
Learning Overparameterized Neural Networks via
Stochastic Gradient Descent on Structured Data

Yuanzhi Li
Computer Science Department

Stanford University
Stanford, CA 94305

yuanzhil@stanford.edu

Yingyu Liang
Department of Computer Sciences
University of Wisconsin-Madison

Madison, WI 53706
yliang@cs.wisc.edu

Abstract

Neural networks have many successful applications, while much less theoretical
understanding has been gained. Towards bridging this gap, we study the problem of
learning a two-layer overparameterized ReLU neural network for multi-class clas-
sification via stochastic gradient descent (SGD) from random initialization. In the
overparameterized setting, when the data comes from mixtures of well-separated
distributions, we prove that SGD learns a network with a small generalization
error, albeit the network has enough capacity to fit arbitrary labels. Furthermore,
the analysis provides interesting insights into several aspects of learning neural
networks and can be verified based on empirical studies on synthetic data and on
the MNIST dataset.

1 Introduction

Neural networks have achieved great success in many applications, but despite a recent increase
of theoretical studies, much remains to be explained. For example, it is empirically observed that
learning with stochastic gradient descent (SGD) in the overparameterized setting (i.e., learning a large
network with number of parameters larger than the number of training data points) does not lead to
overfitting [24, 31]. Some recent studies use the low complexity of the learned solution to explain the
generalization, but usually do not explain how the SGD or its variants favors low complexity solutions
(i.e., the inductive bias or implicit regularization) [3, 23]. It is also observed that overparameterization
and proper random initialization can help the optimization [28, 12, 26, 18], but it is also not well
understood why a particular initialization can improve learning. Moreover, most of the existing
works trying to explain these phenomenons in general rely on unrealistic assumptions about the data
distribution, such as Gaussian-ness and/or linear separability [32, 25, 10, 17, 7].

This paper thus proposes to study the problem of learning a two-layer overparameterized neural
network using SGD for classification, on data with a more realistic structure. In particular, the data
in each class is a mixture of several components, and components from different classes are well
separated in distance (but the components in each class can be close to each other). This is motivated
by practical data. For example, on the dataset MNIST [15], each class corresponds to a digit and can
have several components corresponding to different writing styles of the digit, and an image in it is
a small perturbation of one of the components. On the other hand, images that belong to the same
component are closer to each other than to an image of another digit. Analysis in this setting can then
help understand how the structure of the practical data affects the optimization and generalization.

In this setting, we prove that when the network is sufficiently overparameterized, SGD provably
learns a network close to the random initialization and with a small generalization error. This result
shows that in the overparameterized setting and when the data is well structured, though in principle

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

the network can overfit, SGD with random initialization introduces a strong inductive bias and leads
to good generalization.

Our result also shows that the overparameterization requirement and the learning time depends on the
parameters inherent to the structure of the data but not on the ambient dimension of the data. More
importantly, the analysis to obtain the result also provides some interesting theoretical insights for
various aspects of learning neural networks. It reveals that the success of learning crucially relies
on overparameterization and random initialization. These two combined together lead to a tight
coupling around the initialization between the SGD and another learning process that has a benign
optimization landscape. This coupling, together with the structure of the data, allows SGD to find a
solution that has a low generalization error, while still remains in the aforementioned neighborhood of
the initialization. Our work makes a step towrads explaining how overparameterization and random
initialization help optimization, and how the inductive bias and good generalization arise from the
SGD dynamics on structured data. Some other more technical implications of our analysis will be
discussed in later sections, such as the existence of a good solution close to the initialization, and the
low-rankness of the weights learned. Complementary empirical studies on synthetic data and on the
benchmark dataset MNIST provide positive support for the analysis and insights.

2 Related Work

Generalization of neural networks. Empirical studies show interesting phenomena about the
generalization of neural networks: practical neural networks have the capacity to fit random labels of
the training data, yet they still have good generalization when trained on practical data [24, 31, 2].
These networks are overparameterized in that they have more parameters than statistically necessary,
and their good generalization cannot be explained by naïvely applying traditional theory. Several
lines of work have proposed certain low complexity measures of the learned network and derived
generalization bounds to better explain the phenomena. [3, 23, 21] proved spectrally-normalized
margin-based generalization bounds, [9, 23] derived bounds from a PAC-Bayes approach, and
[1, 33, 4] derived bounds from the compression point of view. They, in general, do not address
why the low complexity arises. This paper takes a step towards this direction, though on two-layer
networks and a simplified model of the data.

Overparameterization and implicit regularization. The training objectives of overparameterized
networks in principle have many (approximate) global optima and some generalize better than the
others [14, 8, 2], while empirical observations imply that the optimization process in practice prefers
those with better generalization. It is then an interesting question how this implicit regularization or
inductive bias arises from the optimization and the structure of the data. Recent studies are on SGD
for different tasks, such as logistic regression [27] and matrix factorization [11, 19, 16]. More related
to our work is [7], which studies the problem of learning a two-layer overparameterized network on
linearly separable data and shows that SGD converges to a global optimum with good generalization.
Our work studies the problem on data with a well clustered (and potentially not linearly separable)
structure that we believe is closer to practical scenarios and thus can advance this line of research.

Theoretical analysis of learning neural networks. There also exists a large body of work that
analyzes the optimization landscape of learning neural networks [13, 26, 30, 10, 25, 29, 6, 32, 17, 5].
They in general need to assume unrealistic assumptions about the data such as Gaussian-ness, and/or
have strong assumptions about the network such as using only linear activation. They also do not
study the implicit regularization by the optimization algorithms.

3 Problem Setup

In this work, a two-layer neural network with ReLU activation for k-classes classification is given by
f = (f1, f2, · · · , fk) such that for each i ∈ [k]:

fi(x) =

m∑
r=1

ai,rReLU(〈wr, x〉)

where {wr ∈ Rd} are the weights for the m neurons in the hidden layer, {ai,r ∈ R} are the weights
of the top layer, and ReLU(z) = max{0, z}.

2

Assumptions about the data. The data is generated from a distributionD as follows. There are k× l
unknown distributions {Di,j}i∈[k],j∈[l] over Rd and probabilities pi,j ≥ 0 such that

∑
i,j pi,j = 1.

Each data point (x, y) is i.i.d. generated by: (1) Sample z ∈ [k]× [l] such that Pr[z = (i, j)] = pi,j ;
(2) Set label y = z[0], and sample x from Dz . Assume we sample N points {(xi, yi)}Ni=1.

Let us define the support of a distribution D with density p overRd as supp(D) = {x : p(x) > 0},
the distance between two sets S1,S2 ⊆ Rd as dist(S1,S2) = minx∈S1,y∈S2{‖x − y‖2}, and the
diameter of a set S1 ⊆ Rd as diam(S1) = maxx,y∈S1{‖x− y‖2}. Then we are ready to make the
assumptions about the data.

(A1) (Separability) There exists δ > 0 such that for every i1 6= i2 ∈ [k] and every
j1, j2 ∈ [l], dist (supp(Di1,j1), supp(Di2,j2)) ≥ δ.Moreover, for every i ∈ [k], j ∈ [l],1
diam(supp(Di,j)) ≤ λδ, for λ ≤ 1/(8l).

(A2) (Normalization) Any x from the distribution has ‖x‖2 = 1.

A few remarks are worthy. Instead of having one distribution for one class, we allow an arbitrary
l ≥ 1 distributions in each class, which we believe is a better fit to the real data. For example, in
MNIST, a class can be the number 1, and l can be the different styles of writing 1 (1 or | or /).

Assumption (A2) is for simplicity, while (A1) is our key assumption. With l ≥ 1 distributions
inside each class, our assumption allows data that is not linearly separable, e.g., XOR type data in
R2 where there are two classes, one consisting of two balls of diameter 1/10 with centers (0, 0)
and (2, 2) and the other consisting of two of the same diameter with centers (0, 2) and (2, 0). See
Figure 3 in Appendix C for an illustration. Moreover, essentially the only assumption we have
here is λ = O(1/l). When l = 1, λ = O(1), which is the minimal requirement on the order of λ
for the distribution to be efficiently learnable. Our work allows larger l, so that the data can be
more complicated inside each class. In this case, we require the separation to also be higher. When
we increase l to refine the distributions inside each class, we should expect the diameters of each
distribution become smaller as well. As long as the rate of diameter decreasing in each distribution is
greater than the total number of distributions, then our assumption will hold.

Assumptions about the learning process. We will only learn the weight wr to simplify the analysis.
Since the ReLU activation is positive homogeneous, the effect of overparameterization can still be
studied, and a similar approach has been adopted in previous work [7]. So the network is also written
as y = f(x,w) = (f1(x,w), · · · , fk(x,w)) for w = (w1, · · · , wr).

We assume the learning is from a random initialization:

(A3) (Random initialization) w(0)
r ∼ N (0, σ2I), ai,r ∼ N (0, 1), with σ = 1

m1/2 .

The learning process minimizes the cross entropy loss over the softmax, defined as:

L(w) = − 1

N

N∑
s=1

log oys(xs, w), where oy(x,w) =
efy(x,w)∑k
i=1 e

fi(x,w)
.

Let L(w, xs, ys) = − log oys(xs, w) denote the cross entropy loss for a particular point (xs, ys).

We consider a minibatch SGD of batch size B, number of iterations T = N/B and learning rate η as
the following process: Randomly divide the total training examples into T batches, each of size B.
Let the indices of the examples in the t-th batch be Bt. At each iteration, the update is2

w(t+1)
r = w(t)

r − η
1

B

∑
s∈Bt

∂L(w(t), xs, ys)

∂w
(t)
r

,∀r ∈ [m], where

∂L(w, xs, ys)

∂wr
=

∑
i 6=ys

ai,roi(xs, w)−
∑
i6=ys

ays,roi(xs, w)

 1〈wr,xs〉≥0xs. (1)

1The assumption 1/(8l) can be made to 1/[(1 + α)l] for any α > 0 by paying a large polynomial in 1/α in
the sample complexity. We will not prove it in this paper because we would like to highlight the key factors.

2Strictly speaking, L(w, xs, ys) does not have gradient everywhere due to the non-smoothness of ReLU.
One can view ∂L(w,xs,ys)

∂wr
as a convenient notation for the right hand side of (1).

