
Appendix A Proof of the Instantaneous Change of Variables Theorem

Theorem (Instantaneous Change of Variables). Let z(t) be a finite continuous random variable with probability
p(z(t)) dependent on time. Let dz

dt
= f(z(t), t) be a differential equation describing a continuous-in-time

transformation of z(t). Assuming that f is uniformly Lipschitz continuous in z and continuous in t, then the
change in log probability also follows a differential equation:

∂ log p(z(t))

∂t
= −tr

�
df

dz
(t)

�

Proof. To prove this theorem, we take the infinitesimal limit of finite changes of log p(z(t)) through time. First
we denote the transformation of z over an ε change in time as

z(t+ ε) = Tε(z(t)) (14)

We assume that f is Lipschitz continuous in z(t) and continuous in t, so every initial value problem has a unique
solution by Picard’s existence theorem. We also assume z(t) is bounded. These conditions imply that f , Tε, and
∂
∂z

Tε are all bounded. In the following, we use these conditions to exchange limits and products.

We can write the differential equation ∂ log p(z(t))
∂t

using the discrete change of variables formula, and the
definition of the derivative:

∂ log p(z(t))

∂t
= lim

ε→0+

log p(z(t))− log
��det ∂

∂z
Tε(z(t))

��− log p(z(t))

ε
(15)

= − lim
ε→0+

log
��det ∂

∂z
Tε(z(t))

��
ε

(16)

= − lim
ε→0+

∂
∂ε

log
��det ∂

∂z
Tε(z(t))

��
∂
∂ε

ε
(by L’Hôpital’s rule) (17)

= − lim
ε→0+

∂
∂ε

��det ∂
∂z

Tε(z(t))
��

��det ∂
∂z

Tε(z(t))
��

�
∂ log(z)

∂z

����
z=1

= 1

�
(18)

= −
�

lim
ε→0+

∂

∂ε

����det
∂

∂z
Tε(z(t))

����
�

� �� �
bounded

�
lim

ε→0+

1��det ∂
∂z

Tε(z(t))
��

�

� �� �
=1

(19)

= − lim
ε→0+

∂

∂ε

����det
∂

∂z
Tε(z(t))

���� (20)

The derivative of the determinant can be expressed using Jacobi’s formula, which gives

∂ log p(z(t))

∂t
= − lim

ε→0+
tr
�

adj
�

∂

∂z
Tε(z(t))

�
∂

∂ε

∂

∂z
Tε(z(t))

�
(21)

= −tr




�
lim

ε→0+
adj

�
∂

∂z
Tε(z(t))

��

� �� �
=I

�
lim

ε→0+

∂

∂ε

∂

∂z
Tε(z(t))

�

 (22)

= −tr
�

lim
ε→0+

∂

∂ε

∂

∂z
Tε(z(t))

�
(23)

Substituting Tε with its Taylor series expansion and taking the limit, we complete the proof.

∂ log p(z(t))

∂t
= −tr

�
lim

ε→0+

∂

∂ε

∂

∂z

�
z+ εf(z(t), t) +O(ε2) +O(ε3) + . . .

��
(24)

= −tr
�

lim
ε→0+

∂

∂ε

�
I +

∂

∂z
εf(z(t), t) +O(ε2) +O(ε3) + . . .

��
(25)

= −tr
�

lim
ε→0+

�
∂

∂z
f(z(t), t) +O(ε) +O(ε2) + . . .

��
(26)

= −tr
�

∂

∂z
f(z(t), t)

�
(27)
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A.1 Special Cases

Planar CNF. Let f(z) = uh(wz + b), then ∂f
∂z

= u ∂h
∂z

T. Since the trace of an outer product is the inner
product, we have

∂ log p(z)

∂t
= −tr

�
u
∂h

∂z

T
�

= −uT
∂h

∂z
(28)

This is the parameterization we use in all of our experiments.

