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Abstract

A fundamental problem in program verification concerns inferring loop invariants.
The problem is undecidable and even practical instances are challenging. Inspired
by how human experts construct loop invariants, we propose a reasoning framework
CODE2INV that constructs the solution by multi-step decision making and querying
an external program graph memory block. By training with reinforcement learning,
CODE2INV captures rich program features and avoids the need for ground truth
solutions as supervision. Compared to previous learning tasks in domains with
graph-structured data, it addresses unique challenges, such as a binary objective
function and an extremely sparse reward that is given by an automated theorem
prover only after the complete loop invariant is proposed. We evaluate CODE2INV on
a suite of 133 benchmark problems and compare it to three state-of-the-art systems.
It solves 106 problems compared to 73 by a stochastic search-based system, 77 by
a heuristic search-based system, and 100 by a decision tree learning-based system.
Moreover, the strategy learned can be generalized to new programs: compared to
solving new instances from scratch, the pre-trained agent is more sample efficient
in finding solutions.

1 Introduction
The growing ubiquity and complexity of software has led to a dramatic increase in software bugs and
security vulnerabilities that pose enormous costs and risks. Program verification technology enables
programmers to prove the absence of such problems at compile-time before deploying their program.
One of the main activities underlying this technology involves inferring a loop invariant—a logical
formula that constitutes an abstract specification of a loop—for each loop in the program. Obtaining
loop invariants enables a broad and deep range of correctness and security properties to be proven
automatically by a variety of program verification tools spanning type checkers, static analyzers, and
theorem provers. Notable examples include Microsoft Code Contracts for .NET programs [1] and
the Verified Software Toolchain spanning C source code to machine language [2].

Many different approaches have been proposed in the literature to infer loop invariants. The problem
is undecidable, however, and even practical instances are challenging, which greatly limits the
benefits of program verification technology. Existing approaches suffer from key drawbacks: they
are purely search-based, or they use hand-crafted features, or they are based on supervised learning.
The performance of search-based approaches is greatly hindered by their inability to learn from past
mistakes. Hand-crafted features limit the space of possible invariants, e.g., Garg et al. [3] is limited
to features of the form x±y≤cwhere c is a constant, and thus cannot handle invariants that involve
x+y≤z for program variables x,y,z. Finally, obtaining ground truth solutions needed by supervised
learning is hindered by the undecidability of the loop invariant generation problem.

In this paper, we propose CODE2INV, an end-to-end learning-based approach to infer loop invariants.
CODE2INV has the ability to automatically learn rich latent representations of desirable invariants,
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and can avoid repeating similar mistakes. Furthermore, it leverages reinforcement learning to discover
invariants by partial feedback from trial-and-error, without needing ground truth solutions for training.

The design of CODE2INV is inspired by the reasoning exercised by human experts. Given a program, a
human expert first maps the program to a well-organized structural representation, and then composes
the loop invariant step by step. Based on such reasoning, different parts of the representation get
highlighted at each step. To mimic this procedure, we utilize a graph neural network model (GNN)
to construct the structural external memory representation of the program. The multi-step decision
making is implemented by an autoregressive model, which queries the external memory using an
attention mechanism. The decision at each step is a syntax- and semantics-guided decoder which
generates subparts of the loop invariant.

CODE2INV employs a reinforcement learning approach since it is computationally intensive to ob-
tain ground truth solutions. Although reinforcement learning algorithms have shown remarkable
success in domains like combinatorial optimization [4, 5] (see Section 6 for more discussion on
related work), our setting differs in two crucial ways: first, it has a non-continuous objective func-
tion (i.e., a proposed loop invariant is correct or not); and second, the positive reward is extremely
sparse and given only after the correct loop invariant is proposed, by an automated theorem prover
[6]. We therefore model the policy learning as a multi-step decision making process: it provides a
fine-grained reward at each step of building the loop invariant, followed by continuous feedback in
the last step based on counterexamples collected by the agent itself during trial-and-error learning.