3

4 Main Result

For notation simplicity, for a target error ε (to be specified later), with high probability (or w.h.p.)
means with probability 1− 1/poly(1/δ, k, l,m, 1/ε) for a sufficiently large polynomial poly, and Õ
hides factors of poly(log 1/δ, log k, log l, logm, log 1/ε).
Theorem 4.1. Suppose the assumptions (A1)(A2)(A3) are satisfied. Then for every ε > 0,
there is M = poly(k, l, 1/δ, 1/ε) such that for every m ≥ M , after doing a minibatch SGD
with batch size B = poly(k, l, 1/δ, 1/ε, logm) and learning rate η = 1

m·poly(k,l,1/δ,1/ε,logm) for
T = poly(k, l, 1/δ, 1/ε, logm) iterations, with high probability:

Pr
(x,y)∼D

[
∀j ∈ [k], j 6= y, fy(x,w(T)) > fj(x,w

(T))
]
≥ 1− ε.

Our theorem implies if the data satisfies our assumptions, and we parametrize the network properly,
then we only need polynomial in k, l, 1/δ many samples to achieve a good prediction error. This
error is measured directly on the true distribution D, not merely on the input data used to train this
network. Our result is also dimension free: There is no dependency on the underlying dimension
d of the data, the complexity is fully captured by k, l, 1/δ. Moreover, no matter how much the
network is overparameterized, it will only increase the total iterations by factors of logm. So we can
overparameterize by an sub-exponential amount without significantly increasing the complexity.

Furthermore, we can always treat each input example as an individual distribution, thus λ is always
zero. In this case, if we use batch size B for T iterations, we would have l = N = BT . Then our
theorem indicate that as long as m = poly(N, 1/δ′), where δ′ is the minimal distance between each
examples, we can actually fit arbitrary labels of the input data. However, since the total iteration only
depends on logm, when m = poly(N, 1/δ′) but the input data is actually structured (with small k, l
and large δ), then SGD can actually achieve a small generalization error, even when the network has
enough capacity to fit arbitrary labels of the training examples (and can also be done by SGD). Thus,
we prove that SGD has a strong inductive bias on structured data: Instead of finding a bad global
optima that can fit arbitrary labels, it actually finds those with good generalization guarantees. This
gives more thorough explanation to the empirical observations in [24, 31].

5 Intuition and Proof Sketch for A Simplified Case

To train a neural network with ReLU activations, there are two questions need to be addressed:

1 Why can SGD optimize the training loss? Or even finding a critical point? Since the under-
lying network is highly non-smooth, existing theorems do not give any finite convergence
rate of SGD for training neural network with ReLUs activations.

2 Why can the trained network generalize? Even when the capacity is large enough to fit
random labels of the input data? This is known as the inductive bias of SGD.

This work takes a step towards answering these two questions. We show that when the network is
overparameterized, it becomes more “pseudo smooth”, which makes it easir for SGD to minimize
the training loss, and furthermore, it will not hurt the generalization error. Our proof is based on the
following important observation:

The more we overparameterize the network, the less likely the activation pattern for one
neuron and one data point will change in a fixed number of iterations.

This observation allows us to couple the gradient of the true neural network with a “pseudo gradient”
where the activation pattern for each data point and each neuron is fixed. That is, when computing the
“pseudo gradient”, for fixed r, i, whether the r-th hidden node is activated on the i-th data point xi
will always be the same for different t. (But for fixed t, for different r or i, the sign can be different.)
We are able to prove that unless the generalization error is small, the “pseudo gradient” will always
be large. Moreover, we show that the network is actually smooth thus SGD can minimize the loss.

We then show that when the number m of hidden neurons increases, with a properly decreasing
learning rate, the total number of iterations it takes to minimize the loss is roughly not changed.
However, the total number of iterations that we can couple the true gradient with the pseudo one

4

increases. Thus, there is a polynomially large m so that we can couple these two gradients until the
network reaches a small generalization error.

5.1 A Simplified Case: No Variance

Here we illustrate the proof sketch for a simplified case and Appendix A provides the proof. The
proof for the general case is provided in Appendix B. In the simplified case, we further assume:

(S) (No variance) Each Da,b is a single data point (xa,b, a), and also we are doing full batch
gradient descent as opposite to the minibatch SGD.

Then we reload the loss notation as L(w) =
∑
a∈[k],b∈[l] pa,bL(w, xa,b, a), and the gradient is

∂L(w)

∂wr
=

∑
a∈[k],b∈[l]

pa,b

∑
i 6=a

ai,roi(xa,b, w)−
∑
i 6=a

aa,roi(xa,b, w)

 1〈wr,xa,b〉≥0xa,b.

Following the intuition above, we define the pseudo gradient as

∂̃L(w)

∂wr
=

∑
a∈[k],b∈[l]

pa,b

∑
i 6=a

ai,roi(xa,b, w)−
∑
i6=a

aa,roi(xa,b, w)

 1〈w(0)
r ,xa,b〉≥0

xa,b,

where it uses 1〈w(0)
r ,xa,b〉≥0

instead of 1〈wr,xa,b〉≥0 as in the true gradient. That is, the activation
pattern is set to be that in the initialization. Intuitively, the pseudo gradient is similar to the gradient for
a pseudo network g (but not exactly the same), defined as gi(x,w) :=

∑m
r=1 ai,r〈wr, x〉1〈w(0)

r ,x
〉
≥0.

Coupling the gradients is then similar to coupling the networks f and g.

For simplicity, let va,a,b :=
∑
i 6=a oi(xa,b, w) =

∑
i6=a e

fi(xa,b,w)∑k
i=1 e

fi(xa,b,w) and when s 6= a, vs,a,b :=

−os(xa,b, w) = − efs(xa,b,w)∑k
i=1 e

fi(xa,b,w) . Roughly, if va,a,b is small, then fa(xa,b, w) is relatively larger

compared to the other fi(xa,b, w), so the classification error is small.

We prove the following two main lemmas. The first says that at each iteration, the total number of
hidden units whose gradient can be coupled with the pseudo one is quite large.

Lemma 5.1 (Coupling). W.h.p. over the random initialization, for every τ > 0, for every t = Õ
(
τ
η

)
,

we have that for at least 1− eτkl
σ fraction of r ∈ [m]: ∂L(w(t))

∂wr
= ∂̃L(w(t))

∂wr
.

The second lemma says that the pseudo gradient is large unless the error is small.

Lemma 5.2. For m = Ω̃
(
k3l2

δ

)
, for every {pa,bvi,a,b}i,a∈[k],b∈[l] ∈ [−v, v] (that depends on

w
(0)
r , ai,r, etc.) with max{pa,bvi,a,b}i,a∈[k],b∈[l] = v, there exists at least Ω(δkl) fraction of r ∈ [m]

such that
∥∥∥ ∂̃L(w)

∂wr

∥∥∥
2

= Ω̃
(
vδ
kl

)
.

We now illustrate how to use these two lemmas to show the convergence for a small enough learning
rate η. For simplicity, let us assume that kl/δ = O(1) and ε = o(1). Thus, by Lemma 5.2 we know
that unless v ≤ ε, there are Ω(1) fraction of r such that

∥∥∥∂̃L(w)/∂wr

∥∥∥
2

= Ω(ε). Moreover, by

Lemma 5.1 we know that we can pick τ = Θ(σε) so eτ/σ = Θ(ε), which implies that there are Ω(1)
fraction of r such that ‖∂L(w)/∂wr‖2 = Ω(ε) as well. For small enough learning rate η, doing one
step of gradient descent will thus decrease L(w) by Ω(ηmε2), so it converges in t = O

(
1/ηmε2

)
iterations. In the end, we just need to make sure that 1/ηmε2 ≤ O(τ/η) = Θ(σε/η) so we can
always apply the coupling Lemma 5.1. By σ = Õ(1/m−1/2) we know that this is true as long as
m ≥ poly(1/ε). A small v can be shown to lead to a small generalization error.

6 Discussion of Insights from the Analysis

Our analysis, though for learning two-layer networks on well structured data, also sheds some light
upon learning neural networks in more general settings.

5

Generalization. Several lines of recent work explain the generalization phenomenon of overparam-
eterized networks by low complexity of the learned networks, from the point views of spectrally-
normalized margins [3, 23, 21], compression [1, 33, 4], and PAC-Bayes [9, 23].

Our analysis has partially explained how SGD (with proper random initialization) on structured data
leads to the low complexity from the compression and PCA-Bayes point views. We have shown that
in a neighborhood of the random initialization, w.h.p. the gradients are similar to those of another
benign learning process, and thus SGD can reduce the error and reach a good solution while still
in the neighborhood. The closeness to the initialization then means the weights (or more precisely
the difference between the learned weights and the initialization) can be easily compressed. In fact,
empirical observations have been made and connected to generalization in [22, 1]. Furthermore, [1]
explicitly point out such a compression using a helper string (corresponding to the initialization in
our setting). [1] also point out that the compression view can be regarded as a more explicit form of
the PAC-Bayes view, and thus our intuition also applies to the latter.

The existence of a solution of a small generalization error near the initialization is itself not obvious.
Intuitively, on structured data, the updates are structured signals spread out across the weights of the
hidden neurons. Then for prediction, the random initialized part in the weights has strong cancellation,
while the structured signal part in the weights collectively affects the output. Therefore, the latter can
be much smaller than the former while the network can still give accurate predictions. In other words,
there can be a solution not far from the initialization with high probability.

Some insight is provided on the low rank of the weights. More precisely, when the data are well
clustered around a few patterns, the accumulated updates (difference between the learned weights
and the initialization) should be approximately low rank, which can be seen from checking the SGD
updates. However, when the difference is small compared to the initialization, the spectrum of the
final weight matrix is dominated by that of the initialization and thus will tend to closer to that of a
random matrix. Again, such observations/intuitions have been made in the literature and connected
to compression and generalization (e.g., [1]).

Implicit regularization v.s. structure of the data. Existing work has analyzed the implicit regular-
ization of SGD on logistic regression [27], matrix factorization [11, 19, 16], and learning two-layer
networks on linearly separable data [7]. Our setting and also the analysis techniques are novel
compared to the existing work. One motivation to study on structured data is to understand the role
of structured data play in the implicit regularization, i.e., the observation that the solution learned
on less structured or even random data is further away from the initialization. Indeed, our analysis
shows that when the network size is fixed (and sufficiently overparameterized), learning over poorly
structured data (larger k and `) needs more iterations and thus the solution can deviate more from
the initialization and has higher complexity. An extreme and especially interesting case is when the
network is overparameterized so that in principle it can fit the training data by viewing each point as a
component while actually they come from structured distributions with small number of components.
In this case, we can show that it still learns a network with a small generalization error; see the more
technical discussion in Section 4.

