
A A Brief Review of Popular Optimization Algorithms

A.1 Vanilla Gradient Descent Algorithm

A vanilla gradient descent (VGD) algorithm starts from an arbitrary initial solution x(0). At the k-th
iteration (k > 0), VGD takes

x(k) = x(k−1) − η∇f(x(k−1)),

where η is a properly chosen step size. Since VGD only needs to calculate a gradient of f in each
iteration, the computational cost per iteration is usually linearly dependent on d. For a L-smooth f ,
we can choose a constant step size such that η ≤ 1

L to guarantee convergence.

VGD has been extensively studied in existing literature. [11] show that:

(1) For general convex function, VGD attains a sublinear convergence rate as

f(x(k))− f(x∗) ≤ L‖x(0) − x∗‖2

2k
for k = 1, 2, ..... (A.1)

Note that (A.1) is also referred as an iteration complexity of O(L/ε), i.e., we need O(L/ε)
such that f(x(k))− f(x∗) ≤ ε, where ε is a pre-specified accuracy of the objective value.

(2) For a L-smooth and µ-strongly convex f , VGD attains a linear convergence rate as

f(x(k))− f(x∗) ≤
(

1− 1

κ

)k
L‖x(0) − x∗‖2

2
for k = 1, 2, ..... (A.2)

Note that (A.2) is also referred as an iteration complexity of O(κ · log(1/ε)).

A.2 Nesterov’s Accelerated Gradient Algorithms

The Nesterov’s accelerated gradient (NAG) algorithms combines the vanilla gradient descent algo-
rithm with an additional momentum at each iteration. Such a modification, though simple, enables
NAG to attain better convergence rate than VGD. Specifically, NAG starts from an arbitrary initial
solution x(0) along with an auxiliary solution y(0) = x(0). At the k-th iteration, NAG takes

x(k) = y(k−1) − η∇f(y(k−1)) and y(k) = x(k) + α(x(k) − x(k−1)),

where α = k−1
k+2 for general convex f and α =

√
κ−1√
κ+1

for strongly convex f . Intuitively speaking,
NAG takes an affine combination of the current and previous solutions to compute the update for the
two subsequent iterations. This can be viewed as the momentum of a particle during its movement.
Similar to VGD, NAG only needs to calculate a gradient of f in each iteration. Similar to VGD, we
can choose η ≤ 1

L for a L-smooth f to guarantee convergence.

NAG has also been extensively studied in existing literature. [11] show that:

(1) For general convex function, NAG attains a sublinear convergence rate as

f(x(k))− f(x∗) ≤ 2L‖x(0) − x∗‖2

k2
for k = 1, 2, ..... (A.3)

Note that (A.3) is also referred as an iteration complexity of O(
√
L/ε).

(2) For a L-smooth and µ-strongly convex f , NAG attains a linear convergence rate as

f(x(k))− f(x∗) ≤

(
1−

√
1

4κ

)k
L‖x(0) − x∗‖2

2
for k = 1, 2, ..... (A.4)

Note that (A.4) is also referred as an iteration complexity of O(
√
κ · log(1/ε)).

A.3 Randomized Coordinate Gradient Descent Algorithm

A randomized coordinate gradient descent (RCGD) algorithm is closely related to VGD. RCGD starts
from an arbitrary initial solution x(0). Different from VGD, RCGD takes a gradient descent step only
over a coordinate. Specifically, at the k-th iteration (k > 0), RCGD randomly selects a coordinate j
from 1, ..., d, and takes

x
(k)
j = x

(k−1)
j − η∇jf(x(k−1)) and x

(k)
\j = x

(k−1)
\j .
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where η is a properly chosen step size. Since RCGD only needs to calculate a coordinate gradient
of f in each iteration, the computational cost per iteration usually does not scale with d. For a
Lmax-coordinate-smooth f , we can choose a constant step size such that η ≤ 1

Lmax
to guarantee

convergence.

RCGD has been extensively studied in existing literature. [10, 7] show that:

(1) For general convex function, RCGD attains a sublinear convergence rate in terms of the expected
objective value as

Ef(x(k))− f(x∗) ≤ dLmax‖x(0) − x∗‖2

2k
for k = 1, 2, ..... (A.5)

Note that (A.5) is also referred as an iteration complexity of O(dLmax/ε).
(2) For a Lmax-smooth and µ-strongly convex f , RCGD attains a linear convergence rate in terms

of the expected objective value as

Ef(x(k))− f(x∗) ≤
(

1− µ

dLmax

)k
L‖x(0) − x∗‖2

2
for k = 1, 2, ..... (A.6)

Note that (A.6) is also referred as an iteration complexity of O(dLmax/µ · log(1/ε)).

A.4 Accelerated Randomized Coordinate Gradient Algorithms

Similar to NAG, the accelerated randomized coordinate gradient (ARCG) algorithms combine the
randomized coordinate gradient descent algorithm with an additional momentum at each iteration.
Such a modification also enables ARCG to attain better convergence rate than RCGD. Specifically,
ARCG starts from an arbitrary initial solution x(0) along with an auxiliary solution y(0) = x(0). At
the k-th iteration (k > 0), ARCG randomly selects a coordinate j from 1, ..., d, and takes

x
(k)
j = y

(k−1)
j − η∇jf(y(k−1)), x

(k)
\j = y

(k−1)
\j , and y(k) = x(k) + α

(
x(k) − x(k−1)

)
.

