), which does not force θ to have a unique or a specific value, and naturally
balances the importance of each parameter. Additionally, the task is unsupervised. The encoder is a
simple MLP with ReLUs as non-linearities. To account for the unnatural twists along limb directions
that may appear, and the fact that β is not unique for a 3d skeleton (it is unique only for a given V),
we also include in the loss function a GMM prior on the θ parameters, and a L2 prior on β. For those
examples where we have ‘ground-truth’ (θ,β) parameters available, they are fitted in a supervised
manner using images and their corresponding shape and pose targets. The 3d loss can be derived as

L3d = Ls
3d + L

p
3d (3)

3 Experiments

We provide quantitative results on two datasets, Human3.6m [28] and CMU Panoptic [30] as well as
qualitative 3d reconstructions for complex images.
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Human3.6m [28] is a large, single person dataset with accurate 2d and 3d ground truth obtained
from a motion capture system. The dataset contains 15 actions performed by 11 actors in a laboratory
environment. We provide results on the withheld, official test set which has over 900,000 images, as
well as on the Human80K test set [31]. Human80K is a smaller, representative subset of Human3.6m.
It contains 80,000 images (55, 144 for training and 24, 416 for testing). While this dataset does not
allow us to assess the quality of sensing multiple people, it allows us to extensively evaluate the
performance of our single-person component pipeline.

CMU Panoptic [30] is a dataset that contains multiple people performing different social activities
(e.g. society games, playing instruments, dancing) in an indoor dome where multiple cameras are
placed. We will only consider the monocular case for both training and testing. The setup is difficult
due to multiple people interacting, partial views and challenging camera angles. Following [27], we
test our method on 9, 600 sequences selected from four activities: Haggling, Mafia, Ultimatum, and
Pizza and two cameras, 16 and 30 (we run the monocular system on each camera, independently, and
the total errors are averaged).

Training Procedure. We use multiple datasets with different types of annotations for training our
network. Specifically, we first train our M2d component on COCO [32] which contains a large variety
of images with multiple people in natural scenes. Then, we use the Human80K dataset to learn the
3d volume M3d, once M2d is fixed. Human80K contains accurate 3d joint positions annotations,
however limited to single person, fully visible images, recorded in a laboratory setup. We further
use the CMU Panoptic dataset for fine-tuning the M3d component on images with multiple people
and for a large variety of (monocular) viewpoints, which results in occlusions and partial views.
Based on the learned 2d joint map activations M2d, the 3d volume M3d and the image features
MI , we proceed to learn the limb scoring function, c. For this task we use the COCO dataset. The
attention-based decoding is learned on CMU Panoptic since having multiple people in the same scene
helps the decoder understand the difficult poses and learn where to focus in the case of occlusions
and partially visible people. Finally, Human80K is used to learn the 3d shape auto-encoder due to its
variability in body pose configurations. We use a Nesterov solver with a learning rate of 1e− 5 and a
momentum of 0.9. Our models are implemented in Caffe [33].

Figure 4: (Left) The distribution of the learned score c compared to the distribution of the selected
limbs x∗ after optimizing (2). Note that in the learned limb probability scores there are already
many components close to 0 or 1 which indicates a well tuned function. (Right) Running time of
our Binary Linear Integer Programming solver as a function of the number of components, dim(x).
Notice fast running times for global solutions.

Experimental Results. Table 2 (left) provides results of our method on Human80K. Firstly, we
show the performance without the attention-based decoding (simply averaging 3d skeletons at 2d
locations in M3d volume). This setup already performs better than DMHS [22]. Note that DMHS
uses ground truth person bounding boxes while our method runs on full images. Our method with
attention-based decoding obtains state-of-the art results on Human80K dataset. We also provide
results on the withheld test set of Human3.6m (over 900,000 images), where we considerably improve
over the state-of-the art (60 mm compared to 73 mm error). Results are detailed for each action in
table 1. For the CMU Panoptic dataset, results are shown for each action in table 2 (right). When our
method uses only Human80K as supervision for the 3d task, it already performs better than [27]. In
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table 2 (right) we also show results with a fine-tuned version of our method on the Panoptic dataset.
We sampled data from the Haggling, Mafia, Ultimatum actions (different recordings than those in test
data) and from all cameras for fine-tuning our model. We obtained a total of 74, 936 data samples
where the number of people per image ranges from 1 to 8. Our fine-tuned method improves the
previous results by a large margin – notice errors of 72.1 mm down from 150.3 mm.

