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A Optimization of Test Locations in Rel-UME and Rel-FSSD

This section describes the optimization procedure we use to select the test locations V and the
bandwidth of the Gaussian kernel in the experiment “Test Powers on Toy Problems.” Since the two
sets V,W of test locations are constrained to be the same i.e., V = W consisting of J = Jp = Jq
locations, in total, we have Jd+1 parameters. We follow a similar implementation of the optimization
procedure for finding the test locations in FSSD.4 All the parameters are optimized jointly by gradient
ascent. We initialize the test locations by randomly picking J points from the training set. The
Gaussian width is initialized (for gradient ascent) to the square of the mean of medXtr∪Ztr and
medY tr∪Ztr , where medA := median

(
{‖x− x′‖2}x,x′∈A

)
. This is a similar heuristic used in

Bounliphone et al. [2015] to set the bandwidth of the Gaussian kernel for Rel-MMD.

B Trained Models for Generating Smiling and Non-Smiling Images

(a) Samples from the smiling model (b) Samples from the non-smiling model

Figure 6: Samples from the two trained models (smiling, and non-smiling) used in "Testing GAN
Models" experiment in Section 4.

This section describes the details of the two GAN models (smiling, and non-smiling models) we use
in the "Testing GAN Models" experiment in Section 4. We use the CelebA dataset [Liu et al., 2015]
in which each data point is an image of a celebrity with 40 binary attributes annotated e.g., pointy
nose, smiling, mustache, etc. We create a partition of the images on the smiling attribute, thereby
creating two disjoint subsets of smiling and non-smiling images. To reduce confounding factors
that are not related to smiling (e.g., sunglasses, background), each image is cropped to be 64x64
pixels, so that only the face remains. Cropping and image alignment with eyes and lips are done with
the software described in Amos et al. [2016]. We use DCGAN architecture [Radford et al., 2015]
(for both generator and discriminator) for both smiling and non-smiling models, coded in Pytorch.
Subsampling was performed so that the training sizes for the two models are equal. Each model is
trained on 84,822 images (i.e., 84822 smiling faces, and 84822 non-smiling faces) for 50 epochs. The
training time was roughly three hours using an Nvidia Titan X graphics card with Pascal architecture.
We use Adam optimizer [Kingma and Ba, 2014] with β1 = 0.5 and β2 = 0.999. The learning rate is
set to 10−3 (for both discriminator and generator in the two models). Some samples generated from
the two trained models are shown in Figure 6.

4Code for FSSD released by the authors: https://github.com/wittawatj/kernel-gof.
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C Proofs

This section contains proofs for the results given in the main text.

C.1 Proof of Theorem 1

Let all the notations be defined as in Section 3. Recall Theorem 1:
Theorem 1 (Asymptotic distribution of ŜUn ). Define CQW := covy∼Q[ψW (y), ψW (y)], CPV :=
covx∼P [ψV (x), ψV (x)], and CRVW := covz∼R[ψV (z), ψW (z)] ∈ RJp×Jq . Let SU := U2

P − U2
Q,

and M :=

(
ψPV − ψRV 0

0 ψQW − ψRW

)
∈ R(Jp+Jq)×2. Assume that 1) P,Q and R are

all distinct, 2) (kX , V ) are chosen such that U2
P > 0, and (kY ,W ) are chosen such that

U2
Q > 0, 3)

(
ζ2P ζPQ
ζPQ ζ2Q

)
:= M>

(
CPV + CRV CRVW
(CRVW )> CQW + CRW

)
M is positive definite. Then,

√
n
(
ŜUn − SU

)
d→ N

(
0, 4(ζ2P − 2ζPQ + ζ2Q)

)
Proof. Consider a random vector t := (x,y, z) ∈ X 3, where x,y, and z are independently drawn
from P,Q, and R, respectively. Let T be the distribution of t, and {ti}ni=1 = {(xi,yi, zi)}ni=1

i.i.d.∼
T . Define two functions

δPV (t, t′) := (ψV (x)− ψV (z))>(ψV (x′)− ψV (z′)),

δQW (t, t′) := (ψW (y)− ψW (z))>(ψW (y′)− ψW (z′)),

where t′ := (x′,y′, z′). It can be seen that δPV (t, t′) = δPV (t′, t) and δQW (t, t′) = δQW (t′, t) for all

t, t′ ∈ X 3, and that both functions are valid U-statistic kernels. It is not difficult to see that Û2
P and

Û2
Q (estimator given in Section 2) can be written in the form of second-order U-statistics [Serfling,

2009, Chapter 5] as

Û2
P =

(
n

2

)−1 n∑
i=1

∑
j<i

δPV (t, t′),

Û2
Q =

(
n

2

)−1 n∑
i=1

∑
j<i

δQW (t, t′).