Hamiltonian CNF. The continuous analog of NICE (Dinh et al., 2014) is a Hamiltonian flow, which splits
the data into two equal partitions and is a volume-preserving transformation, implying that ∂ log p(z)

∂t
= 0. We

can verify this. Let
� dz1:d

dt
dzd+1:D

dt

�
=

�
f(zd+1:D)
g(z1:d)

�
(29)

Then because the Jacobian is all zeros on its diagonal, the trace is zero. This is a volume-preserving flow.

A.2 Connection to Fokker-Planck and Liouville PDEs

The Fokker-Planck equation is a well-known partial differential equation (PDE) that describes the probability
density function of a stochastic differential equation as it changes with time. We relate the instantaneous change
of variables to the special case of Fokker-Planck with zero diffusion, the Liouville equation.

As with the instantaneous change of variables, let z(t) ∈ RD evolve through time following dz(t)
dt

= f(z(t), t).
Then Liouville equation describes the change in density of z–a fixed point in space–as a PDE,

∂p(z, t)

∂t
= −

D�

i=1

∂

∂zi
[fi(z, t)p(z, t)] (30)

However, (30) cannot be easily used as it requires the partial derivatives of p(z,t)
∂z

, which is typically approximated
using finite difference. This type of PDE has its own literature on efficient and accurate simulation (Stam, 1999).

Instead of evaluating p(·, t) at a fixed point, if we follow the trajectory of a particle z(t), we obtain

∂p(z(t), t)

∂t
=

∂p(z(t), t)

∂z(t)

∂z(t)

∂t� �� �
partial derivative from first argument, z(t)

+
∂p(z(t), t)

∂t� �� �
partial derivative from second argument, t

=
✘✘✘✘✘✘✘✘✘D�

i=1

∂p(z(t), t)

∂zi(t)

∂zi(t)

∂t
−

D�

i=1

∂fi(z(t), t)

∂zi
p(z(t), t)−

✘✘✘✘✘✘✘✘✘✘D�

i=1

fi(z(t), t)
∂p(z(t), t)

∂zi(t)

= −
D�

i=1

∂fi(z(t), t)

∂zi
p(z(t), t)

(31)

We arrive at the instantaneous change of variables by taking the log,

∂ log p(z(t), t)

∂t
=

1

p(z(t), t)

∂p(z(t), t)

∂t
= −

D�

i=1

∂fi(z(t), t)

∂zi
(32)

While still a PDE, (32) can be combined with z(t) to form an ODE of size D + 1,

d

dt

�
z(t)

log p(z(t), t)

�
=

�
f(z(t), t)

−�D
i=1

∂fi(z(t),t)
∂t

�
(33)

Compared to the Fokker-Planck and Liouville equations, the instantaneous change of variables is of more
practical impact as it can be numerically solved much more easily, requiring an extra state of D for following
the trajectory of z(t). Whereas an approach based on finite difference approximation of the Liouville equation
would require a grid size that is exponential in D.

Appendix B A Modern Proof of the Adjoint Method

We present an alternative proof to the adjoint method (Pontryagin et al., 1962) that is short and easy to follow.
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B.1 Continuous Backpropagation

Let z(t) follow the differential equation dz(t)
dt

= f(z(t), t, θ), where θ are the parameters. We will prove that if
we define an adjoint state

a(t) =
dL

dz(t)
(34)

then it follows the differential equation

da(t)

dt
= −a(t)

∂f(z(t), t, θ)

∂z(t)
(35)

For ease of notation, we denote vectors as row vectors, whereas the main text uses column vectors.

The adjoint state is the gradient with respect to the hidden state at a specified time t. In standard neural networks,
the gradient of a hidden layer ht depends on the gradient from the next layer ht+1 by chain rule

dL

dht
=

dL

dht+1

dht+1

dht
. (36)

With a continuous hidden state, we can write the transformation after an ε change in time as

z(t+ ε) =

� t+ε

t

f(z(t), t, θ)dt+ z(t) = Tε(z(t), t) (37)

and chain rule can also be applied

dL

∂z(t)
=

dL

dz(t+ ε)

dz(t+ ε)

dz(t)
or a(t) = a(t+ ε)

∂Tε(z(t), t)