We evaluate CODE2INV on a suite of 133 benchmark problems from recent works [3, 7, 8] and the
2017 SyGuS program synthesis competition [9]. We also compare it to three state-of-the-art systems:
a stochastic search-based system C2I [10], a heuristic search-based system LOOPINVGEN [8], and
and a decision tree learning-based system ICE-DT [3]. CODE2INV solves 106 problems, versus 73 by
C2I, 77 by LOOPINVGEN, and 100 by ICE-DT. Moreover, CODE2INV exhibits better learning, making
orders-of-magnitude fewer calls to the theorem prover than these systems.

2 Background
We formally define the loop invariant inference and learning problems by introducing Hoare logic [11],
which comprises a set of axioms and inference rules for proving program correctness assertions. Let P
andQ denote predicates over program variables and let S denote a program. We say that Hoare triple
{P} S {Q} is valid if whenever S begins executing in a state that satisfies P and finishes executing,
then the resulting state satisfiesQ. We call P andQ the pre-condition and post-condition respectively
of S. Hoare rules allow to derive such triples inductively over the structure of S. The rule most relevant
for our purpose is that for loops:

P⇒I (pre) {I∧B} S {I} (inv) (I∧¬B)⇒Q (post)
{P}whileB do S {Q}

Predicate I is called a loop invariant, an assertion that holds before and after each iteration, as shown
in the premise of the rule. We can now formally state the loop invariant inference problem:

Problem 1 (Loop Invariant Inference): Given a pre-condition P , a post-conditionQ and a program
S containing a single loop, can we find a predicate I such that {P} S {Q} is valid?

Given a candidate loop invariant, it is straightforward for an automated theorem prover such as Z3 [6]
to check whether the three conditions denoted pre, inv, and post in the premise of the above rule hold,
and thereby prove the property asserted in the conclusion of the rule. If any of the three conditions
fails to hold, the theorem prover returns a concrete counterexample witnessing the failure.

The loop invariant inference problem is undecidable. Moreover, even seemingly simple instances are
challenging, as we illustrate next using the program in Figure 1(a). The goal is to prove that assertion
(y > 0) holds at the end of the program, for every input value of integer variable y. In this case, the
pre-conditionP is true since the input value of y is unconstrained, and the post-conditionQ is (y>0),
the assertion to be proven. Using predicate (x<0 ∨ y>0) as the loop invariant I suffices to prove
the assertion, as shown in Figure 1(b). Notation φ[e/x] denotes the predicate φwith each occurrence
of variable x replaced by expression e. This loop invariant is non-trivial to infer. The reasoning is
simple in the case when the input value of y is non-negative, but far more subtle in the case when it
is negative: regardless of how negative it is at the beginning, the loop will iterate at least as many times
as to make it positive, thereby ensuring the desired assertion upon finishing. Indeed, a state-of-the-art
loop invariant generator LOOPINVGEN [8] crashes on this problem instance after making 1,119 calls
to Z3, whereas CODE2INV successfully generates it after only 26 such calls.
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x := −50;
while (x<0) {

x := x+y;
y := y+1 }

assert(y>0)

(a) An example program.

(b) A desirable loop invariant I is a predicate over x,y such that:

∀x,y :

{
true ⇒ I[−50/x] (pre)

I ∧ x<0 ⇒ I[(y+1)/y,(x+y)/x] (inv)
I ∧ x≥0 ⇒ y>0 (post)

(c) The desired loop invariant is (x<0 ∨ y>0).

Figure 1: A program with a correctness assertion and a loop invariant that suffices to prove it.

The central role played by loop invariants in program verification has led to a large body of work to auto-
matically infer them. Many previous approaches are based on exhaustive bounded search using domain-
specific heuristics and are thereby limited in applicability and scalability [7, 12–18]. A different strategy
is followed by data-driven approaches proposed in recent years [3, 8, 10]. These methods speculatively
guess likely invariants from program executions and check their validity. In [3], decision trees are used
to learn loop invariants with simple linear features, e.g. a∗x+b∗y<c, where a,b∈{−1,0,1},c∈Z.
In [8], these features are generalized by systematic enumeration. In [10], stochastic search is performed
over a set of constraint templates. While such features or templates perform well in specific domains,
however, they may fail to adapt to new domains. Moreover, even in the same domain, they do not
benefit from past experiences: successfully inferring the loop invariant for one program does not speed
up the process for other similar ones. We hereby formulate the second problem we aim to address:

Problem 2 (Loop Invariant Learning): Given a set of programs {Si} ∼ P that are sampled from
some unknown distributionP , can we learn from them and generalize the strategy we learned to other
programs {S̃i} that are from the same distribution?

