Supplementary material

All numbered equations with yellow color box such as ( 1) are inherited from the main body of
manuscript.

1 Proof of Theorem 1

Theorem 1 The optimal objective p* to problem ( 2 ) is equal to the optimal objective pj to problem

(4).

Proof 1 As problem ( 4 ) is the relaxed version of problem ( 2 ), we must have p5 > p*.

Suppose x* = vec(X*) is the optimal solution to problem ( 4 ). We recursively implement the
following procedure until there is no 1 in x*. If X}, = 1, according to the doubly stochastic property,
the ith row and ath column elements other than (i, a) element would all be 0. We then remove all
the elements in A corresponding to node i in G and node a in Go. Finally we can reach a subset of
x and A such that each element in x is in the range [0, 1). Figureschematically shows how this
procedure works from left to right.

However, due to the definition of function fs, the affinity score over the remaining nodes becomes 0.
As A is non-negative, any 1 value assignment would result in affinity score no less than 0. Denote the
objective value of such assignment p™*'¢", then we have p; < p™*¢". On the other hand, p®*'¢" is

*

discrete, then we must have p"”ign < p*.

In summary, we have p* = p3. QED.

2 Proof of Theorem 2

Theorem 2 limg_.q pj; = pj

Proof 2 First we define two sets: C; = {x|Hx = 1,x € [0,1]"’}, C, = {x|x € [0,1]""}. It’s
easy to observe that |p; — pi| < p1, where p; = arg maxy|h] Ahy —hl Ahs| subject to Cy. This
observation is true because the gap between two separable optimal objectives must be no larger than
the maximal gap between the objectives.

We further define po = arg maxx|thh9 - haTAh5| subject to Co. As C1 C Ca, we must have
p1 < pa. By rewriting the objective corresponding to ps in the following way:

D Aiho(xi)ho(x;) = > Asihs(xi)hs(x;)

.5 ,J

= ZA” [((hg(xl) - h&(xi))hG(Xj) + (he(xj) - h(;(Xj))h(S(Xi)]

Note A, hg and hs are all bounded. Additionally, hg(x;) — hs(x;) and hg(x;) — hs(x;) when
6 — 0 by the third property. Thus |p} — p3| < p1 < pa — 0. QED.
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Figure 1: Procedure to remove 1 elements. Here the manipulation on a 6 x 6 matrix is demonstrated
schematically. From left to right, we remove a 1 element and corresponding column and row in each
step. The rightmost matrix is mat(x') with all elements in [0, 1).

3 Proof of Proposition 1

Proposition 1 For univariate SF hyap, hpoy, suppose pi and p5 are the optimal objectives for (5 )
with 01 and 03, respectively. Then we have p7 > p5 if 0 < 02 < 6.

Proof 3 This can be easily proved by showing hia,(x;02) < hig(x;61) and hpy(x;62) <
hpoly(x; 91) when 05 < 61. QED.

4 Proof of Theorem 3

Theorem 3 Assume that affinity A is positive definite. If the univariate SF hg(x) < x on [0, 1], then
the global maxima of problem ( 2 ), which is discrete, must also be the global maxima of problem

(5).

Proof 4 As shown in [1|], whenever affinity A is positive definite, the global maximum of problem
(3 ) is a permutation. In this case, the optimum to ( 3 ) is also optimum to ( 2 ). Denote y* the
optimal permutation to ( 3 ). As y* is doubly stochastic, it must also satisfy the same constraints in
problem (5 ). Let py be the objective of problem (5 ) w.rt. y* — Note p; is the optimal objective of

problem ( 3 ). Assume there exists an optima x; # y™ to problem ( 5 ) with corresponding objective
pa. As py is optimal, we have ps > p1. Let yg = hyg(x})). As hg(x) < x, we must have xj; > yg > 0.
Denote p3 the objective score of ( 3 ) by substituting xj;. Since A is non-negative, x; > yg and
Xp,ye = 0, we have p3 > po. In summary, p3 > p1. However, py is the global optimal objective of
( 3 ). Thus the inequality leads to contradiction. The equality exists only when the global optimum of
(5)isy*. QED.

5 Proof of Proposition 2

Proposition 2 Assume affinity A is positive/negative semi-definite, then as long as the univariate SF
hg is convex, the objective of (5 ) is convex/concave.

Proof 5 Consider problem ( 5 ), we prove this theorem by checking the property of the Hessian with

respect to X. As we have obtained the gradient 2G Ahy of the objective in ( 5 ) with respect to X, we
calculate the Hessian by taking the derivative once again. After some mathematical manipulations,
we have V2x = 2AK, where

. Ohy \* 0%h
Kdl&g(l(axj) Jrhg(xl)aT;,
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0 0
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It is easy to show that (Ohg/0%;)? and hy(x;) are non-negative according to Definition 1. As hg is
convex, its second order derivative must also be non-negative. Matrix K is positive semi-definite.
Thus the convexity/concavity of A is preserved after multiplying K. QED.



6 Proof of Proposition 3
Proposition 3 Assume affinity matrix A is positive definite and univariate SF hg is convex. The
optimal value to the following problem is:
FEcony = max thThg 2)
X

Then there exists a permutation X*, s.t. Ep — E(x*) < n)\ where E(x*) is the objective value w.r.t.
problem (5 ).

Proof 6 First for any convex univariate SF hy in range [0, 1], we have hg(x) < x. Under the
assumption in the theorem, given X the optima to problem (5 ), we can obtain an optimal discrete y

according to the sampling procedure in Theorem The optimal objective of ( 5 ) can be written as:

Econv(y): Z Aij:ath(yia)he(yjb)+
igath

) ©
Z (Aii:aa + /\) h@ (yia)
i,a
Besides, by substituting y into problem ( 5 ) we obtain:
E(y)= > Aijaho(yia)ho(yi) 4
i,5,a,b
By subtracting Equation (@) from (3) we have:
Beon(y) = E(y) =AY _ hj(yia) (5)

As mat(y) € {0,1}"" is a permutation hence ho(yiq) = Yia» we have A > o 3 (yia) = nA. Then
there exists at least one permutation x* satisfying the condition. QED.
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