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1 Neural network architecture and training

1.1 High-level overview

For the model in Fig. 1, the distribution over the next drawing command factorizes as:

Pθ[t1t2 · · · tK |I, S] =
K∏
k=1

Pθ
[
tk|aθ

(
fθ(I, render(S))|{tj}k−1j=1

)
, {tj}k−1j=1

]
(1)

where t1t2 · · · tK are the tokens in the drawing command, I is the target image, S is a spec, θ are the
parameters of the neural network, fθ(·, ·) is the image feature extractor (convolutional network), and
aθ(·|·) is an attention mechanism. The distribution over specs factorizes as:

Pθ[S|I] =
|S|∏
n=1

Pθ[Sn|I, S1:(n−1)]× Pθ[STOP|I, S] (2)

where |S| is the length of spec S, the subscripts on S index drawing commands within the spec (so
Sn is a sequence of tokens: t1t2 · · · tK ), and the STOP token is emitted by the network to signal that
the spec explains the image.

1.2 Convolutional network

The convolutional network takes as input 2 256× 256 images represented as a 2× 256× 256 volume.
These are passed through two layers of convolutions separated by ReLU nonlinearities and max
pooling:

• Layer 1: 20 8× 8 convolutions, 2 16× 4 convolutions, 2 4× 16 convolutions. Followed by
8× 8 pooling with a stride size of 4.

• Layer 2: 10 8× 8 convolutions. Followed by 4× 4 pooling with a stride size of 4.

1.3 Autoregressive decoding of drawing commands

Given the image features f , we predict the first token (i.e., the name of the drawing command:
circle, rectangle, line, or STOP) using logistic regression:

P[t1] ∝ exp (Wt1f + bt1) (3)

where Wt1 is a learned weight matrix and bt1 is a learned bias vector.
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Figure 1: Our neural architecture for inferring the spec of a graphics program from its output. Blue:
network inputs. Black: network operations. Red: samples from a multinomial. Typewriter
font: network outputs. Renders snapped to a 16 × 16 grid, illustrated in gray. STN (spatial
transformer network) is a differentiable attention mechanism [7].

Given an attention mechanism a(·|·), subsequent tokens are predicted as:

P[tn|t1:(n−1)] ∝ MLPt1,n(a(f |t1:(n−1))⊕
⊕
j<n

oneHot(tj)) (4)

Thus each token of each drawing primitive has its own learned MLP. For predicting the coordinates
of lines we found that using 32 hidden nodes with sigmoid activations worked well; for other tokens
the MLP’s are just logistic regression (no hidden nodes).

We use Spatial Transformer Networks [7] as our attention mechanism. The parameters of the spatial
transform are predicted on the basis of previously predicted tokens. For example, in order to decide
where to focus our attention when predicting the y coordinate of a circle, we condition upon both
the identity of the drawing command (circle) and upon the value of the previously predicted x
coordinate:

a(f |t1:(n−1)) = AffineTransform(f,MLPt1,n(
⊕
j<n

oneHot(tj))) (5)

So, we learn a different network for predicting special transforms for each drawing command (value
of t1) and also for each token of the drawing command. These networks (MLPt1,n in equation 5)
have no hidden layers and output the 6 entries of an affine transformation matrix; see [7] for more
details.

Training takes a little bit less than a day on a Nvidia TitanX GPU. The network was trained on 105

synthetic examples.

1.4 LSTM Baseline

We compared our deep network with a baseline that models the problem as a kind of image captioning.
Given the target image, this baseline produces the program spec in one shot by using a CNN to extract
features of the input which are passed to an LSTM which finally predicts the spec token-by-token.
This general architecture is used in several successful neural models of image captioning (e.g., [8]).

Concretely, we kept the image feature extractor architecture (a CNN) as in our model, but only passed
it one image as input (the target image to explain). Then, instead of using an autoregressive decoder
to predict a single drawing command, we used an LSTM to predict a sequence of drawing commands
token-by-token. This LSTM had 128 memory cells, and at each time step produced as output the next
token in the sequence of drawing commands. It took as input both the image representation and its
previously predicted token.
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Figure 2: Example synthetic training data

1.5 Generating synthetic training data

We generated synthetic training data for the neural network by sampling LATEX code according to
the following generative process: First, the number of objects in the scene are sampled uniformly
from 1 to 12. For each object we uniformly sample its identity (circle, rectangle, or line). Then we
sample the parameters of the circles, than the parameters of the rectangles, and finally the parameters
of the lines; this has the effect of teaching the network to first draw the circles in the scene, then
the rectangles, and finally the lines. We furthermore put the circle (respectively, rectangle and line)
drawing commands in order by left-to-right, bottom-to-top; thus the training data enforces a canonical
order in which to draw any scene.

To make the training data look more like naturally occurring figures, we put a Chinese restaurant
process prior [9] over the values of the X and Y coordinates that occur in the execution spec. This
encourages reuse of coordinate values, and so produces training data that tends to have parts that are
nicely aligned.

In the synthetic training data we excluded any sampled scenes that had overlapping drawing com-
mands. As shown in the main paper, the network is then able to generalize to scenes with, for example,
intersecting lines or lines that penetrate a rectangle.