We also note that our analysis is under the assumption that the network is sufficiently overparam-
eterized, i.e., m is a sufficiently large polynomial of k, ` and other related parameters measuring
the structure of the data. There could be the case that m is smaller than this polynomial but is more
than sufficient to fit the data, i.e., the network is still overparameterized. Though in this case the
analysis still provides useful insight, it does not fully apply; see our experiments with relatively small
m. On the other hand, the empirical observations [24, 31] suggest that practical networks are highly
overparameterized, so our intuition may still be helpful there.

Effect of random initialization. Our analysis also shows how proper random initializations helps
the optimization and consequently generalization. Essentially, this guarantees that w.h.p. for weights
close to the initialization, many hidden ReLU units will have the same activation patterns (i.e.,
activated or not) as for the initializations, which means the gradients in the neighborhood look like
those when the hidden units have fixed activation patterns. This allows SGD makes progress when
the loss is large, and eventually learns a good solution. We also note that it is essential to carefully
set the scale of the initialization, which is a extensively studied topic [20, 28]. Our initialization has
a scale related to the number of hidden units, which is particularly useful when the network size is
varying, and thus can be of interest in such practical settings.

6

0 50 100 150 200 250 300 350 400
Number of steps

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

Test Accuracy v.s. number of steps

Number of hidden nodes
500
1000
2000
4000
8000
16000
32000

(a) Test accuracy

0 50 100 150 200 250 300 350 400
Number of steps

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Ac
tiv

at
io

n
pa

tte
rn

 d
iff

er
en

ce
 ra

tio

Activation difference v.s. number of steps
Number of hidden nodes

500
1000
2000
4000
8000
16000
32000

(b) Coupling

0 50 100 150 200 250 300 350 400
Number of steps

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

Re
la

tiv
e

di
st

an
ce

Relative distance v.s. number of steps
Number of hidden nodes

500
1000
2000
4000
8000
16000
32000

(c) Distance from the initialization

0 20 40 60 80 100
Singular value index

10 6

10 5

10 4

10 3

10 2

10 1

100

Si
ng
ul
ar
 v
al
ue

Singular values of weight matrix and accumulated updates

Spectrum for
Weight matrix
Accumulated updates

(d) Rank of accumulated updates (y-axis in log-scale)

Figure 1: Results on the synthetic data.

7 Experiments

This section aims at verifying some key implications: (1) the activation patterns of the hidden units
couple with those at initialization; (2) The distance from the learned solution from the initialization is
relatively small compared to the size of initialization; (3) The accumulated updates (i.e., the difference
between the learned weight matrix and the initialization) have approximately low rank. These are
indeed supported by the results on the synthetic and the MNIST data. Additional experiments are
presented in Appendix D.

Setup. The synthetic data are of 1000 dimension and consist of k = 10 classes, each having ` = 2
components. Each component is of equal probability 1/(kl), and is a Gaussian with covariance
σ2/dI and its mean is i.i.d. sampled from a Gaussian distribution N (0, σ2

0/d), where σ = 1 and
σ0 = 5. 1000 training data points and 1000 test data points are sampled.

The network structure and the learning process follow those in Section 3; the number of hidden units
m varies in the experiments, and the weights are initialized withN (0, 1/

√
m). On the synthetic data,

the SGD is run for T = 400 steps with batch size B = 16 and learning rate η = 10/m. On MNIST,
the SGD is run for T = 2× 104 steps with batch size B = 64 and learning rate η = 4× 103/m.

Besides the test accuracy, we report three quantities corresponding to the three observa-
tions/implications to be verified. First, for coupling, we compute the fraction of hidden units
whose activation pattern changed compared to the time at initialization. Here, the activation pattern is
defined as 1 if the input to the ReLU is positive and 0 otherwise. Second, for distance, we compute
the relative ratio ‖w(t) −w(0)‖F /‖w(0)‖F , where w(t) is the weight matrix at time t. Finally, for the
rank of the accumulated updates, we plot the singular values of w(T) −w(0) where T is the final step.
All experiments are repeated 5 times, and the mean and standard deviation are reported.

7

0 2500 5000 7500 10000 12500 15000 17500
Number of steps

0.2

0.4

0.6

0.8
Te

st
 A

cc
ur

ac
y

Test Accuracy v.s. number of steps

Number of hidden nodes
1000
2000
4000
8000
16000
32000

(a) Test accuracy

0 2500 5000 7500 10000 12500 15000 17500
Number of steps

0.0

0.1

0.2

0.3

0.4

Ac
tiv

at
io

n
pa

tte
rn

 d
iff

er
en

ce
 ra

tio

Activation difference v.s. number of steps

Number of hidden nodes
1000
2000
4000
8000
16000
32000

(b) Coupling

0 2500 5000 7500 10000 12500 15000 17500
Number of steps

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Re
la

tiv
e

di
st

an
ce

Relative distance v.s. number of steps
Number of hidden nodes

1000
2000
4000
8000
16000
32000

(c) Distance from the initialization

0 10 20 30 40 50 60 70 80
Singular value index

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

Si
ng
ul
ar
 v
al
ue

Singular values of the eight matrix and accumulated updates

Spectrum for
Weight matrix
Accumulated updates

(d) Rank of accumulated updates (y-axis in log-scale)

Figure 2: Results on the MNIST data.

Results. Figure 1 shows the results on the synthetic data. The test accuracy quickly converges
to 100%, which is even more significant with larger number of hidden units, showing that the
overparameterization helps the optimization and generalization. Recall that our analysis shows that
for a learning rate linearly decreasing with the number of hidden nodes m, the number of iterations
to get the accuracy to achieve a desired accuracy should be roughly the same, which is also verified
here. The activation pattern difference ratio is less than 0.1, indicating a strong coupling. The relative
distance is less than 0.1, so the final solution is indeed close to the initialization. Finally, the top 20
singular values of the accumulated updates are much larger than the rest while the spectrum of the
weight matrix do not have such structure, which is also consistent with our analysis.

Figure 2 shows the results on MNIST. The observation in general is similar to those on the synthetic
data (though less significant), and also the observed trend become more evident with more overpa-
rameterization. Some additional results (e.g., varying the variance of the synthetic data) are provided
in the appendix that also support our theory.

8 Conclusion

This work studied the problem of learning a two-layer overparameterized ReLU neural network
via stochastic gradient descent (SGD) from random initialization, on data with structure inspired
by practical datasets. While our work makes a step towards theoretical understanding of SGD for
training neural networs, it is far from being conclusive. In particular, the real data could be separable
with respect to different metric than `2, or even a non-convex distance given by some manifold. We
view this an important open direction.

8

Acknowledgements

We would like to thank the anonymous reviewers of NIPS’18 and Jason Lee for helpful comments.
This work was supported in part by FA9550-18-1-0166, NSF grants CCF-1527371, DMS-1317308,
Simons Investigator Award, Simons Collaboration Grant, and ONR-N00014-16-1-2329. Yingyu
Liang would also like to acknowledge that support for this research was provided by the Office of the
Vice Chancellor for Research and Graduate Education at the University of Wisconsin Madison with
funding from the Wisconsin Alumni Research Foundation.

References
[1] Sanjeev Arora, Rong Ge, Behnam Neyshabur, and Yi Zhang. Stronger generalization bounds

for deep nets via a compression approach. arXiv preprint arXiv:1802.05296, 2018.

[2] Devansh Arpit, Stanisław Jastrzębski, Nicolas Ballas, David Krueger, Emmanuel Bengio,
Maxinder S Kanwal, Tegan Maharaj, Asja Fischer, Aaron Courville, Yoshua Bengio, et al. A
closer look at memorization in deep networks. arXiv preprint arXiv:1706.05394, 2017.

[3] Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky. Spectrally-normalized margin bounds
for neural networks. In Advances in Neural Information Processing Systems, pages 6241–6250,
2017.

[4] Cenk Baykal, Lucas Liebenwein, Igor Gilitschenski, Dan Feldman, and Daniela Rus. Data-
dependent coresets for compressing neural networks with applications to generalization bounds.
arXiv preprint arXiv:1804.05345, 2018.

[5] Digvijay Boob and Guanghui Lan. Theoretical properties of the global optimizer of two layer
neural network. arXiv preprint arXiv:1710.11241, 2017.

[6] Alon Brutzkus and Amir Globerson. Globally optimal gradient descent for a convnet with
gaussian inputs. arXiv preprint arXiv:1702.07966, 2017.

[7] Alon Brutzkus, Amir Globerson, Eran Malach, and Shai Shalev-Shwartz. Sgd learns over-
parameterized networks that provably generalize on linearly separable data. arXiv preprint
arXiv:1710.10174, 2017.

[8] Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. Sharp minima can generalize
for deep nets. arXiv preprint arXiv:1703.04933, 2017.

[9] Gintare Karolina Dziugaite and Daniel M Roy. Computing nonvacuous generalization bounds
for deep (stochastic) neural networks with many more parameters than training data. arXiv
preprint arXiv:1703.11008, 2017.

[10] Rong Ge, Jason D Lee, and Tengyu Ma. Learning one-hidden-layer neural networks with
landscape design. arXiv preprint arXiv:1711.00501, 2017.

[11] Suriya Gunasekar, Blake E Woodworth, Srinadh Bhojanapalli, Behnam Neyshabur, and Nati
Srebro. Implicit regularization in matrix factorization. In Advances in Neural Information
Processing Systems, pages 6152–6160, 2017.

[12] Moritz Hardt and Tengyu Ma. Identity matters in deep learning. arXiv preprint
arXiv:1611.04231, 2016.

[13] Kenji Kawaguchi. Deep learning without poor local minima. In Advances in Neural Information
Processing Systems, pages 586–594, 2016.

[14] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping
Tak Peter Tang. On large-batch training for deep learning: Generalization gap and sharp minima.
arXiv preprint arXiv:1609.04836, 2016.

[15] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

9

[16] Yuanzhi Li, Tengyu Ma, and Hongyang Zhang. Algorithmic regularization in over-parameterized
matrix recovery. arXiv preprint arXiv:1712.09203, 2017.

[17] Yuanzhi Li and Yang Yuan. Convergence analysis of two-layer neural networks with relu
activation. In Advances in Neural Information Processing Systems, pages 597–607, 2017.

[18] Roi Livni, Shai Shalev-Shwartz, and Ohad Shamir. On the computational efficiency of training
neural networks. In Advances in Neural Information Processing Systems, pages 855–863, 2014.

[19] Cong Ma, Kaizheng Wang, Yuejie Chi, and Yuxin Chen. Implicit regularization in nonconvex
statistical estimation: Gradient descent converges linearly for phase retrieval, matrix completion
and blind deconvolution. arXiv preprint arXiv:1711.10467, 2017.

[20] James Martens. Deep learning via hessian-free optimization. In ICML, volume 27, pages
735–742, 2010.