∂z(t)
(38)

The proof of (35) follows from the definition of derivative:

da(t)

dt
= lim

ε→0+

a(t+ ε)− a(t)

ε
(39)

= lim
ε→0+

a(t+ ε)− a(t+ ε) ∂
∂z(t)

Tε(z(t))

ε
(by Eq 38) (40)

= lim
ε→0+

a(t+ ε)− a(t+ ε) ∂
∂z(t)

�
z(t) + εf(z(t), t, θ) +O(ε2)

�

ε
(Taylor series around z(t))

(41)

= lim
ε→0+

a(t+ ε)− a(t+ ε)
�
I + ε ∂f(z(t),t,θ)

∂z(t)
+O(ε2)

�

ε
(42)

= lim
ε→0+

−εa(t+ ε) ∂f(z(t),t,θ)
∂z(t)

+O(ε2)

ε
(43)

= lim
ε→0+

−a(t+ ε)
∂f(z(t), t, θ)

∂z(t)
+O(ε) (44)

= −a(t)
∂f(z(t), t, θ)

∂z(t)
(45)

We pointed out the similarity between adjoint method and backpropagation (eq. 38). Similarly to backpropaga-
tion, ODE for the adjoint state needs to be solved backwards in time. We specify the constraint on the last time
point, which is simply the gradient of the loss wrt the last time point, and can obtain the gradients with respect to
the hidden state at any time, including the initial value.

a(tN ) =
dL

dz(tN )� �� �
initial condition of adjoint diffeq.

a(t0) =

� t0

tN

a(t)
∂f(z(t), t, θ)

∂z(t)
dt

� �� �
gradient wrt. initial value

(46)

Here we assumed that loss function L depends only on the last time point tN . If function L depends also on
intermediate time points t1, t2, . . . , tN−1, etc., we can repeat the adjoint step for each of the intervals [tN−1, tN ],
[tN−2, tN−1] in the backward order and sum up the obtained gradients.

B.2 Gradients wrt. θ and t

We can generalize (35) to obtain gradients with respect to θ–a constant wrt. t–and and the initial and end times,
t0 and tN . We view θ and t as states with constant differential equations and write

∂θ(t)

∂t
= 0

dt(t)

dt
= 1 (47)
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We can then combine these with z to form an augmented state1 with corresponding differential equation and
adjoint state,

d

dt



z
θ
t


 (t) = faug([z, θ, t]) :=



f([z, θ, t])

0
1


 , aaug :=



a
aθ

at


 , aθ(t) :=

dL

dθ(t)
, at(t) :=

dL

dt(t)

(48)
Note this formulates the augmented ODE as an autonomous (time-invariant) ODE, but the derivations in the
previous section still hold as this is a special case of a time-variant ODE. The Jacobian of f has the form

∂faug
∂[z, θ, t]

=




∂f
∂z

∂f
∂θ

∂f
∂t

0 0 0
0 0 0


 (t) (49)

where each 0 is a matrix of zeros with the appropriate dimensions. We plug this into (35) to obtain

daaug(t)

dt
= −

�
a(t) aθ(t) at(t)

� ∂faug
∂[z, θ, t]

(t) = −
�
a ∂f

∂z
a ∂f

∂θ
a ∂f

∂t

�
(t) (50)

The first element is the adjoint differential equation (35), as expected. The second element can be used to obtain
the total gradient with respect to the parameters, by integrating over the full interval.

dL

dθ
=

� t0

tN

a(t)
∂f(z(t), t, θ)

∂θ
dt (51)

Note the negative sign cancels out since we integrate backwards from tN to t0. Finally, we also get gradients
with respect to t0 and tN , the start and end of the integration interval.

dL

dtN
= −a(tN )

∂f(z(tN ), tN , θ)

∂tN

dL

dt0
=

� t0

tN

a(t)
∂f(z(t), t, θ)

∂t
dt (52)

Between (35), (46), (51), and (52) we have gradients for all possible inputs to an initial value problem solver.