When sampling the endpoints of a line, we biased the sampling process so that it would be more
likely to start an endpoint along one of the sides of a rectangle or at the boundary of a circle. If n
is the number of points either along the side of a rectangle or at the boundary of a circle, we would
sample an arbitrary endpoint with probability 2

2+n and sample one of the “attaching” endpoints with
probability 1

2+n .

See figure 2 for examples of the kinds of scenes that the network is trained on.

For readers wishing to generate their own synthetic training sets, we refer them to our source code
at: https://github.com/ellisk42/TikZ.

2 Generalizing to real hand drawings

2.1 Simulating hand drawings

We introduce noise into the LATEX rendering process by:

• Rescaling the image intensity by a factor chosen uniformly at random from [0.5, 1.5]

• Translating the image by ±3 pixels chosen uniformly random

• Rendering the LATEX using the pencildraw style, which adds random perturbations to the
paths drawn by LATEXin a way designed to resemble a pencil.

• Randomly perturbing the positions and sizes of primitive LATEXdrawing commands
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Figure 3: Noisy renderings produced in LATEX TikZ w/ pencildraw package

2.2 A learned likelihood surrogate

Our architecture for Llearned(render(T1)|render(T2)) has the same series of convolutions as the
network that predicts the next drawing command. We train it to predict two scalars: |T1 − T2|
and |T2 − T1|. These predictions are made using linear regression from the image features followed
by a ReLU nonlinearity; this nonlinearity makes sense because the predictions can never be negative
but could be arbitrarily large positive numbers.

We train this network by sampling random synthetic scenes for T1, and then perturbing them in small
ways to produce T2. We minimize the squared loss between the network’s prediction and the ground
truth symmetric differences. T1 is rendered in a “simulated hand drawing” style which Section 2.1
describes.

3 The cost function for programs

We seek the minimum cost program which evaluates to (produces the drawing primitives in) an
execution spec T :

program(T ) = argmin
p∈DSL

p evaluates to T

cost(p) (6)

Programs incur a cost of 1 for each command (primitive drawing action, loop, or reflection). They
incur a cost of 1

3 for each unique coefficient they use in a linear transformation beyond the first
coefficient. This encourages reuse of coefficients, which leads to code that has translational symmetry;
rather than provide a translational symmetry operator as we did with reflection, we modify what
is effectively a prior over the space of program so that it tends to produce programs that have this
symmetry.

Programs also incur a cost of 1 for having loops of constant length 2; otherwise there is often no
pressure from the cost function to explain a repetition of length 2 as being a reflection rather a loop.

4 Learning a search policy

Figure 4 provides additional intuition for how the policy biases and informs the program synthesizer:
the entire program search space is carved up into smaller subsets, and we search within each of these
subsets simultaneously and in parallel, but where the fraction of compute time allocated to each
subset is proportional to the weight assigned to it by the policy.
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Figure 4: The bias-optimal search algorithm divides the entire (intractable) program search space
in to (tractable) program subspaces (written σ), each of which contains a restricted set of programs.
For example, one subspace might be short programs which don’t loop. The policy π predicts a
distribution over program subspaces. The weight that π assigns to a subspace is indicated by its
yellow shading in the above figure, and is conditioned on the spec S.

4.1 Modeling

Recall from the main paper that our goal is to estimate the policy minimizing the following loss:

LOSS(θ;D) = ES∼D
[

min
σ∈BEST(S)

t(σ|S)
πθ(σ|S)

]
+ λ‖θ‖22 (7)

where σ ∈ BEST(S) if a minimum cost program for S is in σ.

We make this optimization problem tractable by annealing our loss function during gradient descent:

LOSSβ(θ;D) = ES∼D
[

SOFTMINIMUMβ

{
t(σ|S)
πθ(σ|S)

: σ ∈ BEST(S)

}]
+ λ‖θ‖22 (8)

where SOFTMINIMUMβ(x1, x2, x3, · · · ) =
∑
n

xn
e−βxn∑
n′ e−βxn′

(9)

Notice that SOFTMINIMUMβ=∞(·) is just min(·). We set the regularization coefficient λ = 0.1 and
minimize equation 8 using Adam for 2000 steps, linearly increasing β from 1 to 2.

We parameterize the space of policies as a simple log bilinear model:

πθ(σ|S) ∝ exp
(
φparams(σ)

>θφspec(S)
)

(10)

where:

φparams(σ) = [1[σ can loop];
1[σ can reflect];
1[σ is incremental];
1[σ has depth bound 1];1[σ has depth bound 2];1[σ has depth bound 3]; ]

φspec(S) = [# circles in S; # rectangles in S; # lines in S; 1]

where the meaning of “incremental” is described in the next section.

4.2 Incremental Solving

Rather than give the sketch program synthesizer the entire spec all at once, we can instead give
it subsets of the spec (subsets of the objects in the image) and ask it to synthesize a program for
each subset. We then concatenate the resulting programs from each subset to get a program that
explains the entire image, and we call this strategy “incremental solving”. Incremental solving is
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not guaranteed to be faster, nor is it guaranteed to find a minimum cost program. Thus we allow
the search policy to decide what fraction of our search time should be allocated to this incremental
approach to program synthesis. Concretely, we partitioned a spec into its constituent lines, circles,
and rectangles.