[21] Cisse Moustapha, Bojanowski Piotr, Grave Edouard, Dauphin Yann, and Usunier Nicolas. Parse-
val networks: Improving robustness to adversarial examples. arXiv preprint arXiv:1704.08847,
2017.

[22] Vaishnavh Nagarajan and Zico Kolter. Generalization in deep networks: The role of distance
from initialization. NIPS workshop on Deep Learning: Bridging Theory and Practice, 2017.

[23] Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nathan Srebro. A pac-
bayesian approach to spectrally-normalized margin bounds for neural networks. arXiv preprint
arXiv:1707.09564, 2017.

[24] Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. In search of the real inductive bias:
On the role of implicit regularization in deep learning. arXiv preprint arXiv:1412.6614, 2014.

[25] Mahdi Soltanolkotabi, Adel Javanmard, and Jason D Lee. Theoretical insights into the optimiza-
tion landscape of over-parameterized shallow neural networks. arXiv preprint arXiv:1707.04926,
2017.

[26] Daniel Soudry and Yair Carmon. No bad local minima: Data independent training error
guarantees for multilayer neural networks. arXiv preprint arXiv:1605.08361, 2016.

[27] Daniel Soudry, Elad Hoffer, and Nathan Srebro. The implicit bias of gradient descent on
separable data. arXiv preprint arXiv:1710.10345, 2017.

[28] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of
initialization and momentum in deep learning. In International conference on machine learning,
pages 1139–1147, 2013.

[29] Yuandong Tian. An analytical formula of population gradient for two-layered relu network and
its applications in convergence and critical point analysis. arXiv preprint arXiv:1703.00560,
2017.

[30] Bo Xie, Yingyu Liang, and Le Song. Diversity leads to generalization in neural networks. arXiv
preprint Arxiv:1611.03131, 2016.

[31] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. arXiv preprint arXiv:1611.03530, 2016.

[32] Kai Zhong, Zhao Song, Prateek Jain, Peter L Bartlett, and Inderjit S Dhillon. Recovery
guarantees for one-hidden-layer neural networks. arXiv preprint arXiv:1706.03175, 2017.

[33] Wenda Zhou, Victor Veitch, Morgane Austern, Ryan P Adams, and Peter Orbanz. Com-
pressibility and generalization in large-scale deep learning. arXiv preprint arXiv:1804.05862,
2018.

10

A Proofs for the Simplified Case

In the simplified case, we make the following simplifying assumption:

(S) (No variance) Each Da,b is a single data point (xa,b, a), and also we are doing full batch
gradient descent as opposite to the minibatch SGD.

Recall that the loss is then L(w) =
∑
a∈[k],b∈[l] pa,bL(w, xa,b, a). The gradient descent update on w

is given by

w(t+1)
r = w(t)

r − η
∂L(w(t))

∂w
(t)
r

,

and the gradient is

∂L(w)

∂wr
=

∑
a∈[k],b∈[l]

pa,b

∑
i 6=a

ai,roi(xa,b, w)−
∑
i 6=a

aa,roi(xa,b, w)

 1〈wr,xa,b〉≥0xa,b,

where oy(x,w) = efy(x,w)∑k
i=1 e

fi(x,w) . The pseudo gradient is defined as

∂̃L(w)

∂wr
=

∑
a∈[k],b∈[l]

pa,b

∑
i 6=a

ai,roi(xa,b, w)−
∑
i6=a

aa,roi(xa,b, w)

 1〈w(0)
r ,xa,b〉≥0

xa,b.

Let us call

vs,a,b(w) =


∑

i6=a e
fi(xa,b,w)∑k

i=1 e
fi(xa,b,w) if s = a;

− efs(xa,b,w)∑k
i=1 e

fi(xa,b,w) otherwise.

When clear from the context, we write vs,a,b(w) as vs,a,b. Then we can simplify the above expression
as:

∂̃L(w)

∂wr
=

∑
a∈[k],b∈[l],i∈[k]

pa,bai,rvi,a,b1〈w(0)
r ,xa,b

〉
≥0xa,b.

By definition, vi,a,b’s satisfy:

1. ∀a ∈ [k], b ∈ [l] : va,a,b ∈ [0, 1].

2.
∑k
i=1 vi,a,b = 0.

Furthermore, va,a,b indicates the “classification error”. The smaller va,a,b is, the smaller the classifi-
cation error is.

In the following subsections, we first show that the gradient is coupled with the pseudo gradient, then
show that if the classification error is large then the pseudo gradient is large, and finally prove the
convergence.

A.1 Coupling

We will show that ∂L(w(t))/∂wr is close to ∂̃L(w(t))/∂wr in the following sense:

Lemma A.1 (Coupling, Lemma 5.1 restated). W.h.p. over the random initialization, for every τ > 0,
for every t = Õ

(
τ
η

)
, we have that for at least 1− eτkl

σ fraction of r ∈ [m]:

∂L(w(t))

∂wr
=
∂̃L(w(t))

∂wr
.

11

Proof. W.h.p. we know that every |ai,r| ≤ L = Õ(1). Thus, for every r ∈ [m] and every t ≥ 0, we
have ∥∥∥∥∂L(w(t))

∂wr

∥∥∥∥
2

≤ L

which implies that
∥∥∥w(t)

r − w(0)
r

∥∥∥
2
≤ Lηt.

Now, for every τ ≥ 0, we consider the setH such that

H =
{
r ∈ [m] | ∀a ∈ [k], b ∈ [l] :

∣∣∣〈w(0)
r , xa,b〉

∣∣∣ ≥ τ} .
For every r ∈ H and every t ≤ τ

2Lη , we know that for every a ∈ [k], b ∈ [l]:∣∣∣〈w(t)
r − w(0)

r , xa,b

〉∣∣∣ ≤ Lηt ≤ τ

2
which implies that

1〈
w

(0)
r ,xa,b

〉
≥0 = 1〈

w
(t)
r ,xa,b

〉
≥0.

This implies that ∂L(w
(t))

∂wr
= ∂̃L(w(t))

∂wr
.

Now, we need to bound the size of H. Since
〈
w

(0)
r , xa,b

〉
∼ N (0, σ2), by standard property of

Gaussian we directly have that for |H| ≥ 1− eτkl
σ .

A.2 Error Large =⇒ Gradient Large

The pseudo gradient can be rewritten as the following summation:

∂̃L(w)

∂wr
=
∑
i∈[k]

ai,rPi,r

where
Pi,r =

∑
a∈[k],b∈[l]

pa,bvi,a,b1〈w(0)
r ,xa,b

〉
≥0xa,b.

We would like to show that if some pa,bvi,a,b is large, a good fraction of r ∈ [m] will have large
pseudo gradient. Now, the first step is to show that for any fixed {pa,bvi,a,b} (that does not depend on
the random initialization w(0)

r), with good probability (over the random choice of w(0)
r) we have that

Pi,r is large; see Lemma A.2. Then we will take a union bound over an epsilon net on {pa,bvi,a,b} to
show that for every {pa,bv,ia,b} (that can depend on w(0)

r), at least a good fraction of of Pi,r is large;
See Lemma A.3.
Lemma A.2 (The geometry of ReLU). For any possible fixed {pa,bv1,a,b}a∈[k],b∈[l] ∈ [−v, v] such
that p1,1v1,1,1 = v, we have:

Pr

[
‖P1,r‖2 = Ω̃

(
vδ

kl

)]
= Ω

(
δ

kl

)
.

Clearly, without ReLU, P1,r can be arbitrarily small if, say, ∀b ∈ [l], v1,1,b = v, p1,b = p and∑
b∈[l] x1,b = 0. However, ReLU would prevent the cancellation of those x1,b’s.

Proof of Lemma A.2. We will first prove that

h
(
w(0)
r

)
=

∑
a∈[k],b∈[l]

pa,bv1,a,bReLU
(〈
w(0)
r , xa,b

〉)
= 〈P1,r, w

(0)
r 〉

is large with good probability.

Let us decompose w(0)
r into:

w(0)
r = αx1,1 + β

where β⊥x1,1. For every τ ≥ 0, consider the event Eτ defined as

12

1. |α| ≤ τ , and

2. for all a ∈ [k]\[1], b ∈ [l]: |〈β, xa,b〉| ≥ 4τ .

By the definition of initialization w(0)
r , we know that:

α ∼ N (0, σ2)

and

〈β, xa,b〉 ∼ N (0, (1− 〈xa,b, x1,1〉2)σ2)

By assumption we know that for every a ∈ [k]\[1], b ∈ [l]:

1− 〈xa,b, x1,1〉2 ≥ δ2.
This implies that

[|〈β, xa,b〉| ≤ 4τ] ≤ 4eτ

δσ
.

Thus if we pick τ ≤ δσ
16ekl , taking a union bound we know that

Pr [∀a ∈ [k]\[1], b ∈ [l] : |〈β, xa,b〉| ≥ 4τ] ≥ 1

2
.

Moreover, since Pr[|α| ≤ τ] ≥ τ
eσ and α is independent of β, we know that Pr[Eτ] ≥ τ

16e2σ .

The following proof will conditional on this event Eτ , and then treat β as fixed and let α be the
only random variable. In this way, we will have: for every α such that |α| ≤ τ and for every
a ∈ [k]\[1], b ∈ [l], since |〈β, xa,b〉| ≥ 4τ and |α〈x1,1, xa,b〉| ≤ τ ,

ReLU
(〈
w(0)
r , xa,b

〉)
= (α〈x1,1, xa,b〉+ 〈β, xa,b〉) 1〈β,xa,b〉≥0

which is a linear function of α. With this information, we can rewrite h
(
w

(0)
r

)
as:

h
(
w(0)
r

)
= h(α) := p1,1v1,1,1ReLU(α)

+
∑

b∈[l]\[1]

p1,bv1,1,bReLU (α〈x1,1, x1,b〉+ 〈β, xa,b〉)

+ Linear(α)

where p1,bv1,1,b ≥ 0 and Linear(α) is some linear function in α. Thus, we know that

φ(α) := p1,1v1,1,1ReLU(α) +
∑

b∈[l]\[1]

p1,bv1,1,bReLU (α〈x1,1, x1,b〉)

is a convex function with |∂maxφ(0)− ∂minφ(0)| ≥ v. Then applying Lemma A.5 gives

Pr
α∼U(−τ,τ)

[
|φ(α) + Linear(α)| ≥ vτ

128

]
≥ 1

16
.

Since for τ ≤ δσ
16ekl , conditional on Eτ the density p(α) ∈

[
1
eτ ,

e
τ

]
, which implies that

Pr
[
h
(
w(0)
r

)
≥ vτ

128
| Eτ
]
≥ 1

16e
.

