Supplement to ‘“Measures of distortion for machine
learning”

A Proof of Theorems 1 and 2

Homogeneous metric: A metric, dx, on a vector space, X, is said to satisfy the property of
homogeneity if for all u,v € X and for any scalar a € R, dx satisfies the following condition:
dx(a-u,a-v) =|af - dx(u,v). We refer to such a metric, dx, as a homogeneous metric and the
corresponding metric space, (X, dx ), as a homogeneous metric space.

Translation invariant metric: A metric dx on a vector space X is said to be translation invariant if
for any u,v and w € X, dx satisfies the following condition: dx (v + w,v + w) = dx (u, v).

Recall that (X,dx) is an arbitrary metric space and (Y, dy) is assumed to be a homogeneous
and a translation invariant metric. Let f, g : (X,dx) — (Y, dy) be two injective mappings. For

any S C ()2(), let fs denote the restriction of the mapping f to the set S. Formally, fg :=

{(f(u), f(0))|(u,v) € S}

A.1 Scale and translation invariance

A distortion measure P is said to be scale invariant if for any o € R

Vu € X, f(u) = ag(u); = @(f) = 2(g).

® is said to be translation invariant if forany y € Y,

Vu € X, f(u) = g(u) +y; = ®(f) = ®(g).

@) Pyes Pravgs Pes Priocar and @, are invariant to scaling:

Proof. The proofs naturally follow from the definitions of these distortion measures and rely on the
assumption of homogeneity of the target metric.

worstcase distortion: By the virtue of homogeneity of dy-,

_ ‘Oé| dY(f(u)vf(v)) dX(u7U)
Puelg) T X { dx (u, v) } usnex { ol - dy (f(u), f(0)) }
= (I)wc(f)
normalized average distortion:
__ 2 Py (¥ v) _ dr(9(w),g(v))
Dravg(9) nn—1) ugx ug}iélng o)’ where pg(u,v) dx(u0)
pg(u,v) _ o] - d;z)f{iui;f(v)) =|a|- ps(u,v). (from homogeneity of dy).
_ 2 ol - py(u,v)
Pnavg9) = n(n —1) Z min_|af - pr(u,v)

uAVEX y#£veX
= q)navg(f)'

e-distortion: The scale invariance of e-distortion follows from the fact that if f, g are two embeddings
that are scaled versions of each other, then for any subset S of ()2( ), the worstcase distortions of
fs,gs are equal: For any € € (0,1),

D)= o mD L Pucles)
Sc(X).I81>(1—e) 21



and thus, for any S C ()2(),

I £ S IO RIC)) R G- x (u,v)
%C(gs)_{{w}eS}{ dx (u,v) } {{u,v}eS}{ ((),g(v))}
Ial-dy(f(wf(v))}_ - { dx (u,v) }
{{uwresy | lal - dy (f(u), f(v))

= max
{{u,v}eS} { dx(u,’U)
= (I)wc(fS)-

k-local distortion: For any k& € IV and for any u € X, let kN N (u) denote the k-nearest neighbours
of u in X according to dx. The set S defined as {{u,v} |u,v € X,v € kNN (u)} is a subset of

()2( ) As shown in the case of e-distortion, for any two embeddings f, g which are scaled versions of
each other, we have ®,,.(g9s) = Puc(fs) and hence Priocai(9) = Privcar (f)-

o-distortion: For any {u,v} € ()2( ), let py(u, v) denote the normalized ratio of distances defined as

py(u,v) /oy, where oy = > ps(u,v)/(5). Observe that, by the virtue of homogeneity of dy,
{uv}ye(3)

pt(u,v) = pg(u,v). Therefore,

®4(9) = En(py — 1)* = En(py — 1)* = @4 (f)-

(b) @4, and ¥, are not invariant to scaling.

Proof. The proof follows from the linearity of the expectation. We prove the statement for the [,
distortion, the case of the average distortion then is the special case of ¢ = 1.

®;,(9) = En(py(u,0)))7 = En(la| - ps(u, )7 = |a] - By, ().

(c) All the distortion measures, @, ®;,, Pravg, Pe, Priocar and P, are invariant to
translations.

Proof. Tt is straightforward to see that all the distortion measures derive this property from the
translation invariance of dy-. O

A.2 Monotonicity

For any f : (X,dx) — (Y,dy), let oy = (3)/ > py(u,v). Observe that oy > 0. Let
uFveX

fyg:(X,dx) — (Y,dy) be two embeddings such that for all u,v € X,

ayp-pg(u,v) <ag-pg(u,v) <1 or af-pr(u,v) > ag - pg(u,v) > 1.

@) Pye, Pravgs Pe, Priocar and P, satisfy the property of monotonicity.

Proof. The proofs follow directly from the definitions and utilize the scale invariance property of the
corresponding distortion measure:

worstcase distortion:

Pue(f) = Puelay - f) (Scale invariance of ®,,.)
1
= max {ay-ps(u,v)}-
uFvEX Jpin, {ay - pp(u,v)}
1
> max {ag - pg(u,v)}-
uFveEX u;r})lenx {ag - pg(u,v)}
= (bwc(g)



The inequality follows since max {ay - py(u,v)} > 1and min_{ay - ps(u,v)} < 1.
uFveX uFveX
normalized average distortion:

D,00g(f) = Pravg(ay - f) (Scale invariance of ®,,4,4)

> {as-pr(u,v)}

uFveX

Jnin, {ag - py(u,v)}
2

~ () (n—1) min {fay - pg(u,v)}
= (I)navg(g)'

The inequality follows since ;ninX {af - pslu,v)} < 1.
uFveE

e-distortion: Let ¥ = arg min Pye(fs). Then,
SC(X),18]>(1—e) M1

@e(f) = (I)wc<f‘1/) > q)lUC(g\P) > min q)wc(gS) = (I)e(g)
SC(X)ISI>(1—e) 1)

The first inequality follows due to the monotonicity of ®,,..

k-local distortion: For any k € IV, the set S = {(u,v)|u,v € X,v € kNN (u)} is a subset of (3 ).
Then,

(bklocal(f) = (I)wc(fS') > q)wc(gS) = (I)klocal(g)‘

The first equality follows by definition and the first inequality follows due to the monotonicity of
Dy

o-distortion For any f : (X,dx) — (Y,dy) and forall u € X, let f (u) = %. Then
@ (f) = En(ps (u,v) —1)%.