4.3 Baseline comparisons

4.3.1 DeepCoder-style baseline

In addition to the end-to-end baseline, we compared with a DeepCoder-style baseline (main paper,
Section 3.1). DeepCoder (DC) [5] is an approach for learning to speed up program synthesizers. DC
models are neural networks that predict, starting from a spec, the probability of a DSL component
being in a minimal-cost program satisfying the spec. Writing DC(S) for the distribution predicted by
the neural network, DC is trained to maximize the following objective:

ES∼D

[
min

p∈BEST(S)

∑
x∈DSL

log (1 [x ∈ p]DC(S)x + 1 [x /∈ p] (1− DC(S)x))

]
(11)

where x ranges over DSL components and DC(S)x ∈ [0, 1] is the probability predicted by the DC
model for component x for spec S.

We provided our DC model with the same features given to our bias optimal search policy (φspec in
section 4.1), and trained using the same 20-fold cross validation splits. To evaluate the DC baseline
on held out data, we used the Sort-and-Add policy described in the DeepCoder paper[5].

4.3.2 End-to-End baseline

Recall that we factored the graphics program synthesis problem into two components: (1) a perception-
facing component, whose job is to go from perceptual input to a set of commands that must occur in
the execution of the program (spec); and (2) a program synthesis component, whose job is to infer a
program whose execution contains those commands. This is a different approach from other recent
program induction models (e.g., [1, 2]), which regress directly from a program induction problem to
the source code of the program.

Experiment. To test whether this factoring is necessary for our domain, we trained a model to regress
directly from images to graphics programs. This baseline model, which we call the no-spec baseline,
was able to infer some simple programs, but failed completely on more sophisticated scenes.

Baseline model architecture: The model architecture is a straightforward, image-captioning-style
CNN→LSTM. We keep the same CNN architecture from our main model (Section 1.2), with the
sole difference that it takes only one image as input. The LSTM decoder produces the program
token-by-token: so we flatten the program’s hierarchical structure, and use special “bracketing”
symbols to convey nesting structure, in the spirit of [3]. The LSTM decoder has 2 hidden layers with
1024 units. We used 64-dimensional embeddings for the program tokens.

Training and evaluation: The model was trained on 107 synthetically generated programs – 2 orders
of magnitude more data than the model we present in the main paper. We then evaluated the baseline
on synthetic renders of our 100 hand drawings (the testing set used throughout the paper). Recall that
our model was evaluated on noisy real hand drawings. We sample programs from this baseline model
conditioned on a synthetic render of a hand drawing, and report only the sampled program whose
output most closely matched the ground truth spec spec, as measured by the symmetric difference of
the two sets. We allow the baseline model to spend 1 hour drawing samples per drawing – recall that
our model finds 58% of programs in under a minute. Together these training and evaluation choices
are intended to make the problem as easy as possible for the baseline.

Results: The no-spec baseline succeeds for trivial programs (a few lines, no variables, loops, etc.);
occasionally gets small amounts of simple looping structure; and fails utterly for most of our test
cases. See Figure 5.

6



Figure 5: Top, white: synthetic rendering of a hand drawing. Bottom, black: output of best program
found by no-spec baseline.

5 Correcting errors made by the neural network

The program synthesizer can help correct errors from the execution spec proposal network by favoring
execution specs which lead to more concise or general programs. For example, one generally prefers
figures with perfectly aligned objects over figures whose parts are slightly misaligned – and precise
alignment lends itself to short programs. Similarly, figures often have repeated parts, which the
program synthesizer might be able to model as a loop or reflectional symmetry. So, in considering
several candidate specs proposed by the neural network, we might prefer specs whose best programs
have desirable features such being short or having iterated structures.

Concretely, we implemented the following scheme: for an image I , the neurally guided sampling
scheme of section 2 of the main paper samples a set of candidate specs, written F(I). Instead of
predicting the most likely spec in F(I) according to the neural network, we can take into account the
programs that best explain the specs. Writing Ŝ(I) for the spec the model predicts for image I ,

Ŝ(I) = argmax
S∈F(I)

Llearned(I|render(S))× Pθ[S|I]× Pβ [program(S)] (12)

where Pβ [·] is a prior probability distribution over programs parameterized by β. This is equivalent
to doing MAP inference in a generative model where the program is first drawn from Pβ [·], then the
program is executed deterministically, and then we observe a noisy version of the program’s output,
where Llearned(I|render(·))× Pθ[·|I] is our observation model.