Appendix C Full Adjoint sensitivities algorithm

This more detailed version of Algorithm 1 includes gradients with respect to the start and end times of integration.

Algorithm 2 Reverse-mode derivative of an ODE initial value problem

Input: dynamics parameters θ, start time t0, stop time t1, final state z(t1), loss gradient ∂L/∂z(t1)

∂L
∂t1

= ∂L
∂z(t1)

T
f(z(t1), t1, θ) � Compute gradient w.r.t. t1

s0 = [z(t1),
∂L

∂z(t1)
,0,− ∂L

∂t1
] � Define initial augmented state

def aug_dynamics([z(t), a(t),−,−], t, θ): � Define dynamics on augmented state
return [f(z(t), t, θ),−a(t)T ∂f

∂z ,−a(t)T ∂f
∂θ ,−a(t)T ∂f

∂t ] � Concatenate time-derivatives
[z(t0),

∂L
∂z(t0)

, ∂L
∂θ ,

∂L
∂t0

] = ODESolve(s0, aug_dynamics, t1, t0, θ) � Solve reverse-time ODE
return ∂L

∂z(t0)
, ∂L
∂θ ,

∂L
∂t0

, ∂L
∂t1

� Return all gradients

Appendix D Autograd Implementation

i m p o r t s c i p y . i n t e g r a t e

i m p o r t a u t o g r a d . numpy as np
from a u t o g r a d . e x t e n d i m p o r t p r i m i t i v e , d e f v j p _ a r g n u m s
from a u t o g r a d i m p o r t make_vjp
from a u t o g r a d . misc i m p o r t f l a t t e n
from a u t o g r a d . b u i l t i n s i m p o r t t u p l e

o d e i n t = p r i m i t i v e ( s c i p y . i n t e g r a t e . o d e i n t )

1Note that we’ve overloaded t to be both a part of the state and the (dummy) independent variable. The
distinction is clear given context, so we keep t as the independent variable for consistency with the rest of the
text.
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d e f g r a d _ o d e i n t _ a l l ( y t , func , y0 , t , f u n c _ a r g s , ∗∗ kwargs ) :
# Extended from " S c a l a b l e I n f e r e n c e o f O r d i n a r y D i f f e r e n t i a l
# E q u a t i o n Models o f B i o c h e m i c a l P r o c e s s e s " , Sec . 2 . 4 . 2
# F ab i a n F r o e h l i c h , C a r o l i n Loos , Jan Hasenauer , 2017
# h t t p s : / / a r x i v . o rg / pdf / 1 7 1 1 . 0 8 0 7 9 . pdf

T , D = np . shape ( y t )
f l a t _ a r g s , u n f l a t t e n = f l a t t e n ( f u n c _ a r g s )

d e f f l a t _ f u n c ( y , t , f l a t _ a r g s ) :
r e t u r n func ( y , t , ∗ u n f l a t t e n ( f l a t _ a r g s ) )

d e f unpack ( x ) :
# y , vjp_y , v j p _ t , v j p _ a r g s
r e t u r n x [ 0 :D] , x [D: 2 ∗ D] , x [2 ∗ D] , x [2 ∗ D + 1 : ]

d e f augmented_dynamics ( a u g m e n t e d _ s t a t e , t , f l a t _ a r g s ) :
# O r g i n a l sys tem augmented wi th vjp_y , v j p _ t and v j p _ a r g s .
y , vjp_y , _ , _ = unpack ( a u g m e n t e d _ s t a t e )
v j p _ a l l , dy_d t = make_vjp ( f l a t _ f u n c , argnum =( 0 , 1 , 2 ) ) ( y , t , f l a t _ a r g s )
vjp_y , v j p _ t , v j p _ a r g s = v j p _ a l l (−v jp_y )
r e t u r n np . h s t a c k ( ( dy_dt , vjp_y , v j p _ t , v j p _ a r g s ) )

d e f v j p _ a l l ( g ,∗∗ kwargs ) :

v jp_y = g[−1 , : ]
v j p _ t 0 = 0
t i m e _ v j p _ l i s t = [ ]
v j p _ a r g s = np . z e r o s ( np . s i z e ( f l a t _ a r g s ) )

f o r i i n r a n g e ( T − 1 , 0 , −1):