3 End-to-End Reasoning Framework

3.1 The reasoning process of a human expert 1 int main() {
2 int x = 0, y = 0;
3 while (*) {
4 if (*) {
5 x++;
6 y = 100;
7 } else if (*) {
8 if (x >= 4) {
9 x++;
10 y++;
11 }
12 if (x < 0) y--;
13 }
14 }
15 assert( x < 4 || y > 2);
16 }

Figure 2: An example from our
benchmarks. “*” denotes non-
deterministic choice.

We start out by illustrating how a human expert might typically
accomplish the task of inferring a loop invariant. Consider the
example in Figure 2 chosen from our benchmarks.

An expert usually starts by reading the assertion (line 15), which
contains variables x and y, then determines the locations where
these two variables are initialized, and then focuses on the locations
where they are updated in the loop. Instead of reasoning about the
entire assertion at once, an expert is likely to focus on updates to one
variable at a time. This reasoning yields the observation that x is
initialized to zero (line 2) and may get incremented in each iteration
(line 5,9). Thus, the sub goal “x< 4” may not always hold, given that
the loop iterates non-deterministically. This in turn forces the other
part “y > 2” to be true when “x >= 4”. The only way x can equal or
exceed 4 is to execute the first if branch 4 times (line 4-6), during
which y is set to 100. Now, a natural guess for the loop invariant is
“x < 4 || y >= 100”. The reason for guessing “y >= 100” instead of
“y <= 100” is because part of the proof goal is “y > 2”. However,
this guess will be rejected by the theorem prover. This is because y might be decreased by an arbitrary
number of times in the third if-branch (line 12), which happens when x is less than zero; to avoid that
situation, “x >= 0” should also be part of the loop invariant. Finally, we have the correct loop invariant:
“(x >= 0) && (x < 4 || y >= 100)”, which suffices to prove the assertion.

We observe that the entire reasoning process consists of three key components: 1) organize the program
in a hierarchical-structured way rather than a sequence of tokens; 2) compose the loop invariant step by
step; and 3) focus on a different part of the program at each step, depending on the inference logic, e.g.,
abduction and induction.

3.2 Programming the reasoning procedure with neural networks

We propose to use a neural network to mimic the reasoning used by human experts as described above.
The key idea is to replace the above three components with corresponding differentiable modules:

• a structured external memory representation which encodes the program;
• a multi-step autoregressive model for incremental loop invariant construction; and
• an attention component that mimics the varying focus in each step.
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Figure 3: Overall framework of neuralizing loop invariant inference.

As shown in Figure 3, these modules together build up the network that constructs loop invariants
from programs, while being jointly trained with reinforcement learning described in Section 4. At
each step, the neural network generates a predicate. Then, given the current generated partial tree, a
TreeLSTM module summarizes what have been generated so far, and the summarization is used to read
the memory using attention. Lastly, the summarization together with the read memory is fed into next
time step. We next elaborate upon each of these three components.

3.2.1 Structured external memory
The loop invariant is built within the given context of program. Thus it is natural to encode the program
as an external memory module. However, in contrast to traditional memory networks [19, 20], where
the memory slots are organized as a linear array, the information contained in a program has rich
structure. A chain LSTM over program tokens can in principle capture such information but it is
challenging for neural networks to understand with limited data. Inspired by Allamanis et al. [21], we
instead use a graph-structured memory representation. Such a representation allows to capture rich
semantic knowledge about the program such as its control-flow and data-flow.

More concretely, we first convert a given program into static single assignment (SSA) form [22], and
construct a control flow graph, each of whose nodes represents a single program statement. We then
transform each node into an abstract syntax tree (AST) representing the corresponding statement. Thus
a program can be represented by a graphG=(V,E), where V contains terminals and nonterminals
of the ASTs, andE={(e(i)x ,e

(i)
y ,e

(i)
t )}|E|i=1 is the set of edges. The directed edge (e(i)x ,e

(i)
y ,e

(i)
t ) starts

from node e(i)x to e(i)y , with e(i)t ∈{1,2,...,K} representing edge type. In our construction, the program
graph contains 3 different edge types (and 6 after adding reversed edges).