Thus we have:

Pr
[
h
(
w(0)
r

)
≥ vτ

128

]
≥ Pr

[
h
(
w(0)
r

)
≥ vτ

128
| Eτ
]

Pr[Eτ] = Ω
(τ
σ

)
. (2)

Now we can look at P1,r. By the random initialization of w(0)
r , and since by our assumption

v1,a,b, xa,b are not functions of w(0)
r , a standard tail bound of Gaussian random variables shows that

for every fixed v1,a,b and every c > 10:

Pr
[
h
(
w(0)
r

)
≥ 10cσ‖P1,r‖2

]
= Pr

[〈
P1,r, w

(0)
r

〉
≥ 10cσ‖P1,r‖2

]
≤ e−c

2

.

13

Taking c = 100
√

log kl
δσ and putting together with inequality (2) with τ = Θ

(
δσ
kl

)
complete the

proof.

Now, we can take an epsilon net and switch the order of the quantifiers in Lemma A.2 as shown in
the following lemma.

Lemma A.3 (Lemma 5.2 restated). For m = Ω̃
(
k3l2

δ

)
, for every {pa,bvi,a,b}i,a∈[k],b∈[l] ∈ [−v, v]

(that depends on w(0)
r , ai,r, etc.) with max{pa,bvi,a,b}i,a∈[k],b∈[l] = v, there exists at least Ω(δkl)

fraction of r ∈ [m] such that ∥∥∥∥∥ ∂̃L(w)

∂wr

∥∥∥∥∥
2

= Ω̃

(
vδ

kl

)
.

This lemma implies that if the classification error is large, then many wr will have a large gradient.

Proof of Lemma A.3. We first consider fixed {pa,bvi,a,b}i,a∈[k],b∈[l] ∈ [−v, v]. First of all, using the
randomness of ai,r we know that with probability at least 1/e,∥∥∥∥∥ ∂̃L(w)

∂wr

∥∥∥∥∥
2

=

∥∥∥∥∥
k∑
i=1

ai,rPi,r

∥∥∥∥∥
2

≥ ‖P1,r‖2.

Now, apply Lemma A.2 we know that

Pr

[∥∥∥∥∥
k∑
i=1

Pi,r

∥∥∥∥∥
2

= Ω̃

(
vδ

kl

)]
= Ω

(
δ

kl

)
which implies that for fixed {pa,bvi,a,b}i,a∈[k],b∈[l] ∈ [−v, v] the probability that there are less than

O(δkl) of r such that
∥∥∥∑k

i=1 Pi,r

∥∥∥
2

is Ω̃
(
vδ
kl

)
is no more than a value pfix given by:

pfix ≤ exp

{
−Ω

(
δm

kl

)}
.

Moreover, for every ε > 0, for two different {pa,bvi,a,b}i,a∈[k],b∈[l], {pa,bv′i,a,b}i,a∈[k],b∈[l] ∈ [−v, v]

such that for all i ∈ [k], a ∈ [k], b ∈ [l]: |pa,bvi,a,b− pa,bvi,a,b| ≤ ε. Moreover, since w.h.p. we know
that every |ai,r| ≤ L = Õ(1), it shows:∥∥∥∥∥∥

∑
a∈[k],b∈[l],i∈[k]

pa,bai,r(vi,a,b − v′i,a,b)1〈w(0)
r ,xa,b

〉
≥0xa,b

∥∥∥∥∥∥
2

≤ Lε = Õ(ε)

which implies that we can take an `∞ ε-net over {pa,bvi,a,b}i,a∈[k],b∈[l] ∈ [−v, v] with ε = Θ̃
(
vδ
kl

)
.

Thus, the probability that there exists {pa,bvi,a,b}i,a∈[k],b∈[l] ∈ [−v, v], such that there are no more

than O(δkl) fraction of r ∈ [m]with
∥∥∥∑k

i=1 Pi,r

∥∥∥
2

= Ω̃
(
vδ
kl

)
is no more than:

p ≤ pfix
(v
ε

)k2l
≤ exp

{
−Ω

(
δm

kl

)
+ k2l log

v

ε

}
.

With m = Ω̃
(
k3l2

δ

)
we complete the proof.

A.3 Convergence

Having the lemmas, we can now prove the convergence:

14

Lemma A.4 (Convergence). Let us denote max{pa,bv(t)i,a,b} = v(t). Then for a sufficiently small η,

we have that for every T = Θ̃
(
σδ
klη

)
,

1

T

T∑
t=1

(
v(t)
)2

= Õ

(
k5l5

δ4σm

)
.

By our choice of σ = Õ
(

1
m1/2

)
, we know that

1

T

T∑
t=1

(
v(t)
)2

= Õ

(
k5l5

δ4m1/2

)

Thus, this lemma shows that eventually v(t) will be small. However, we do not give any bound on
how small the step size η needs to be, and how a small v(t) leads to a small classification error. These
are addressed in the proof of the general case in the next section, but here we are content with an
eventually small v(t) for a sufficiently small η.

Proof of Lemma A.4. By Lemma A.3, we know that there are at least Ω
(
δ
kl

)
fraction of r ∈ [m]

such that ∥∥∥∥∥ ∂̃L(w(t))

∂wr

∥∥∥∥∥
2

= Ω̃

(
v(t)δ

kl

)
.

Now combine with Lemma A.1. If we pick τ = O
(
σδ
k2l2

)
, then at least Ω

(
δ
kl

)
fraction of r ∈ [m]

have ∥∥∥∥∂L(w(t))

∂wr

∥∥∥∥
2

= Ω̃

(
v(t)δ

kl

)
.

Thus, for a sufficiently small η, we have:

L(w(t))− L(w(t+1)) = ηΩ̃

((
v(t)δ

kl

)2
δm

kl

)
.

By the property of the initialization, we know that L(w(0)) = Õ(1). This implies that for every
t = Õ

(
τ
η

)
= Õ

(
σδ
k2l2η

)
we have:

t∑
s=1

(
v(s)
)2

= Õ

(
k3l3

δ3ηm

)
.

Now, we can take T = Θ̃
(

σδ
k2l2η

)
to obtain

1

T

T∑
t=1

(
v(t)
)2

= Õ

(
k5l5

δ4σm

)
.

This completes the proof.

A.4 Technical Lemmas

The following lemma above non-smooth convex function v.s. linear function is needed in the proof.
Lemma A.5. Let φ : R→ R be a convex function that is non-smooth at 0. Let ∂φ(0) be the set of
partial gradient of φ at 0. Define

∂maxφ(0) = max{∂φ(0)}, ∂minφ(0) = min{∂φ(0)}.

15

We have for every τ ≥ 0, for every linear function l(α):∫ τ

−τ
|φ(α)− l(α)|dα ≥ τ2(∂maxφ(0)− ∂minφ(0))

8
.

Moreover,

Pr
α∼U(−τ,τ)

[
|φ(α)− l(α)| ≥ τ(∂maxφ(0)− ∂minφ(0))

128

]
≥ 1

16
.

Proof of Lemma A.5. Without loss of generality (up to subtracting a linear function on φ), let us
assume that φ(0) = 0 and l(α) = −b.
Moreover, denote ρ = ∂maxφ(0)− ∂minφ(0) ≥ 0, we know that at least one of the following is true:

1. ∂maxφ(0) ≥ ρ
2 ,

2. ∂minφ(0) ≤ −ρ2 .

We shall give the proof for the case ∂maxφ(0) ≥ ρ
2 . The other case follows from replacing φ with

−φ.

Let us then consider the following two cases.

1. b > 0, in this case, by convexity of φ(α) we have that ∀α > 0 : φ(α) > 0. Thus,∫ τ

−τ
|φ(α)− l(α)|dα ≥

∫ τ

0

φ(α)dα ≥ ρ

4
τ2

2. b < 0, in this case, φ(α) intersects with 0 at a point α0 ≥ 0. Consider two cases:

(a) α0 ≥ τ
2 , then we have: b ≤ −ρτ4 . Thus,∫ τ

−τ
|φ(α)− l(α)|dα ≥

∫ min{α0,τ}

0

−φ(α)dα ≥ ρ

8
τ2

(b) α0 ≤ τ
2 , then we have:∫ τ

−τ
|φ(α)− l(α)|dα ≥

∫ τ

α0

φ(α)dα ≥ ρ

8
τ2

This completes the proof of the first claim. For the second claim, in case 1, we know that every
α ∈ [τ/2, τ] would have |φ(α) − l(α)| ≥ τρ

128 . In case 2(a), every α ∈ [0, α0 − τ/4] satisfies this
claim. In case 2(b) we can take every α ∈ [α0 + τ/4, τ]. This completes the proof.

B Proofs for the General Case

Recall that the loss is

L(w) =
1

N

N∑
s=1

L(w, xs, ys)

where

L(w, xs, ys) = − log oys(xs, w), where

oy(x,w) =
efy(x,w)∑k
i=1 e

fi(x,w)
.

16

We consider a minibatch SGD of batch size B, number of iterations T = N/B and learning rate η as
the following process: Randomly divide the total training examples into T batches, each of size B.
Let the indices of the examples in the t-th batch be Bt. The update rule is:

w(t+1)
r = w(t)

r − η
1

B

∑
s∈Bt

∂L(w(t), xs, ys)

∂w
(t)
r

,∀r ∈ [m], where

∂L(w, xs, ys)

∂wr
=

∑
i 6=ys

ai,roi(xs, w)−
∑
i6=ys

ays,roi(xs, w)

 1〈wr,xs〉≥0xs.

The pseudo gradient on a point (xs, ys) is defined as:

∂̃L(w, xs, ys)

∂wr
=

∑
i6=ys

ai,roi(xs, w)−
∑
i 6=ys

ays,roi(xs, w)

 1〈w(0)
r ,xs〉≥0

xs.

The expected pseudo gradient is:

∂̃L(w)

∂wr
= E(xs,ys)

[
∂̃L(w, xs, ys)

∂wr

]
.

In the following subsections, we first show that the gradient is coupled with the pseudo gradient, then
show that if the classification error is large then the pseudo gradient is large, and finally prove the
convergence.

B.1 Coupling

We have the following lemma for coupling, analog to Lemma A.1.
Lemma B.1 (Coupling). For every unit vector x ∈ Rd, w.h.p. over the random initialization, for
every τ > 0, for every t = Õ

(
τ
η

)
we have that for at least 1− 10τ

σ fraction of r ∈ [m]:

∂L(w(t), x, y)

∂wr
=
∂̃L(w(t), x, y)

∂wr
(∀y ∈ [k]), and |〈w(t)

r , x〉| ≥ τ.