# Compute e f f e c t o f moving c u r r e n t t ime .
v j p _ c u r _ t = np . d o t ( func ( y t [ i , : ] , t [ i ] , ∗ f u n c _ a r g s ) , g [ i , : ] )
t i m e _ v j p _ l i s t . append ( v j p _ c u r _ t )
v j p _ t 0 = v j p _ t 0 − v j p _ c u r _ t

# Run augmented sys tem backwards t o t h e p r e v i o u s o b s e r v a t i o n .
aug_y0 = np . h s t a c k ( ( y t [ i , : ] , v jp_y , v j p _ t 0 , v j p _ a r g s ) )
aug_ans = o d e i n t ( augmented_dynamics , aug_y0 ,

np . a r r a y ( [ t [ i ] , t [ i − 1 ] ] ) , t u p l e ( ( f l a t _ a r g s , ) ) , ∗∗ kwargs )
_ , vjp_y , v j p _ t 0 , v j p _ a r g s = unpack ( aug_ans [ 1 ] )

# Add g r a d i e n t from c u r r e n t o u t p u t .
v jp_y = v jp_y + g [ i − 1 , : ]

t i m e _ v j p _ l i s t . append ( v j p _ t 0 )
v j p _ t i m e s = np . h s t a c k ( t i m e _ v j p _ l i s t ) [ : : − 1 ]

r e t u r n None , vjp_y , v j p _ t i m e s , u n f l a t t e n ( v j p _ a r g s )
r e t u r n v j p _ a l l

d e f g rad_a rgnums_wrapper ( a l l _ v j p _ b u i l d e r ) :
# A g e n e r i c a u t o g r a d h e l p e r f u n c t i o n . Takes a f u n c t i o n t h a t
# b u i l d s v j p s f o r a l l a rguments , and wraps i t t o r e t u r n on ly r e q u i r e d v j p s .
d e f b u i l d _ s e l e c t e d _ v j p s ( argnums , ans , combined_args , kwargs ) :

v j p _ f u n c = a l l _ v j p _ b u i l d e r ( ans , ∗ combined_args , ∗∗ kwargs )
d e f c h o s e n _ v j p s ( g ) :

# R e t u r n wh icheve r v j p s were asked f o r .
a l l _ v j p s = v j p _ f u n c ( g )
r e t u r n [ a l l _ v j p s [ argnum ] f o r argnum i n argnums ]

r e t u r n c h o s e n _ v j p s
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r e t u r n b u i l d _ s e l e c t e d _ v j p s

d e f v j p _ a r g n u m s ( o d e i n t , g rad_a rgnums_wrapper ( g r a d _ o d e i n t _ a l l ) )

Appendix E Algorithm for training the latent ODE model

To obtain the latent representation zt0 , we traverse the sequence using RNN and obtain parameters of distribution
q(zt0 |{xti , ti}i, θenc). The algorithm follows a standard VAE algorithm with an RNN variational posterior and
an ODESolve model:

1. Run an RNN encoder through the time series and infer the parameters for a posterior over zt0 :

q(zt0 |{xti , ti}i,φ) = N (zt0 |µzt0
,σz0), (53)

where µz0 ,σz0 comes from hidden state of RNN({xti , ti}i,φ)

2. Sample zt0 ∼ q(zt0 |{xti , ti}i)
3. Obtain zt1 , zt2 , . . . , ztM by solving ODE ODESolve(zt0 , f, θf , t0, . . . , tM ), where f is the function

defining the gradient dz/dt as a function of z

4. Maximize ELBO =
�M

i=1 log p(xti |zti , θx) + log p(zt0)− log q(zt0 |{xti , ti}i,φ),
where p(zt0) = N (0, 1)

Appendix F Extra Figures

(a) 30 time points (b) 50 time points (c) 100 time points
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Figure 10: Spiral reconstructions using a latent ODE with a variable number of noisy observations.
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