SSA nodeNon-terminalsTerminals

<loop>
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<
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<assign>

x2

=

+
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Figure 4: Diagram for source code graph as external structured memory. We convert a given program
into a graphG, where nodes correspond to syntax elements, and edges indicate the control flow, syntax
tree structure, or variable linking. We use embedding neural network to get structured memory f(G).

To convert the graph into vector representation, we follow the general message passing operator
introduced in graph neural network (GNN) [23] and its variants [21, 24, 25]. Specifically, the graph
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network will associate each node v∈V with an embedding vector µv∈Rd. The embedding is updated
iteratively using the general neighborhood embedding as follows:

µ(l+1)
v =h({µ(l)

u }u∈Nk(v),k∈{1,2,...,K}) (1)

Hereh(·) is a nonlinear function that aggregates the neighborhood information to update the embedding.
N k(v) is the set of neighbor nodes connected to v with edge type k, i.e.,N k(v)={u|(u,v,k)∈E}.
Such process will be repeated for L steps, and the node embedding µv is set to µ(L)

v ,∀v ∈ V . Our
parameterization takes the edge types into account. The specific parameterization used is shown below:

µ(l+1),k
v = σ(

∑
u∈Nk(v)W2µ

(l)
u ),∀k∈{1,2,...,K} (2)

µ(l+1)
v = σ(W3[µ

(l+1),1
v ,µ

(l+1),2
v ,...,µ

(l+1),K
v ]) (3)

with the boundary case µ(0)
v =W1xv. Here xv represents the syntax information of node v, such as

token or constant value in the program. Matrices W1,2,3 are learnable model parameters, and σ is
some nonlinear activation function. Figure 4 shows the construction of graph structured memory using
iterative message passing operator in Eq (1). f(G)={µv}v∈V denotes the structured memory.

3.2.2 Multi-step decision making process
A loop invariant itself is a mini-program that contains expressions and logical operations. Without loss
of generality, we define the loop invariant to be a tree T , in a form with conjunctions of disjunctions:

T =(T1 || T2...) && (Tt+1 || Tt+2...) && ... (...TT−1|| TT ) (4)

Each subtreeTt is a simple logic expression (i.e.,x < y * 2 + 10 - z). Given this representation form,
it is natural to use Markov decision process (MDP) to model this problem, where the corresponding
T -step finite horizon MDP is defined asMG=(s1,a1,r1,s2,a2,...,sT ). Here st,at,rt represent the
state, action and reward at time step t=1,...,T−1, respectively. Here we describe the state and action
used in the inference model, and describe the design of reward and termination in Section 4.

action: As defined in Eq (4), a loop invariant tree T consists of multiple subtrees {Tt}. Thus we model
the action at time step t as at=(opt,Tt), where opt can either be || or &&. That is to say, at each time
step, the agent first decides whether to attach the subexpression Tt to an existing disjunction, or create a
new disjunction and add it to the list of conjunctions. We use T (<t) to denote the partial tree generated
by time t so far. So the policy π(T |G) is decomposed into:

π(T |G)=
T∏
t=1

π(at|T (<t),G)=

T∏
t=1

π(opt,Tt|T (<t),G) (5)

where T (<1) is empty at the first step. The generation process of subtree Tt is also an autoregressive
model implemented by LSTM. However, generating a valid program is nontrivial, since strong syntax
and semantics constraints should be enforced. Recent advances in neural program synthesis [26, 27]
utilize formal language information to help the generation process. Here we use the Syntax-Directed
decoder proposed in [28] to guarantee both the syntax and semantics validity. Specifically,

• Syntax constraints: The AST generation follows the grammar of loop invariants described in Eq 4.
Operators such as +, -, * are non-terminal nodes in the AST while operands such as constants or
variables are leaf nodes.
• Semantic constraints: We regulate the generated loop invariant to be meaningful. For example, a

valid loop invariant must contains all the variables that appear in the given assertion. Otherwise,
the missing variables can take arbitrary values, causing the assertion to be violated. In contrast to
offline checking which discards invalid programs after generation, such online regulation restricts
the output space of the program generative model, which in turn makes learning efficient.

state: At time step t=1, the state is simply the weighted average of structured memory f(G). At each
later time step t>1, the action at should be conditioned on graph memory, as well as the partial tree
generated so far. Thus st=(G,T (<t)).