Proof. The proof follows that for Lemma A.1.

B.2 Expected Error Large =⇒ Gradient Large

Following the same structure as before, we can write the expected pseudo gradient as:

∂̃L(w)

∂πr
=
∑
i∈[k]

ai,rPi,r

where

Pi,r =
∑

a∈[k],b∈[l]

pa,bExa,b∼Da,b

[
vi,a,b(xa,b, w)1〈

w
(0)
r ,xa,b

〉
≥0xa,b

]

where vs,a,b(xa,b, w) is defined as:

vs,a,b(xa,b, w) =


∑

i6=a e
fi(xa,b,w)∑k

i=1 e
fi(xa,b,w) if s = a;

− efs(xa,b,w)∑k
i=1 e

fi(xa,b,w) otherwise.

When clear from the context, we use vs,a,b(xa,b, w) for short. When the choice of xa,b is not
important, we will also use vs,a,b.

17

We would like to show that if some E[pa,bvi,a,b] is large, a good fraction of r ∈ [m] will have large
pseudo gradient. Now, the first step is to show that for any fixed {pa,bvi,a,b} (that does not depend on
the random initialization w(0)

r), with good probability (over the random choice of w(0)
r) we have that

Pi,r is large; see Lemma B.2. Then we will take a union bound over an epsilon net on {pa,bvi,a,b} to
show that for every {pa,bv,ia,b} (that can depend on w(0)

r), at least a good fraction of of Pi,r is large;
See Lemma B.3.
Lemma B.2 (The geometry of ReLU). For any possible fixed set {pa,bv1,a,b} (that does not depend
on w(0)

r) such that E[p1,1v1,1,1] = max{E[pa,bv1,a,b]}a∈[k],b∈[`] = v, we have:

Pr

[
‖P1,r‖2 = Ω̃

(
vδ

kl

)]
= Ω

(
δ

kl

)
.

Proof of Lemma B.2. The proof is very similar to the proof of Lemma A.2.

We will actually prove that

h
(
w(0)
r

)
=

∑
a∈[k],b∈[l]

E
[
pa,bv1,a,bReLU

(〈
w(0)
r , xa,b

〉)]
is large with good probability.

Let us denote x∗a,b =
Exa,b∼Da,b

[xa,b]

‖Exa,b∼Da,b
[xa,b]‖2 . Thus, we can decompose w(0)

r into:

w(0)
r = αx∗1,1 + β

where β⊥x∗1,1. For every τ ≥ 0, consider the event Eτ defined as

1. |α| ≤ τ .

2. ∑
a∈[k]\[1],b∈[l]

|pa,bv1,a,b|1|〈β,x∗a,b〉|≤4τ ≤
v

3
.

By the definition of initialization w(0)
r , we know that:

α ∼ N (0, σ2)

and

〈β, x∗a,b〉 ∼ N (0, (1− 〈x∗a,b, x∗1,1〉2)σ2).

By assumption we can simply calculate that for every a ∈ [k]\[1], b ∈ [l]: 1 − 〈x∗a,b, x∗1,1〉2 ≥ δ2.
This implies that

E
[
1|〈β,x∗a,b〉|≤4τ

]
≤ 4τ

δσ
.

Thus, ∑
a∈[k]\[1],b∈[l]

E
[
|pa,bv1,a,b|1|〈β,x∗a,b〉|≤4τ

]
≤ 4τ

δσ
vl.

With τ = σδ
12l , we know that Pr[Eτ] = Ω

(
τ
σ

)
. The following proof will conditional on this event Eτ ,

and then treat β as fixed and let α be the only random variable. In this way, for every α such that
|α| ≤ τ and for every a ∈ [k]\[1], b ∈ [l]:〈

w(0)
r , xa,b

〉
= α〈x∗1,1, xa,b〉+ 〈β, xa,b〉

= α〈x∗1,1, x∗a,b〉+ 〈β, x∗a,b〉+ 〈w(0)
r , xa,b − x∗a,b〉.

18

With |α〈x∗1,1, x∗a,b〉| ≤ τ , and since E[〈w(0)
r , xa,b − x∗a,b〉] ≤ 3

2σλδ < 2τ , we know that if∣∣∣〈β, x∗a,b〉∣∣∣ ≥ 4τ , then

ReLU
(〈
w(0)
r , xa,b

〉)
=
(
α〈x∗1,1, xa,b〉+ 〈β, xa,b〉

)
1〈β,x∗a,b〉≥0

is a linear function for α ∈ [−τ, τ] with probability ≥ 2/3.

With this information, we can rewrite h
(
w

(0)
r

)
as:

h
(
w(0)
r

)
= h(α) := E

[
p1,1v1,1,1ReLU

(
α〈x1,1, x∗1,1〉+ 〈β, x∗1,1 − x1,1〉

)]
+
∑
b≥2

E
[
p1,bv1,1,bReLU

(〈
αx∗1,1 + β, xa,b

〉)]
+ l(α).

where l(α) is a convex function with ∂maxl(τ)− ∂maxl(−τ) ≤ v/3.

This time, we know that w.h.p. 〈β, x∗1,1 − x1,1〉 = Õ(σλδ) ≤ τ/4. This implies that for function φ
defined as

φ(α) : = E
[
p1,1v1,1,1ReLU

(
α〈x1,1, x∗1,1〉+ 〈β, x∗1,1 − x1,1〉

)]
+
∑
b≥2

E
[
p1,bv1,1,bReLU

(〈
αx∗1,1 + β, xa,b

〉)]
,

We will have ∂maxφ(τ/2)− ∂maxφ(−τ/2) ≥ v/2. Now apply Lemma B.5, we can conclude from
the same proof of Lemma A.2.

Now we can take the union bound to switch the order of quantifiers. However, we cannot do a naive
union bound since there are infinitely many xa,b. Instead, we will use a sampling trick to prove the
following Lemma:

Lemma B.3. For every v > 0, for m = Ω̃
((

kl
vδ

)4)
, for every possible {pa,bvi,a,b} (that depend on

ai,r, w
(0)
r , etc.) such that max{E[pa,bvi,a,b]}i,a∈[k],b∈[l] = v, there exists at least Ω

(
δ
kl

)
fraction of

r ∈ [m] such that ∥∥∥∥∥ ∂̃L(w)

∂wr

∥∥∥∥∥
2

= Ω̃

(
vδ

kl

)
.

This lemma implies that if the classification error is large, then many wr’s have a large pseudo
gradient.

Proof of Lemma A.3. We first pick S samples S = {x(s)a,b}, with pa,bS many from distribution Da,b,
and with the corresponding value function v(s)i,a,b. Since each v(s)i,a,b ∈ [−1, 1], we know that w.h.p.,
for every i ∈ [k], a ∈ [k], b ∈ [l]:∣∣∣∣∣E[pa,bvi,a,b]−

1

pa,bS

∑
s

pa,bv
(s)
i,a,b

∣∣∣∣∣ = Õ

(
1√
pa,bS

)
.

This implies that as long as S = Ω̃
(

1
v2

)
, we will have that

max
i∈[k],a∈[k],b∈[l]

{
1

pa,bS

∑
s

pa,bv
(s)
i,a,b

}
∈
[

1

2
v,

3

2
v

]
.

Thus, following the same proof as in Lemma A.3, but this time applying a union bound over v(s)i,a,b,

we know that as long as m = Ω̃
(
Sk2l
δ

)
, w.h.p. for every possible choices of v(s)i,a,b, there are at least

19

Ω
(
δ
kl

)
fraction of r ∈ [m] such that∥∥∥∥∥∥ 1

S

∑
xa,b∈S

∂̃L(w, xa,b, a)

∂wr

∥∥∥∥∥∥
2

= Ω̃

(
vδ

kl

)
.

Now we consider the difference between the sample gradient and the expected gradient. Since∥∥∥ ∂̃L(w,x,y)∂wr

∥∥∥
2
≤ Õ(1), by standard concentration bound we know that w.h.p. for every r ∈ [m],∥∥∥∥∥∥ 1

S

∑
xa,b∈S

∂̃L(w, xa,b, a)

∂wr
− ∂̃L(w)

∂wr

∥∥∥∥∥∥
2

= Õ

(
1√
S

)
.

This implies that as long as S = Ω̃
((

kl
vδ

)2)
, such r ∈ [m] also have:∥∥∥∥∥ ∂̃L(w)

∂wr

∥∥∥∥∥
2

= Ω̃

(
vδ

kl

)
which completes the proof.

B.3 Convergence

We now show the following important lemma about convergence.

Lemma B.4 (Convergence). Denote max{E[pa,bvi,a,b(xa,b, w
(t))]}i,a∈[k],b∈[`] = v(t) = v, and let

γ = Ω
(
δ
kl

)
. Then for a sufficiently small η = Õ

(
γ
m

(
vδ
kl

)2)
, if we run SGD with a batch size at

least Bt = Ω̃
((

kl
vδ

)4 1
γ2

)
and t = Õ

((
vδ
kl

)2 σγ
η

)
, then w.h.p.,

L(w(t))− L(w(t+1)) = ηγmΩ̃

((
vδ

kl

)2
)
.

Proof of Lemma B.4. We know that for at least γ fraction of r ∈ [m] such that∥∥∥∥∥ ∂̃L(w(t))

∂wr

∥∥∥∥∥
2

= Ω̃

(
vδ

kl

)
.

Note that w.h.p. over the random initialization, for every (x, y),
∥∥∥ ∂̃L(w(t),x,y)

∂wr

∥∥∥
2
≤ Õ(1). By Hoeffd-

ing concentration, this implies that for a randomly sampled batch Bt = {(x1, y1), · · · , (xBt , yBt)}
of size Bt, we have that w.h.p. over Bt,∥∥∥∥∥ 1

Bt

Bt∑
i=1

∂̃L(w(t), xi, yi)

∂wr

∥∥∥∥∥ = Ω̃

(
vδ

kl

)
−O

(
L√
Bt

)
= Ω̃

(
vδ

kl

)
.

On the other hand, according to Lemma B.1 with τ = σγ
100Bt

, we know that w.h.p. over the random

initialization, for every xi in Bt, we have: for at least 1−γ/(2Bt) fraction of r ∈ [m], ∂L(w
(t),xi,yi)
∂wr

=
∂̃L(w(t),xi,yi)

∂wr
. This implies that for at least γ/2 fraction of r ∈ [m] such that for every xi in Bt we

have ∂L(w(t),xi)
∂wr

= ∂̃L(w(t),xi)
∂wr

. Let us denote the set of these r as setR. Then for every r ∈ R:∥∥∥∥∥ 1

Bt

Bt∑
i=1

∂L(w(t), xi, yi)

∂wr

∥∥∥∥∥ = Ω̃

(
vδ

kl

)
.