Given a corpus of graphics program synthesis problems with annotated ground truth specs (i.e. (I, S)
pairs), we find a maximum likelihood estimate of β:

β∗ = argmax
β

E

[
log

Pβ [program(S)]× Llearned(I|render(S))× Pθ[S|I]∑
S′∈F(I)Pβ [program(S′)]× Llearned(I|render(S′))× Pθ[S′|I]

]
(13)

where the expectation is taken both over the model predictions and the (I, S) pairs in the training
corpus. We define Pβ [·] to be a log linear distribution∝ exp(β ·φ(program)), where φ(·) is a feature
extractor for programs. We extract a few basic features of a program, such as its size and how many
loops it has, and use these features to help predict whether a spec is the correct explanation for an
image.

We synthesized programs for the top 10 specs output by the deep network. Learning this prior over
programs can help correct mistakes made by the neural network, and also occasionally introduces
mistakes of its own; see Fig. 6 for a representative example of the kinds of corrections that it makes.
On the whole it modestly improves our Top-1 accuracy from 63% to 67%. Recall that from Fig. 6 of
the main paper that the best improvement in accuracy we could possibly get is 70% by looking at the
top 10 specs.

6 Measuring similarity between drawings

We measure the similarity between two drawings by extracting features of the best programs that
describe them. Our features are counts of the number of times that different components in the DSL
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Figure 6: Left: hand drawing. Center: interpretation favored by the deep network. Right: interpreta-
tion favored after learning a prior over programs. Our learned prior favors shorter, simpler programs,
thus (top example) continuing the pattern of not having an arrow is preferred, or (bottom example)
continuing the binary search tree is preferred.

were used. We project these features down to a 2-dimensional subspace using primary component
analysis (PCA); see Fig.7. One could use many alternative similarity metrics between drawings which
would capture pixel-level similarities while missing high-level geometric similarities. We used our
learned distance metric between specs, Llearned(·|·), and projected to a 2-dimensional subspace using
multidimensional scaling (MDS: [4]). This reveals similarities between the objects in the drawings,
while missing similarities at the level of the program.

7 Full results on drawings data set

Below we show our full data set of drawings. The leftmost column is a hand drawing. The middle
column is a rendering of the most likely spec discovered by the neurally guided SMC sampling
scheme. The rightmost column is the program we synthesized from a ground truth execution spec of
the drawing. Note that because the inference procedure is stochastic, the top one most likely sample
can vary from run to run. Below we report a representative sample from a run with 2000 particles.

line(6,2,6,3,
arrow = False,solid = True);
line(6,2,3,2,
arrow = True,solid = True);
reflect(y = 9){
line(3,7,5,5,
arrow = True,solid = True);
rectangle(1,1,3,3);
rectangle(5,3,7,6);
rectangle(0,0,8,9)
}
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Figure 7: PCA on features of the programs that were synthesized for each drawing. Symmetric
figures cluster to the right; “loopy” figures cluster to the left; complicated programs are at the top and
simple programs are at the bottom.

Figure 8: MDS on drawings using the learned distance metric, Llearned(·|·). Drawings with similar
looking parts in similar locations are clustered together.

for (i < 2){
line(8,8,3,8,
arrow = True,solid = False);
line(-2 * i + 12,5,-2 * i + 13,5,
arrow = True,solid = True);
line(6,5,7,5,
arrow = True,solid = True);
line(3,-6 * i + 8,5,-2 * i + 6,
arrow = True,solid = True);
rectangle(-2 * i + 13,4,-2 * i + 14,6);
rectangle(1,-6 * i + 7,3,-6 * i + 9)
};
circle(8,5);
rectangle(5,3,6,7);
rectangle(0,0,10,10);
line(8,6,8,8,
arrow = False,solid = False)
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reflect(y = 7){
line(2,6,4,4,
arrow = True,solid = True);
rectangle(0,0,2,2)
};
rectangle(4,2,6,5)

line(7,5,9,5,
arrow = True,solid = True);
rectangle(5,3,7,7);
rectangle(0,0,12,10);
reflect(y = 10){
circle(10,5);
line(3,2,5,4,
arrow = True,solid = True);
rectangle(1,1,3,3)
}

line(10,1,2,1,
arrow = True,solid = False);
line(10,1,10,3,
arrow = False,solid = False);
line(7,4,9,4,
arrow = True,solid = True);
reflect(y = 8){
circle(10,4);
line(2,1,4,3,
arrow = True,solid = True);
rectangle(4,2,7,6);
rectangle(0,6,2,8)
}
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line(12,9,12,0,
arrow = True,solid = True);
rectangle(9,3,11,9);
rectangle(6,5,8,9);
rectangle(0,7,2,9);
rectangle(3,8,5,9)

for (i < 3){
for (j < (1*i + 1)){
if (j > 0){
line(3 * j + -3,3 * i + -2,3 * j + -1,3 * i + -3,
arrow = False,solid = True);
line(0,3 * j + -2,3 * j + -3,4,
arrow = False,solid = True)
}
rectangle(2,0,5,3)
}
}

for (i < 3){
circle(-3 * i + 7,1);
circle(-3 * i + 7,6);
line(-3 * i + 7,-1 * i + 4,-3 * i + 7,5,
arrow = False,solid = True)
}
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line(0,0,0,4,
arrow = False,solid = True)

line(6,0,0,0,
arrow = True,solid = True)

rectangle(0,0,3,4)