Here α =
√
κmax−1√
κmax+1 when f is strongly convex, and α = k−1

k+2 when f is general convex. Similar to
RCGD, we can choose η ≤ 1

Lmax
for a Lmax-coordinate-smooth f to guarantee convergence.

ARCG has been studied in existing literature. [5, 2] show that:

(1) For general convex function, ARCG attains a sublinear convergence rate in terms of the expected
objective value as

Ef(x(k))− f(x∗) ≤ 2d
√
Lmax‖x(0) − x∗‖2

k2
for k = 1, 2, ..... (A.7)

Note that (A.7) is also referred as an iteration complexity of O(d
√
Lmax/

√
ε).

(2) For a Lmax-smooth and µ-strongly convex f , ARCG attains a linear convergence rate in terms
of the expected objective value as

Ef(x(k))− f(x∗) ≤
(

1− 1

d

√
µ

Lmax

)k
L‖x(0) − x∗‖2

2
for k = 1, 2, ..... (A.8)

Note that (A.8) is also referred as an iteration complexity of O(d
√
Lmax/µ · log(1/ε)).

A.5 Newton’s Algorithm

The Newton’s (Newton) algorithm requires f to be twice differentiable. It starts with an arbitrary
initial x(0). At the k-th iteration (k > 0), Newton takes

x(k) = x(k−1) − η(∇2f(x(k−1)))−1∇f(x(k−1)).

The inverse of the Hessian matrix adjusts the descent direction by the landscape at x(k−1). Therefore,
Newton often leads to a steeper descent than VGD and NAG in each iteration, espcially for highly
ill-conditioned problems.

Newton has been extensively studied in existing literature with an additional self-concordant assump-
tion as follows:
Assumption A.1 . Suppose that f is smooth and convex. We define g(t) = f(x + tv). We say
that f is self-concordant, if for any x ∈ Rd, v ∈ Rd, and t ∈ R, there exists a constant ν, which is
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independent on f such that we have
|g′′′(t)| ≤ νg′′(t)3/2.

[12] show that for a L-smooth, µ-strongly convex and ν-self-concordant, f , Newton attains a local
quadratic convergence in conjunction. Specifically, given a suitable initial solution x(0) satisfying
‖x(0) − x∗‖2 ≤ ζ, where ζ < 1 is a constant depending on on L, µ, and ν, there exists a constant ξ
depending only on ν such that we have

f(xk+1)− f(x∗) ≤ ξ[f(x(k))− f(x∗)]2 for k = 1, 2, ..... (A.9)

Note that (A.9) is also referred as an iteration complexity of Õ(log log(1/ε)), where Õ hides the
constant term depending on L, µ, and ν. Since Newton needs to calculate the inverse of the Hessian
matrix, its per iteration computation cost is at leastO(d3). Thus, it outperforms VGD and NAG when
we need a highly accurate solution, i.e., ε is very small.

B Extension to Nonsmooth Composite Optimization

Our framework can also be extended to nonsmooth composite optimization in a similar manner to
[16]. Let g be an L-smooth function, and h be a general convex function (not necessarily smooth).
For x ∈ Rd, the composite optimization problem solves

min
x∈Rd

f(x) := g(x) + h(x).

Analogously to [16], we define the force field as the directional subgradient G(x, p) of function f ,
where G : Rd × Rd → Rd is defined as G(x, p) ∈ ∂f(x) and 〈G(x, p), p〉 = supξ∈∂f(x) 〈ξ, p〉,
where ∂f(x) denotes the sub-differential of f . The existence of G(x, p) is guaranteed by [15].
Accordingly, a new ODE describing the dynamics of the system is

mẌ + cẊ +G(X, Ẋ) = 0.

Under the assumption that the solution to the ODE exists and is unique, we illustrate the analysis by
VGD (the mass m = 0) under the proximal-PŁ condition. The extensions to other algorithms are
straightforward. Specifically, a convex function f satisfies µ-proximal-PŁ if

1

2µ
inf

p∈Sd−1
‖G(x, p)‖2 ≥ f(x)− f(x∗), (B.1)

where x∗ = 0 is the global minimum point of f . Slightly different from the definition of the proximal-
PŁ condition in [4] involving a step size parameter, (B.1) does not involve any additional parameter.
This is actually a more intuitive definition by choosing an appropriate subgradient. Let γ(t) = e2µt/c

and Γ(t) = 0. For a small enough ∆t > 0, we study
γ(t+ ∆t)f(t+ ∆t)− γ(t)f(t)

∆t
.

By Taylor expansions and the local Lipschitz property of convex function f , we have

γ(t+ ∆t) = exp

(
2µt

c

)(
1 +

2µ

c
∆t

)
+ o(∆t) and

f(X(t+ ∆t)) = f(X) + 〈Ẋ,G(X, Ẋ)〈∆t+ o(∆t)〉.
Combining the above two expansions, we obtain

γ(t+ ∆t)f(X(t+ ∆t)) = exp

(
2µt

c

)(
f(X) +

2µ

c
f(X)∆t+ 〈Ẋ,G(X, Ẋ)〉∆t

)
+ o(∆t).

This further implies

γ(t+ ∆t)f(t+ ∆t)− γ(t)f(t)

∆t
= exp

(
2µt

c

)(2µ

c
f(X)− 1

c
‖G(X, Ẋ)‖2

)
+O(∆t).

By the µ-proximal-PŁ condition of f , we have lim∆t→0
γ(t+∆t)f(t+∆t)−γ(t)f(t)

∆t ≤ 0. The rest of
the analysis follows exactly the same as it does in Section 3.1.2.
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