Since ψPV 6= ψRV (because U2
P > 0), Û2

P is a non-degenerate U-statistic. Since ψQW 6= ψRW , Û2
Q is also

non-degenerate [Serfling, 2009, Section 5.5.1]. By Hoeffding [1948, Theorem 7.1], asymptotically
their joint distribution is given by a normal distribution:

√
n

((
Û2
P

Û2
Q

)
−
(
U2
P

U2
Q

))
d→ N

(
0, 4

(
ζ2P ζPQ
ζPQ ζ2Q

))
, (1)

where

ζ2P = Vt∼T
[
Et′∼T [δPV (t, t′)]

] (a)
= (ψPV − ψRV )>(CPV + CRV )(ψPV − ψRV ),

ζ2Q = Vt∼T

[
Et′∼T [δQW (t, t′)]

]
(b)
= (ψQW − ψRW )>(CQW + CRW )(ψQW − ψRW ),

ζPQ = covt∼T

(
Et′∼T [δPV (t, t′)],Et′∼T [δQW (t, t′)]

)
(c)
= (ψPV − ψRV )>CRVW (ψQW − ψRW ),

and CRVW := covz∼R[ψV (z), ψW (z)] ∈ RJp×Jq . At (a), (b), (c), we rely on the independence
among x,y, and z. A direct calculation gives the expressions of ζ2P , ζ2Q, and ζPQ. By the contin-

uous mapping theorem, and (1),
√
n

(
1
−1

)>((
Û2
P

Û2
Q

)
−
(
U2
P

U2
Q

))
=
√
n
(
ŜUn − SU

)
d→

N
(

0, 4

(
1
−1

)>(
ζ2P ζPQ
ζPQ ζ2Q

)(
1
−1

))
giving the result.
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Table 2: Discriminator and generator of LSGAN used in experiment 5.
Discriminator Generator

Input: 28× 28 grayscale image Input noise vector z ∼ Unif[0, 1]62

4× 4 conv. 64 LRELU. Stride 2. FC. 1024 RELU. Batch norm.
4× 4 conv. 128 LRELU. Stride 2. Batch norm. FC. 7× 7× 128 RELU. Batch norm.
FC. 104 Leaky RELU. Batch norm. 4× 4 upconv. 64 RELU. Stride 2. Batch norm.
FC 4× 4 upconv. 1 channel.

conv. refers to a convolution layer, FC means a fully-connected layer, RELU means a rectified linear
unit, LRELU means Leaky RELU, and upconv is the transposed convolution.

Remark 1. The assumption that P,Q, and R are all distinct in Theorem 1 is necessary for Û2
P and

Û2
Q to follow a non-degenerate normal distribution asymptotically. If R ∈ {P,Q}, then Û2

S for
S ∈ {P,Q} asymptotically follows a weighted sum of chi-squared random variables, and U2

S = 0. If
P = Q, the covariance matrix in (1) is rank-defficient.

D Details of Experiment 5: Examining GAN Training

LSGAN Architecture We rely on Pytorch code5 by Hyeonwoo Kang to train the LSGAN [Mao
et al., 2017] model that we use in experiment 5. Network architectures of the generator and the
discriminator follow the design used in Chen et al. [2016, Section C.1]. We reproduce here in Table 2
for ease of reference.

Kernel Function The kernel k is chosen to be a Gaussian kernel on features extracted from a
convolutional neural network (CNN) classifier trained to classify the ten digits of MNIST. Specifically
the kernel k is k(x,y) = exp

(
−‖f(x)−f(y)‖

2
2

2ν2

)
, where f is the output (in R10) of the last fully-

connected layer of a trained CNN classifier.6 The architecture of the CNN is

Input: 28×28 grayscale image→ 5× 5 conv. 10 filters. 2×2 max pool
→ 5× 5 conv. 20 filters. 2×2 max pool
→ FC. 50 RELU.
→ FC. 10 outputs.