circle(1,1)
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reflect(x = 7){
circle(6,1);
line(6,2,6,5,
arrow = False,solid = True);
rectangle(5,5,7,7)
};
line(2,6,5,6,
arrow = False,solid = True);
line(2,1,5,1,
arrow = False,solid = True)

line(3,2,1,2,
arrow = True,solid = True);
line(0,3,2,3,
arrow = True,solid = True);
line(5,0,3,0,
arrow = True,solid = True);
line(2,1,4,1,
arrow = True,solid = True)

rectangle(6,0,7,1);
for (i < 3){
rectangle(-2 * i + 4,2 * i + 2,-2 * i + 5,2 * i + 3);
rectangle(-2 * i + 4,2 * i,-2 * i + 5,2 * i + 1)
}
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line(3,0,5,0,
arrow = False,solid = True);
line(1,2,3,2,
arrow = False,solid = True);
line(0,3,2,3,
arrow = False,solid = False);
line(2,1,4,1,
arrow = False,solid = False)

circle(9,1);
for (i < 3){
circle(-2 * i + 7,3 * i + 4);
circle(-2 * i + 5,3 * i + 1);
line(-2 * i + 6,3 * i + 1,-2 * i + 7,3 * i + 3,
arrow = False,solid = True);
line(-2 * i + 7,3 * i + 3,-2 * i + 8,3 * i + 1,
arrow = False,solid = True)
}

for (i < 3){
line(2 * i + 3,-3 * i + 9,2 * i + 2,-3 * i + 7,
arrow = True,solid = True);
line(2 * i + 3,-3 * i + 9,2 * i + 4,-3 * i + 7,
arrow = True,solid = True);
rectangle(2 * i + 2,-3 * i + 9,2 * i + 4,-3 * i + 11);
rectangle(2 * i,-3 * i + 6,2 * i + 2,-3 * i + 8)
};
rectangle(8,0,10,2)
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for (i < 2){
circle(2 * i + 1,-3 * i + 6);
circle(-3 * i + 7,2 * i + 3);
circle(2 * i + 5,1)
}

line(4,4,2,2,
arrow = True,solid = True);
rectangle(0,0,2,2);
rectangle(3,4,5,6)

for (i < 3){
line(-4 * i + 9,4,-4 * i + 9,2,
arrow = True,solid = True);
for (j < (1*i + 2)){
if (j > 0){
circle(-4 * j + 13,-4 * i + 9);
line(-4 * i + 12,5,-4 * i + 10,5,
arrow = True,solid = True)
}
rectangle(0,4,2,6)
}
}

15



circle(1,5);
line(4,1,2,1,
arrow = True,solid = True);
line(8,1,6,1,
arrow = True,solid = True);
for (i < 3){
line(4 * i + 1,2,4 * i + 1,4,
arrow = True,solid = True);
rectangle(4,4,6,6);
rectangle(4 * i,0,4 * i + 2,2)
};
rectangle(8,4,10,6)

for (i < 3){
line(4 * i + 1,4,4 * i + 1,2,
arrow = True,solid = True);
for (j < 2){
line(4 * j + 4,5,4 * j + 2,5,
arrow = True,solid = True);
rectangle(4 * i,-4 * j + 4,4 * i + 2,-4 * j + 6)
}
}

for (i < 3){
line(4 * i + 1,2,4 * i + 1,4,
arrow = True,solid = True);
for (j < 2){
circle(4 * i + 1,4 * j + 1);
line(4 * j + 4,1,4 * j + 2,1,
arrow = True,solid = True)
}
}
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line(5,7,5,6,
arrow = True,solid = True);
line(3,3,3,2,
arrow = True,solid = True);
line(1,7,1,6,
arrow = True,solid = True);
rectangle(0,3,6,6);
rectangle(2,0,4,2);
rectangle(0,7,6,9)

line(6,1,5,1,
arrow = True,solid = True);
for (i < 3){
line(3,1,2,1,
arrow = True,solid = True);
rectangle(3 * i,0,3 * i + 2,2)
}

for (i < 3){
circle(1,-4 * i + 9)
};
line(1,4,1,2,
arrow = True,solid = True);
line(1,8,1,6,
arrow = True,solid = True)
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reflect(y = 2){
line(0,1,1,2,
arrow = False,solid = True);
line(1,0,2,1,
arrow = False,solid = True)
}

line(0,0,0,2,
arrow = False,solid = True);
line(0,2,2,2,
arrow = False,solid = True)

for (i < 3){
line(1 * i,-2 * i + 4,1 * i,-1 * i + 6,
arrow = False,solid = True);
line(1 * i,-1 * i + 6,2 * i + 2,-1 * i + 6,
arrow = False,solid = True)
}
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circle(5,2);
circle(5,4);
rectangle(4,1,6,5);
reflect(y = 5){
circle(1,4);
rectangle(0,3,2,5)
}

for (i < 3){
for (j < (1*i + 1)){
circle(3 * i + 1,-2 * j + 5)
};
rectangle(3 * i,-2 * i + 4,3 * i + 2,6)
}