We show visual results of our method on natural images with complex interactions in fig. 5. We are
able to correctly identify all the persons in an image as well as their associated 3d pose configuration,
even when they are far in depth (first row) or severely occluded (last four rows).

Limb Scoring. In fig. 4 (left) we show the distribution of the learned scores c for the kinematically
admissible putative limbs and the distribution of the optimal limb indicator vector components x∗
over 100 images from the COCO validation set. The learned limb scoring already has many of its
components close to either 0 or 1, although a considerable number still are ‘undecided’ resulting in
non-trivial integer programming problems. We tested the average time taken by the binary integer
programming solver as a function of the number of detected limbs (the length of the score vector c).
Figure 4 (right) shows that the method scales favorably with the number of components, i.e. dim(x).

Method A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 Mean
[22] 60 56 68 64 78 67 68 106 119 77 85 64 57 78 62 73
[27] 54 54 63 59 72 61 68 101 109 74 81 62 55 75 60 69
MubyNet 49 47 51 52 60 56 56 82 94 64 69 61 48 66 49 60

Table 1: Mean per joint 3d position error (in mm) on the Human3.6M dataset. MubyNet improves
the state-of-the-art by a large margin for all actions.

Method MPJPE(mm)
[22] 63.35
MubyNet 59.31
MubyNet attention 58.40

Method Haggling Mafia Ultimatum Pizza Mean
[22] 217.9 187.3 193.6 221.3 203.4
[27] 140.0 165.9 150.7 156.0 153.4
MubyNet 141.4 152.3 145.0 162.5 150.3
MubyNet fine-tuned 72.4 78.8 66.8 94.3 72.1

Table 2: Mean per joint 3d position error (in mm). (Left) Human80K dataset. Our method with a mean
decoding of the 3d volume obtains state-of-the art results. Adding the attention mechanism further improves
the performance. (Right) CMU Panoptic dataset. Our method with 3d supervision only from Human80K
performs better than previous works. Fine-tuning on the CMU Panoptic dataset drastically reduces the error.

4 Conclusions

We have presented a bottom up trainable model for the 2d and 3d human sensing of multiple people in
monocular images. The proposed model, MubyNet, is multitask and feed-forward, differentiable, and
thus conveniently supports training all component parameters. The difficult problem of localizing and
grouping people is formulated as a binary linear integer program, and solved globally and optimally
under kinematic problem domain constraints and based on learned scoring functions that combine
2d and 3d information for accurate reasoning. Both 3d human pose and shape are computed in a
final predictive stage that fuses information based on learned attention maps and deep auto-encoders.
Ablation studies and model component analysis illustrate the adequacy of various design choices
including the efficiency of our global, binary integer linear programming solution, under kinematic
constraints, for the human grouping problem. Our large-scale experimental evaluation in datasets like
Human3.6M and Panoptic, and for withheld test sets of over 1 million samples, offers competitive
results. Qualitative examples show that our model can reliably estimate the 3d properties of multiple
people in natural scenes, with occlusion, partial views, and complex backgrounds.
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SEED, CNCS-UEFISCDI (PN-III-P4-ID-PCE-2016-0535, PN-III-P4-ID-PCCF-2016-0180), the EU Horizon
2020 grant DE-ENIGMA (688835), and SSF.
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Figure 5: Human pose and shape reconstruction of multiple people produced by MubyNet illustrate
good 3d estimates for distant people, complex poses or occlusion. For global translations, we optimize
the Euclidean loss between the 2d joint detections and the projections predicted by our 3d models.
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