20

For every r ∈ [m], let us denote ∇̃t,r = 1
Bt

∑Bt

i=1
∂L(w(t),xi,yi)

∂wr
, and∇t,r = ∂L(w(t))

∂wr
. Then similarly

as above, since
∥∥∥∂L(w(t),x,y)

∂wr

∥∥∥
2
≤ Õ(1), by Hoeffding concentration, we have

‖∇t,r − ∇̃t,r‖2 = Õ

(
1√
Bt

)
,

‖∇t,r‖2 = Ω̃

(
vδ

kl

)
− Õ

(
1√
Bt

)
= Ω̃

(
vδ

kl

)
.

Now we consider the non-smooth gradient descent. Consider a newly sampled point (x′, y′), and let
us denote

∇̃′t,r =
∂L(w(t), x′, y′)

∂wr
.

By Lemma B.1, we know that w.h.p. over the random initialization, at least 1 − 10τ
σ fraction of r

satisfies 〈wr, x′〉 ≥ τ . Let us denote the set of these r’s as Sr. We know that on these sets, the
function is Õ(1) smooth and Õ(1) Lipschitz smooth. By Lemma B.6,

∆t := L(w(t) − η∇̃t, x′, y′)− L(w(t), x′, y′)

≤ −η
∑
r∈Sr

〈∇̃t,r, ∇̃′t,r〉+
∑

r∈[m]\Sr

Õ (η) + Õ
(
η2m2

)
≤ −η

∑
r∈[m]

〈∇̃t,r, ∇̃′t,r〉+ Õ
(ητm

σ

)
+ Õ

(
η2m2

)
. (3)

Let G1 denote the event that (3) holds.

Note that w.h.p. over the random initialization, |L(w(t), x′, y′)| = Õ(Lηtmk) = Õ(m), and
‖∇̃t,r,i‖ ≤ Õ(1), ‖∇̃′t,r‖ ≤ Õ(1) for all (xi, yi)’s and (x′, y′). Let G0 denote this event.

Then we have P [¬G0] and P [¬G1] bounded by 1/poly(k, l,m, 1/δ, 1/ε). Conditioned on G0, we
have∇t,r = E(x′,y′)

[
∇̃′t,r|G0

]
and L(w(t))− L(w(t+1)) = E(x′,y′) [∆t|G0] where the expectation

is over (x′, y′). Now we have

∇t,r = E(x′,y′)

[
∇̃′t,r|G0, G1

]
P [G1|G0] + E(x′,y′)

[
∇̃′t,r|G0,¬G1

]
P [¬G1|G0].

So ∥∥∥∇t,r − E(x′,y′)

[
∇̃′t,r|G0, G1

]∥∥∥
2

=
1

poly(k, l,m, 1/δ, 1/ε)
.

Then

L(w(t))− L(w(t+1)) = E(x′,y′) [∆t|G0, G1]P [G1|G0] + E(x′,y′) [∆t|G0,¬G1]P [¬G1|G0]

≥ η

2

∑
r∈[m]

〈∇̃t,r,E(x′,y′)

[
∇̃′t,r|G0, G1

]
〉 − Õ

(
η2m2

)
− Õ

(ητm
σ

)
− Õ(m)

poly(k, l,m, 1/δ, 1/ε)

≥ η

2

∑
r∈[m]

〈∇̃t,r,∇t,r〉 − Õ
(
η2m2

)
− Õ

(ητm
σ

)
− Õ(m)

poly(k, l,m, 1/δ, 1/ε)
− Õ(ηm)

poly(k, l,m, 1/δ, 1/ε)

≥ η

2

∑
r∈[m]

〈∇̃t,r,∇t,r〉 − Õ
(
η2m2

)
− Õ

(ητm
σ

)
.

21

Note that ∇̃t,r concentrates around ∇t,r. This leads to w.h.p. when η = Õ
(
γ
m

(
vδ
kl

)2)
, τ =

Õ
(
γ
(
vδ
kl

)2
σ
)

, and Bt = Ω̃
((

kl
vδ

)4 1
γ2

)
,

L(w(t))− L(w(t+1)) ≥
m∑
r=1

η

2
‖∇̃t,r‖22 − Õ(η2m2)− Õ

(ητm
σ

)
− ηÕ

(
m√
Bt

)

≥ ηγmΩ̃

((
vδ

kl

)2
)
− Õ(η2m2)− Õ

(ητm
σ

)
− ηÕ

(
m√
Bt

)

≥ ηγmΩ̃

((
vδ

kl

)2
)
.

This completes the proof.

Now we can prove the main theorem.

Theorem 4.1. Suppose the assumptions (A1)(A2)(A3) are satisfied. Then for every ε > 0,
there is M = poly(k, l, 1/δ, 1/ε) such that for every m ≥ M , after doing a minibatch SGD
with batch size B = poly(k, l, 1/δ, 1/ε, logm) and learning rate η = 1

m·poly(k,l,1/δ,1/ε,logm) for
T = poly(k, l, 1/δ, 1/ε, logm) iterations, with high probability:

Pr
(x,y)∼D

[
∀j ∈ [k], j 6= y, fy(x,w(T)) > fj(x,w

(T))
]
≥ 1− ε.

Proof of Theorem 4.1. Let v(t)i,a,b denote vi,a,b(xa,b, w(t)).

First, we will show that if Pr(x,y)∼D
[
∀j ∈ [k], j 6= y, fy(x,w(t)) > fj(x,w

(t))
]
≤ 1 − ε, there

must be one a, b such that E[v
(t)
i,a,b] ≥ ε2. Let us denote max{E[pa,bv

(t)
i,a,b]} = v(t) = v. For a

particular a ∈ [k], b ∈ [l], for any xa,b from Da,b, by definition,

va,a,b(xa,b, w
(t)) = 1− efa(xa,b,w

(t))∑k
i=1 e

fi(xa,b,w(t))
.

Then for every ε ≤ 1
e , if v(t)a,a,b(xa,b, w

(t)) ≤ ε, then

∀i ∈ [k], i 6= a : fa(xa,b, w
(t)) ≥ fi(xa,b, w(t)) + 1,

which implies that the prediction is correct. So if E[v
(t)
a,a,b] ≤ ε2, then there are at most ε

fraction of xa,b such that fa(xa,b, w
(t)) ≤ fi(xa,b, w

(t)) for some i 6= a. In other words, if
Pr(x,y)∼D

[
∀j ∈ [k], j 6= y, fy(x,w(t)) > fj(x,w

(t))
]
≤ 1− ε, there must be some i, a, b such that

E[v
(t)
i,a,b] ≥ ε2.

Now, consider two cases:

1. pa,b ≤ ε
2kl . For all such a, b, even if all the predictions are wrong, it will only increase the

total error by ε/2 so the other half ε/2 error must come from other pa,b.

2. pa,b ≥ ε
2kl , which means that E[pa,bv

(t)
i,a,b] ≥ ε

2klE[v
(t)
i,a,b] ≥ ε3

8kl . Thus,

max{E[pa,bv
(t)
i,a,b]} = v(t) = v ≥ ε3

8kl .

Therefore, to prove the theorem, it suffices to show that v(t) will be smaller than ε3

8kl after a proper
amount of iterations. Suppose v(t) ≥ ε3

8kl , then by Lemma B.4, as long as

t = Õ

(
σ

η

δ3ε6

k5`5

)
, (4)

22

we have:

L(w(t))− L(w(t+1)) ≥ Õ
(
ηm

δ3ε6

k5`5

)
.

Note that by the random initialization, originally for each fi we have: for every unit vector x ∈
Rd, 〈w(0)

r , x〉 ∼ N (0, σ2). Thus, with σ = 1√
m

and ai,r ∼ N (0, 1), an elementary calculation
shows that w.h.p.,

|fi(x,w(0))| =

∣∣∣∣∣∣
∑
r∈[m]

ai,rReLU(〈w(0)
r , x〉)

∣∣∣∣∣∣ = Õ(1).

Thus, L(w(0)) = Õ(1). Since L(w) ≥ 0, we know that L(w(t))− L(w(t+1)) ≥ Õ
(
ηm δ3ε6

k5`5

)
can

happen for at most

Õ

(
1

ηm

k5`5

δ3ε6

)
iterations. By our choice of η, we know that ηm = Õ

(
δ3ε6

k5`5

)
, so we need at most T = Õ

(
k10`10

δ6ε12

)
iterations.

To this end, we just need

σ

η

δ3ε6

k5`5
= Ω̃

(
1

ηm

k5`5

δ3ε6

)
to make sure (4) holds so that we can keep the coupling before convergence. This is true as long as
m = Ω̃

(
k20`20

δ12ε24

)
.

B.4 Technical Lemmas

The following lemma above non-smooth convex function v.s. linear function is needed in the proof.
Lemma B.5. Let φ : R→ R be a convex function. Let ∂φ(x) be the set of partial gradient of φ at x.
Define

∂maxφ(x) = max{∂φ(x)}, ∂minφ(x) = min{∂φ(x)}.

We have that for every τ ≥ 0, for every convex function l(α), let γ = (∂maxφ(τ/2)−∂minφ(−τ/2))−
(∂maxl(τ)− ∂minl(−τ)), then ∫ τ

−τ
|φ(α)− l(α)|dα ≥ τ2γ

32

and

Pr
a∼U(−τ,τ)

[
|φ(α)− l(α)| ≥ τγ

512

]
≥ 1

64
.

Proof. Without loss of generality, we can assume that either ∂maxl(τ) and ∂maxφ(τ/2) ≥ γ/2 , or
∂minl(−τ) = 0 and ∂minφ(−τ/2) ≤ −γ/2. The lemma can be proved using the same argument as
in Lemma A.5.

We also need the following lemma regarding the gradient descent on non-smooth function.
Lemma B.6. Suppose for every i ∈ [m], gi : Rd → R is a L-Lipschitz smooth function. Moreover,
suppose for an r ∈ [m], for all i ∈ [m−r] we have that gi is also L-smooth. Suppose g : R→ R is L-
smooth and L-Lipschitz smooth, and let f(w) denote g(

∑
i∈[m] gi(wi)). Then for every w, δ ∈ Rdm

with ‖δi‖2 ≤ p we have:

g

∑
i∈[m]

gi(wi + δi)

− g
∑
i∈[m]

gi(wi)

 ≤ ∑
i∈[m−r]

〈
∂f(w)

∂wi
, δi

〉
+ L3m2p2 + L2rp.