circle(5,5);
line(2,5,4,5,
arrow = False,solid = True);
rectangle(0,0,5,3);
rectangle(0,4,2,6)
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line(0,0,0,3,
arrow = False,solid = True);
line(6,0,6,3,
arrow = False,solid = True);
line(0,3,6,3,
arrow = False,solid = False);
line(0,0,6,0,
arrow = False,solid = False)

for (i < 2){
line(2 * i,-2 * i + 5,2,5,
arrow = False,solid = True);
line(1,2,2 * i + 1,-2 * i + 4,
arrow = False,solid = True);
line(2 * i + 3,-2 * i + 3,5,3,
arrow = False,solid = True);
line(4,0,2 * i + 4,-2 * i + 2,
arrow = False,solid = True)
}

circle(6,1);
circle(1,1);
circle(1,6);
line(2,6,6,2,
arrow = True,solid = True);
line(1,5,1,2,
arrow = True,solid = True)
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rectangle(5,5,9,9);
rectangle(0,0,4,4);
for (i < 2){
rectangle(1 * i + 7,-2 * i + 2,9,-3 * i + 4);
rectangle(0,-3 * i + 8,1 * i + 1,-2 * i + 9)
}

circle(1,8);
line(5,2,5,5,
arrow = False,solid = True);
line(1,7,3,5,
arrow = False,solid = True);
rectangle(4,0,6,2);
rectangle(0,5,6,9)

for (i < 3){
for (j < 3){
if (j > 0){
line(3 * j + -1,3 * i + 1,3 * j,3 * i + 1,
arrow = False,solid = True);
line(3 * i + 1,3 * j + -1,3 * i + 1,3 * j,
arrow = False,solid = True)
}
circle(3 * i + 1,3 * j + 1)
}
}
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for (i < 3){
for (j < 3){
if (j > 0){
line(3 * i + 1,3 * j + -1,3 * i + 1,3 * j,
arrow = False,solid = True);
line(3 * j + -1,3 * i + 1,3 * j,3 * i + 1,
arrow = False,solid = True)
}
rectangle(3 * i,3 * j,3 * i + 2,3 * j + 2)
}
}

for (i < 3){
circle(-3 * i + 7,1)
}

for (i < 3){
rectangle(-2 * i + 4,0,-2 * i + 5,6)
}
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line(4,0,4,1,
arrow = False,solid = False);
line(0,0,0,5,
arrow = False,solid = False);
line(4,1,4,5,
arrow = False,solid = False)

line(0,0,0,5,
arrow = False,solid = True);
line(4,0,4,5,
arrow = False,solid = True)

reflect(x = 12){
circle(4,1);
line(2,1,3,1,
arrow = False,solid = True);
rectangle(0,0,2,2)
}
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circle(7,6);
reflect(y = 12){
line(4,6,6,6,
arrow = True,solid = True);
line(2,10,2,8,
arrow = True,solid = True);
rectangle(1,0,3,2)
};
rectangle(0,4,4,8)

reflect(y = 9){
reflect(x = 9){
circle(8,8);
line(3,8,6,8,
arrow = False,solid = True);
line(1,3,1,6,
arrow = False,solid = True)
}
}

reflect(x = 11){
rectangle(9,4,10,7);
reflect(y = 11){
rectangle(8,0,11,3);
rectangle(4,9,7,10)
}
}
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for (i < 3){
line(2 * i,-2 * i + 5,2 * i + 2,-2 * i + 5,
arrow = False,solid = True);
line(2 * i + 1,-2 * i + 4,2 * i + 3,-2 * i + 4,
arrow = False,solid = True)
}

rectangle(4,1,6,2);
rectangle(7,0,9,2);
reflect(y = 10){
rectangle(0,0,3,3);
rectangle(1,4,2,6)
}

line(7,4,9,4,
arrow = True,solid = True);
line(8,3,7,3,
arrow = True,solid = True);
reflect(y = 7){
line(2,1,4,3,
arrow = True,solid = True);
rectangle(0,0,2,2)
};
line(8,3,9,3,
arrow = False,solid = True);
rectangle(9,2,12,5);
rectangle(4,2,7,5)
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for (i < 3){
rectangle(2 * i,2 * i,2 * i + 3,2 * i + 1)
}

circle(4,10);
for (i < 3){
circle(3 * i + 1,1);
circle(3 * i + 1,5);
line(4,9,3 * i + 1,6,
arrow = True,solid = True);
line(3 * i + 1,4,3 * i + 1,2,
arrow = True,solid = True)
}

line(2,8,2,6,
arrow = True,solid = True);
line(4,8,4,0,
arrow = True,solid = True);
line(6,8,6,4,
arrow = True,solid = True);
line(0,8,8,8,
arrow = False,solid = True)
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line(2,3,2,5,
arrow = False,solid = True);
rectangle(0,0,4,8);
rectangle(1,1,3,3);
rectangle(1,5,3,7)

circle(1,5);
line(1,4,1,2,
arrow = True,solid = True);
rectangle(0,0,2,2)