3.2.3 Memory query with attention
At different time steps of inference, a human usually focuses on different parts of program. Thus the
attention mechanism is a good choice to mimic such process. Specifically, at time step t, to summarize
what we have generated so far, we use TreeLSTM [29] to embed the partial tree T (<t). Then the
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embedding of partial tree vT (<t) = TreeLSTM(T (<t)) is used as the query to read the structured

memory f(G). Specifically, read(f(G),vT (<t))=
∑
v∈Vαvµv and αv =

expµ>
v vT (<t)∑

v∈V expµ>
v vT (<t)

are the
corresponding attention weights.

4 Learning
The undecidability of the loop invariant generation problem hinders the ability to obtain ground truth
solutions as supervisions for training. Inspired by recent advances in combinatorial optimization [4, 5],
where the agent learns a good policy by trial-and-error, we employ reinforcement learning to learn to
propose loop invariants. Ideally, we seek to learn a policy π(T |G) that proposes a correct loop invariant
T for a program graphG. However, directly solving such a model is practically not feasible, since:

• In contrast to problems tackled by existing work, where the objective function is relatively continuous
(e.g., tour length of traveling salesman problem), the proposed loop invariant only has binary objective
(i.e., correct or not). This makes the loss surface of the objective function highly non-smooth.
• Finding the loop invariant is a bandit problem where the binary reward is given only after the invariant

is proposed. Also, in contrast to two player games [30] where a default policy (e.g., random rollout)
can be used to estimate the reward, it is a single player game with an extremely sparse reward.

To tackle the above two challenges, the multi-step decision making model proposed in Section 3.2.2 is
used, where a fine-grained reward is also designed for each step. In the last step, a continuous feedback
is provided based on the counterexamples collected by the agent itself.

4.1 Reinforcement learning setup

Section 3.2.2 defines the state and action representation used for inference. We next describe our setup
of the environment which is important to properly train a reinforcement learning agent.

reward: In each intermediate step t∈ 1,...,T−1, an intermediate reward rt is given to regulate the
generation process. For example, a subexpression should be non-trivial, and it should not contradict
T (<t). In the last step, the generated loop invariant T is given to a theorem prover, which returns
success or failure. In the latter case, the theorem prover also tells which step (pre, inv, post) failed, and
provides a counterexample. The failure step can be viewed as a “milestone” of the verification process,
providing a coarse granularity feedback. To achieve continuous (i.e. fine granularity) reward within
each step, we exploit the counterexamples collected so far. For instance, the ratio of passed examples is
a good indicator of the learning progress. Appendix ?? describes the reward design in detail.

termination: There are several conditions that may trigger the termination of tree generation: (1) the
agent executes the “stop” action, as illustrated in Figure 3; (2) the generated tree has the maximum
number of branches allowed; or (3) the agent generates an invalid action.

4.2 Training of the learning agent

We use advantage actor critic (A2C) to train the above reinforcement learning policy. Specifically, let
θ={Wi} be the parameters in graph memory representation f(·;θ), and φ be the parameter used in
π(at|T (<t),G;φ), our objective is to maximize the expected policy reward:

max
θ,φ

Eπ(opt,Tt|T (<t),G;φ)(

T∑
t′=t

γt
′−trt′−b(T (<t),G;ψ)) (6)

The baseline function b(T (<t),G;ψ) parameterized byψ is used to estimate the expected return, so as to
reduce the variance of policy gradient. It is trained to minimize Eπ,t‖

∑T
t′=tγ

t′−trt′−b(T (<t),G;ψ)‖.
We simply apply two layer fully connected neural network to predict the expected return. γ is the
discounting factor. Since the MDP is finite horizon, we use γ=1 to address the long-term reward.

5 Experiments

We evaluate CODE2INV on a suite of 133 benchmark programs from recent works [3, 7, 8] and the 2017
SyGuS competition [31].2 Each program consists of three parts: a number of assumption or assignment
statements, one loop which contains nested if-else statements with arithmetic operations, and one
assertion statement. Appendix ?? provides more details about the dataset and the competition.

2Our code and data are publicly available from https://github.com/PL-ML/code2inv
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