We train the CNN for 30 epochs and achieve higher than 99% accuracy on MNIST’s test set. The
Gaussian bandwidth ν is set with the median heuristic.

Class Proportion of Generated Digits To examine the proportion of digits in the generated
samples, we sample 4000 images from both models P (LSGAN-15, LSGAN model trained for 15
epochs), and Q (LSGAN-17, LSGAN model trained for 17 epochs), and use the CNN classifier to
assign a label to each image. The proportions of digits are shown in Figure 7. We observe that the
generated digits from both LSGAN-15 and LSGAN-17 follow the right distribution i.e., uniform
distribution, up to variability due to noise. There is no mode collapse problem. This observation
means that the difference between P and Q studied in experiment 5 in the main text is not due to the
mismatch of class proportions.

5https://github.com/znxlwm/pytorch-generative-model-collections (commit: 0d183bb5ea)
6Code to train the CNN classifier is taken from https://github.com/pytorch/examples/blob/

master/mnist/main.py (commit: 75e7c75).
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Figure 7: Proportions of generated digits from the LSGAN models at 15th and 17th epochs. Classi-
fication of each generated image is done by a trained convolutional neural network classifier (see
Section D).

(a) Samples from LSGAN trained for 15 epochs.

(b) Samples from LSGAN trained for 17 epochs.

Figure 8: Samples from LSGAN models trained on MNIST. Samples are taken from the models at
two different time points: after 15 epochs, and after 17 epochs of training.
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E Comparing Different GAN Models Trained on MNIST

This section extends experiment 5 in the main text to compare other GAN variants trained on MNIST.
All the GAN variants that we consider have the same network architecture as described in Table 2.
We use the notation AAA-n to refer to a GAN model of type AAA trained for n epochs. We note that
the result presented here for each GAN variant does not represent its best achievable result.

WGAN-GP-10 vs LSGAN-10 Here we compare P = Wasserstein GAN with Gradient Penalty
[Gulrajani et al., 2017] and Q = LSGAN [Mao et al., 2017] trained for ten epochs on MNIST. The
results are shown in Figure 9. From the generated samples from the two models, it appears that
LSGAN yields more realistic images of handwritten digits, after training for ten epochs. The positive
power criterion values in Figure 9c further confirm this observation i.e., Q is better at all digits.

(a) Sample from P = WGAN-GP
trained for 10 epochs.

(b) Sample from Q = LSGAN
trained for 10 epochs.
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(c) Power criterion

Figure 9: Comparing WGAN-GP (Wasserstein GAN with Gradient Penalty) and LSGAN, trained for
ten epochs on MNIST.

GAN-40 vs LSGAN-40 In this part, we compare P = GAN-40 [Goodfellow et al., 2014] and
Q = LSGAN trained for 40 epochs on MNIST. The results are shown in Figure 10. It can be seen
from visual inspection that LSGAN-40 is slightly better overall, except for digits 1 and 5 at which
LSGAN-40 appears to be significantly better. This observation is also hinted by the power criterion
values at digits 1 and 5 which tend to be positive (see Figure 10c).

(a) Sample from P = GAN trained
for 40 epochs.

(b) Sample from Q = LSGAN
trained for 40 epochs.
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(c) Power criterion

Figure 10: Comparing GAN (the original formulation) and LSGAN, trained for 40 epochs on MNIST.

WGAN-30 vs WGAN-30 As a sanity check, we also run the same procedure on a case where
P = Q. We set P = Q = Wasserstein GAN (WGAN, [Arjovsky et al., 2017] trained for 30 epochs
on MNIST. The results are shown in Figure 11. As expected, the power criterion values spread around
zero in all cases. We note that we did not modify the procedure to treat this special case. In particular,
in each trial, two samples are drawn from P and Q as usual.
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(a) Sample from P = Q = WGAN trained for 30 epochs.
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(b) Power criterion

Figure 11: Comparing two models which are the same for sanity checking. The model is set to
WGAN trained for 30 epochs.
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