rectangle(0,0,6,2);
reflect(x = 6){
for (i < 3){
circle(5,2 * i + 4);
circle(2 * i + 1,1);
rectangle(4,3,6,9)
}
}
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for (i < 3){
for (j < 3){
circle(4 * i + 1,-3 * j + 7)
}
}

line(8,0,0,0,
arrow = True,solid = True);
line(8,0,8,7,
arrow = True,solid = True);
for (i < 3){
rectangle(-2 * i + 6,0,-2 * i + 7,-1 * i + 5)
}

line(4,0,0,0,
arrow = False,solid = False)
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line(2,4,4,4,
arrow = True,solid = True);
line(6,7,5,5,
arrow = True,solid = True);
for (i < 2){
circle(-2 * i + 7,-3 * i + 7);
circle(3 * i + 4,1);
line(5,3,3 * i + 4,2,
arrow = True,solid = True);
rectangle(0,3,2,5)
}

circle(2,1);
circle(6,1);
line(5,1,3,1,
arrow = True,solid = True);
rectangle(0,0,7,2)

rectangle(5,0,8,3);
rectangle(0,2,1,3);
rectangle(2,1,4,3)
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for (i < 3){
rectangle(-1 * i + 2,-1 * i + 2,1 * i + 3,1 * i + 3)
}

reflect(y = 6){
line(2,5,4,5,
arrow = False,solid = True);
reflect(x = 6){
line(5,2,5,4,
arrow = False,solid = True);
rectangle(0,4,2,6)
}
}

reflect(y = 6){
reflect(x = 6){
circle(1,1);
line(5,2,5,4,
arrow = False,solid = True)
};
line(2,1,4,1,
arrow = False,solid = True)
}
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for (i < 3){
line(1 * i,-1 * i + 2,-1 * i + 7,-1 * i + 2,
arrow = False,solid = True)
}

line(1,5,5,1,
arrow = False,solid = True);
line(1,4,5,0,
arrow = False,solid = True);
rectangle(0,4,1,5);
rectangle(5,0,6,1)

for (i < 3){
circle(-4 * i + 9,1);
rectangle(-4 * i + 8,0,-4 * i + 10,2)
}
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reflect(x = 5){
circle(4,1);
line(4,4,4,2,
arrow = True,solid = True)
};
rectangle(0,4,5,6)

circle(3,1);
reflect(x = 6){
circle(5,5);
circle(1,9);
line(5,4,3,2,
arrow = True,solid = True);
line(5,8,2,5,
arrow = True,solid = True);
line(1,8,1,6,
arrow = True,solid = True)
}

for (i < 3){
line(7,1,5 * i + 2,3,
arrow = True,solid = True);
for (j < (1*i + 1)){
if (j > 0){
line(5 * j + -1,9,5 * i,5,
arrow = True,solid = True)
}
line(5 * j + 2,5,5 * j + 2,9,
arrow = True,solid = True)
};
rectangle(5 * i,3,5 * i + 4,5);
rectangle(5 * i,9,5 * i + 4,10)
};
rectangle(2,0,12,1)
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reflect(y = 8){
for (i < 3){
circle(-3 * i + 7,-3 * i + 7)
};
rectangle(2,2,3,3);
rectangle(5,5,6,6)
}

line(10,8,12,4,
arrow = True,solid = True);
line(6,8,8,4,
arrow = True,solid = True);
for (i < 3){
line(4 * i + 5,5,4 * i + 5,7,
arrow = True,solid = True);
line(4 * i + 5,1,4 * i + 5,3,
arrow = True,solid = True);
rectangle(4 * i + 4,3,4 * i + 6,5);
rectangle(4 * i + 4,7,4 * i + 6,9);
line(2,1,13,1,
arrow = False,solid = True)
};
rectangle(0,0,2,8)

for (i < 3){
for (j < 3){
circle(2 * j + 1,2 * i + 1)
}
};
rectangle(2,2,4,4);
rectangle(0,0,6,6)
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for (i < 4){
circle(4 * i + 1,1);
circle(4 * i + 1,5);
for (j < 3){
line(4 * i + 1,4,4 * i + 1,2,
arrow = True,solid = True);
line(4 * j + 2,5,4 * j + 4,5,
arrow = True,solid = True)
}
}

reflect(x = 8){
circle(4,1);
circle(1,8);
line(0,2,4,5,
arrow = False,solid = True);
line(4,5,4,10,
arrow = False,solid = True)
}

circle(9,8);
circle(5,1);
circle(1,8);
reflect(x = 10){
line(6,1,9,3,
arrow = False,solid = True);
line(2,8,4,8,
arrow = False,solid = True);
line(9,5,9,7,
arrow = False,solid = True);
rectangle(0,3,2,5)
};
rectangle(4,7,6,9)
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line(3,2,5,4,
arrow = True,solid = True);
line(6,6,6,5,
arrow = True,solid = True);
line(8,3,7,4,
arrow = True,solid = True);
line(4,0,12,8,
arrow = False,solid = True);
line(0,6,12,6,
arrow = False,solid = True);
line(0,8,8,0,
arrow = False,solid = True)