23

Proof of Lemma B.6. The proof of this lemma follows directly from

g

∑
i∈[m]

gi(wi + δi)

− g
∑
i∈[m]

gi(wi)


≤ g

 ∑
i∈[m−r]

gi(wi + δi) +
∑

i>m−r
gi(wi)

− g
∑
i∈[m]

gi(wi)


+ L

∣∣∣∣∣ ∑
i>m−r

gi(wi)−
∑

i>m−r
gi(wi + δi)

∣∣∣∣∣
≤ g

 ∑
i∈[m−r]

gi(wi + δi) +
∑

i>m−r
gi(wi)

− g
∑
i∈[m]

gi(wi)

+ L2pr

≤

〈
∇g

∑
i∈[m]

gi(wi)

 ,
∑

i∈[m−r]

gi(wi + δi)−
∑

i∈[m−r]

gi(wi)

〉

+
L

2

∥∥∥∥∥∥
∑

i∈[m−r]

gi(wi + δi)−
∑

i∈[m−r]

gi(wi)

∥∥∥∥∥∥
2

+ L2pr

≤

〈
∇g

∑
i∈[m]

gi(wi)

 ,
∑

i∈[m−r]

gi(wi + δi)−
∑

i∈[m−r]

gi(wi)

〉
+ L3m2p2 + L2pr

≤
∑

i∈[m−r]

〈
∂f(w)

∂wi
, δi

〉
+ L3m2p2 + L2pr

where the last line follows from the chain rule and Lipschitz smoothness, and the last to second line
follows from ∣∣∣∣∣∣

∑
i∈[m−r]

gi(wi + δi)−
∑

i∈[m−r]

gi(wi)

∣∣∣∣∣∣ ≤ Lpm.
This completes the proof.

24

C Illustration of the Separability Assumption

(a) Each class as two components (b) Each class as one component

Figure 3: Illustration of the separability assumption. The data lie inR2 and are from two classes −
and +. The + class contains points uniformly over two balls of diameter 1/10 with centers (0, 0) and
(2, 2), and the − class contains points uniformly over two balls of the same diameter with centers
(0, 2) and (2, 0). (a) We can view each ball in each class as one component, then the data will satisfy
the separability assumption with ` = 2. (b) We can also view each class as just one component, but
the data will not satisfy the separability assumption with ` = 1.

Recall the separability assumption introduced in Section 3:

(A1) (Separability) There exists δ > 0 such that for every i1 6= i2 ∈ [k] and every j1, j2 ∈ [l],
dist (supp(Di1,j1), supp(Di2,j2)) ≥ δ.

Moreover, for every i ∈ [k], j ∈ [l],
diam(supp(Di,j)) ≤ λδ, for λ ≤ 1/(8l).

In this assumption, each class can contain multiple components when ` ≥ 2. This allows more
flexibility and also allows non-linearly separable data. See Figure 3 for such an example. The data
lie inR2 and are from two classes − and +. The + class contains points uniformly over two balls
of diameter 1/10 with centers (0, 0) and (2, 2), and the − class contains points uniformly over two
balls of the same diameter with centers (0, 2) and (2, 0). As illustrated in Figure 3(a), the data satisfy
the separability assumption with ` = 2: each ball in each class is viewed as one component, then the
distance between any two points in one component is at most 1/10 while the distance between any
two points from different components will be at least 19/10. However, as illustrated in Figure 3(b),
the data do not satisfy the separability assumption with ` = 1, by viewing each class as just one
component. This demonstrates that allowing ` ≥ 2 leads to more flexibility. Furthermore, the data are
clearly not linearly separable, showing that the assumption captures nonlinear structures of practical
data better than linear separability.

D Additional Experimental Results

Here we provide some additional experimental results.

D.1 Statistics When Achieving A Small Error v.s. Number of Hidden Nodes

Recall that our analysis that for a learning rate decreasing with the number of hidden nodes m, the
number of iterations to get the accuracy roughly remain the same. A more direct way to check is to
plot the number of steps to achieve the accuracy for different m. As shown in Figure 4, the number
of steps roughly match what our theory predicts.

Furthermore, Figure 5 shows the relative distances when achieving the desired accuracies. It is
observed that the distances scale roughly as O(1/

√
m). In particular, they closely match 2/3

√
mon

the synthetic data and 1/6
√
m on MNIST (the red lines in the figures), where m is the number of

hidden nodes. Explanations are left for future work.

25

0 5000 10000 15000 20000 25000 30000
Number of hidden nodes

0

50

100

150

200

250

300

350

400

Nu
m

be
r o

f s
te

ps
 n

ee
de

d

Number of steps needed v.s. number of hidden nodes

(a) On synthetic data

0 5000 10000 15000 20000 25000 30000
Number of hidden nodes

96

98

100

102

104

Nu
m

be
r o

f s
te

ps
 n

ee
de

d

Number of steps needed to accuracy 0.95 v.s. number of hidden nodes

(b) on MNIST

Figure 4: Number of steps to achieve 98% on the synthetic data and 95% test accuracy on MNIST
for different values of number of hidden nodes. They are roughly the same for different number of
hidden nodes.

500 1000 2000 4000 8000 16000 32000
Number of hidden nodes

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Re
la

tiv
e

di
st

an
ce

Relative distance for accuracy 0.98 v.s. number of hidden nodes

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035
2

3√m

(a) On synthetic data

1000 2000 4000 8000 16000 32000
Number of hidden nodes

0.000

0.001

0.002

0.003

0.004

0.005

0.006

Re
la

tiv
e

di
st

an
ce

Relative distance for accuracy 0.95 v.s. number of hidden nodes

0.000

0.001

0.002

0.003

0.004

0.005

0.006
1

6√m

(b) on MNIST

Figure 5: Relative distances when achieving 98% on the synthetic data and 95% test accuracy on
MNIST for different values of number of hidden nodes. They closely match 2/3

√
m on the synthetic

data and 1/6
√
m on MNIST (the red lines), where m is the number of hidden nodes.

D.2 Synthetic Data with Larger Variances

Here we test the effect of the in-component variance on the learning process. First recall that the
synthetic data are of 1000 dimension and consist of k = 10 classes, each having ` = 2 components.
Each component is of equal probability 1/(kl), and is a Gaussian with covariance σ/

√
dI and its

mean is i.i.d. sampled from a Gaussian distribution N (0, σ0/
√
d). 1000 training data points and

1000 test data points are sampled. Here we fix σ0 = 5 and vary σ and plot the test accuracy, the
coupling, the distance across different time steps, and the spectrum of the final solution.

Figure 6 shows that the test accuracy decreases with increasing variance σ, and it takes longer time
to get a good solution. On the other hand, an increasing variance does not change the trends for
activation patterns, distance, and the rank of the weight matrix. This is possibly due to that the signal
in the updates remain small with increasing variances, while the noise in the updates act similarly as
the randomness in the weights.

26

0 50 100 150 200 250 300 350 400
Number of steps

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

Test Accuracy v.s. number of steps

Variance of components
0.5
1.0
2.0
4.0
8.0

(a) Test accuracy

0 50 100 150 200 250 300 350 400
Number of steps

0.00

0.01

0.02

0.03

0.04

Ac
tiv

at
io

n
pa

tte
rn

 d
iff

er
en

ce
 ra

tio

Activation difference v.s. number of steps
Variance of components

0.5
1.0
2.0
4.0
8.0

(b) Coupling

0 50 100 150 200 250 300 350 400
Number of steps

0.000

0.005

0.010

0.015

0.020

0.025

Re
la

tiv
e

di
st

an
ce

Relative distance v.s. number of steps
Variance of components

0.5
1.0
2.0
4.0
8.0

(c) Distance from the initialization

0 20 40 60 80 100
Singular value index

10 6

10 5

10 4

10 3

10 2

10 1

100

Si
ng
ul
ar
 v
al
ue

Singular values of the weight matrix and accumulated updates

Spectrum for
Weight matrix
Accumulated updates

(d) Rank of accumulated updates (y-axis in log-scale)

Figure 6: Results for synthetic data with different variances.

D.3 Synthetic Data with Larger Number of Components in Each Class

Here we test the effect of the number of components in each class on the learning process. First
recall that the synthetic data are of 1000 dimension and consist of k = 10 classes, each having `
components. Each component is of equal probability 1/(kl), and is a Gaussian with covariance
1/
√
dI and its mean is i.i.d. sampled from a Gaussian distribution N (0, 5/

√
d). 1000 training data

points and 1000 test data points are sampled. Here we vary ` from 1 to 7 and plot the test accuracy,
the coupling, the distance across different time steps, and the spectrum of the final solution.

Figure 7 shows that the test accuracy decreases with increasing number of components ` in each
class, and it takes longer time to get a good solution. On the other hand, a larger ` leads to more
significant coupling and smaller relative distances at the same time step. This is probably because the
learning makes less progress due to the more complicated structure of the data.

27

0 50 100 150 200 250 300 350 400
Number of steps

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

Test Accuracy v.s. number of steps

Number of components/class
1
2
3
4
5
6
7

(a) Test accuracy

0 50 100 150 200 250 300 350 400
Number of steps

0.00

0.02

0.04

0.06

0.08

Ac
tiv

at
io

n
pa

tte
rn

 d
iff

er
en

ce
 ra

tio

Activation difference v.s. number of steps
Number of components/class

1
2
3
4
5
6
7

(b) Coupling

0 50 100 150 200 250 300 350 400
Number of steps

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Re
la

tiv
e

di
st

an
ce

Relative distance v.s. number of steps
Number of components/class

1
2
3
4
5

(c) Distance from the initialization

0 20 40 60 80 100
Singular val e index

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Si
ng

 l
ar
 v
al
 e

Sing lar val es of the weight matrix and acc m lated pdates

Spectr m for #components/class=4
Weight matrix
Accumulated updates

(d) Rank of accumulated updates for 4 components in
each class (y-axis in log-scale)

Figure 7: Results for synthetic data with larger number of components in each class.

28

	Introduction
	Related Work
	Problem Setup
	Main Result
	Intuition and Proof Sketch for A Simplified Case
	A Simplified Case: No Variance

	Discussion of Insights from the Analysis
	Experiments
	Conclusion
	Proofs for the Simplified Case
	Coupling
	Error Large -3mu Gradient Large
	Convergence
	Technical Lemmas

	Proofs for the General Case
	Coupling
	Expected Error Large -3mu Gradient Large
	Convergence
	Technical Lemmas

	Illustration of the Separability Assumption
	Additional Experimental Results
	Statistics When Achieving A Small Error v.s. Number of Hidden Nodes
	Synthetic Data with Larger Variances
	Synthetic Data with Larger Number of Components in Each Class