for (i < 3){
circle(4 * i + 1,13);
circle(5,-4 * i + 9);
circle(4 * i + 1,9);
line(4 * i + 1,12,4 * i + 1,10,
arrow = True,solid = True);
line(5,-4 * i + 12,5,-4 * i + 10,
arrow = True,solid = True)
};
line(9,8,6,5,
arrow = True,solid = True);
line(1,8,4,5,
arrow = True,solid = True)
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reflect(x = 14){
circle(11,10);
circle(3,4);
circle(7,1);
reflect(y = 20){
circle(13,7);
circle(9,7)
};
line(3,3,7,2,
arrow = True,solid = True);
line(10,10,5,8,
arrow = True,solid = True);
reflect(x = 6){
line(5,12,3,11,
arrow = True,solid = True);
line(1,6,3,5,
arrow = True,solid = True);
line(3,9,5,8,
arrow = True,solid = True)
}
}

circle(1,1);
circle(4,1);
rectangle(6,0,8,2);
rectangle(9,0,11,2)

Solver timeout
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reflect(x = 10){
circle(5,1);
circle(2,4);
line(2,3,5,2,
arrow = True,solid = True);
reflect(x = 16){
circle(9,7);
line(9,6,8,5,
arrow = True,solid = True)
}
}

Solver timeout

for (i < 4){
if (i > 0){
line(1,3 * i,1,3 * i + -1,
arrow = True,solid = True)
}
circle(1,3 * i + 1)
}
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rectangle(5,0,8,3);
rectangle(0,5,3,8);
for (i < 2){
rectangle(1 * i + 6,3 * i + 4,8,2 * i + 6);
rectangle(0,2 * i,1 * i + 1,3 * i + 1)
}

reflect(x = 8){
rectangle(0,0,1,1);
rectangle(5,5,8,8);
rectangle(0,2,2,4)
}

for (i < 3){
rectangle(-2 * i + 4,-1 * i + 2,1 * i + 6,2 * i + 3)
}
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circle(9,5);
line(3,1,8,1,
arrow = True,solid = True);
line(8,5,7,5,
arrow = True,solid = True);
line(9,8,0,8,
arrow = True,solid = True);
line(9,2,9,4,
arrow = True,solid = True);
line(12,1,10,1,
arrow = True,solid = True);
line(9,2,10,1,
arrow = False,solid = True);
line(12,1,12,5,
arrow = False,solid = True);
reflect(x = 6){
line(6,5,4,5,
arrow = True,solid = True)
};
rectangle(2,4,4,6);
rectangle(1,0,13,9);
line(9,6,9,8,
arrow = False,solid = True);
line(6,4,7,5,
arrow = False,solid = True);
line(10,5,12,5,
arrow = False,solid = True);
line(3,1,3,4,
arrow = False,solid = True)

circle(6,2);
for (i < 3){
circle(5 * i + 1,7)
};
line(5,7,2,7,
arrow = True,solid = True);
line(6,6,6,3,
arrow = True,solid = True);
line(10,7,7,7,
arrow = True,solid = True);
rectangle(4,0,8,9)
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reflect(x = 5){
reflect(y = 5){
line(0,5,2,5,
arrow = False,solid = True);
line(0,3,0,5,
arrow = False,solid = True)
}
}

for (i < 3){
reflect(x = 14){
circle(9,4 * i + 1);
line(10,4 * i + 1,12,4 * i + 1,
arrow = False,solid = True);
rectangle(0,4 * i,2,4 * i + 2)
}
}

reflect(x = 10){
line(5,6,1,8,
arrow = True,solid = True);
line(9,2,5,4,
arrow = True,solid = True);
for (i < 3){
circle(4 * i + 1,4 * i + 1)
}
}
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reflect(x = 12){
line(6,2,6,3,
arrow = True,solid = True);
line(2,7,5,4,
arrow = True,solid = True);
line(0,0,9,9,
arrow = False,solid = True)
};
line(0,2,12,2,
arrow = False,solid = True)

for (i < 3){
for (j < 3){
if (j > 0){
circle(6 * i + -5,-5 * j + 16);
line(6 * i + -5,5,4,2,
arrow = True,solid = True);
line(6 * j + -5,10,6 * i + -5,7,
arrow = True,solid = True)
}
circle(4,1)
}
}

reflect(y = 10){
circle(1,9);
for (i < 4){
circle(-2 * i + 9,-2 * i + 9)
}
}
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for (i < 3){
circle(1,-4 * i + 9);
circle(5,-4 * i + 9);
for (j < 3){
if (j > 0){
line(4 * i + -3,-4 * j + 10,4 * i + -3,-4 * j + 12,
arrow = False,solid = True)
}
line(2,-4 * j + 9,4,-4 * j + 9,
arrow = False,solid = True)
}
}

circle(2,2);
circle(2,6);
circle(2,11);
line(2,5,2,3,
arrow = True,solid = True);
line(2,10,2,7,
arrow = True,solid = True);
rectangle(0,0,4,9)

for (i < 2){
circle(4,6 * i + 1);
circle(1,6 * i + 4);
rectangle(0,6 * i,2,6 * i + 2);
rectangle(3,6 * i + 3,5,6 * i + 5)
}
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