Observe that, by the definition of monotonicity, we have that for all u,v € X, (ps (u,v) —1)? >
(pg (u,v) — 1)2. Hence it follows that,

o (f) = En(ps (u,0) = 1)%) > En(py (u,v) — 1)%) = 4 (9)-

(b) @404, @y, fail to satisfy the property of monotonicity.
Proof. Proof by contradiction.
average distortion, [, distortion:

Let f,g: (X,dx) — (Y, d,) be two embeddings such that there exists a constant 5 > 1 and for all

uwe X, Bf(u) =g(u). Letay = (n)(n—1)/2 > ps(u,v). Then for all {u,v} € ()2(), f.g
(uAvEX)
satisfy the following condition:

arpr(u,v) < agpg(u,v) <1 or appr(u,v) > agpg(u,v) >1

However ®,,,(f) = @““Tg(f) < DPaug(9). H

A.3 Robustness to outliers
(a) @404, Pc and P, are robust to outliers in distances.

Proof. Let X,dx be an arbitrary metric space. Let Xp = {21, 2o, ...., } be a subset of X. Let
f + Xp — X be an injective mapping such that there exists a constant K € IN such that the

set G = {{u,v} € (XZD) | dx (f(u), f(v)) # dX(um)} satisfies |G| < K. Let f, denote the



restriction of f to X,, = {z1,22,...,2,}. Let I : (X,dx) — (X, dx) be an isometry and let I,
denote the restriction of I to X,,.

average distortion: For any n € I, let G,, = {{u,v} € (%)t dx(fu(w), folv)) # dx (u, v)}.

By definition, it follows that for all n € N, there exists a K € N such that, |G,,| < |G| < K. This
implies that there exists a ng € N such that, for all n > ng, G, = G and |G| = K.

Therefore for any fixed n > ng, py, can be expressed as
pfn = [ 17 17 ceey 1 , 1,9, ..., O[}(]7
—_—— —
(;)—Ktimes K

where for all i = {1,2,..., K}, a;’s denote the ratio of distances p¢(u,v) corresponding to each
{u,v} € G. Therefore for any fixed n > ng, average distortion of f,, can be expressed as

K
((3) — K) + ;Oﬁ

(3)

Q(wg(fn) =

Hence lim @gug(fn) =1= lm Pgue(ly).
n—oo

n—oo
e-distortion: For any € € (0, 1),

O (fn) = min Doye(frg)-
SC(%),IS]> (1—e) 1) )

Observe that forall n > 1+ /1 + £ there exists aset S C (%) such that S| > (1 — )zl
and @, (fns) = 1. Hence lim ®.(f,) =1= lim ®.([,).

o-distortion: The proof follows along the same lines as that of average distortion.
For any f,, : (X,,dx) — (X,dx), ®,(fn) can be expressed as

Z( )[(Z)an(uvv)* Z( )an(u,v)]2
(u,v)€ X2” (u,v)€ XQ"
Pl = Bl > enwolP | v

(w)e ()

Forany n € IN,let G,, = {(u,v) € X, : dx(fn(w), fn(v)) # dx(u,v)}. By definition, it follows
that for all n € N, there exists a K € N such that, |G,,| < |G| < K. This implies that there exists a
ng € N such that, for all n > ng, G,, = G and |G| = K. Therefore for any fixed n > ny, pf, can be
expressed as

Pf., = [ 15 17"'71 , 01, 02, "'5QK]7
—_—— —

(g) — K times K

where for all i = {1,2, ..., K'}, o;’s denote the ratio of distances ps(u,v) corresponding to each
{u,v} € G. Therefore for any fixed n > ng, o-distortion of f,, can be expressed as

(B = £ a(3) - K)+ S(()as - D+ K - 3 o)

C; = K
(B)((E) — K+ 30 ai)?

=1

Hence, lim ®,(f,) =0= lim ®,(I,). O
n—oo

n—oo

(b) @44y, e and O, are robust to outliers in data

Proof. The proofs follow by definition and utilize the subadditivity of the target metric dy .



average distortion: Let f,, : X,, — X be an embedding as specified in the premise of the definition.
Then the average distortion of f,, is evaluated as

n—1
. (2) ~ =D+ 3 o where o, — (@), f(@0)) _ dy(f (), f(x0)
avg (;L) ’ ‘ dx(x;,x0) dy (f(zi), 1(x0)) .

From the subadditivity of dy-, it follows that
|dy(1(930)>f($0)) dy (I(z0), f(x0))
dy (I(zo), f(xi)) dy (I(zo), f(z:))

By construction, we have that dy (I(xo), f(z;)) = dy (I(x0),I(x;)) = dx(xo,z;) > [ for some
£ > 0 and it follows that

—1\<Oéi< + 1.

M
This implies,
M (”) —(n—1)+ ("—1)dY(Iﬁ(ﬂCo),f(wo))

< B (fn) < 2

(5) (5)
Note that 5 > 0 is a constant and for a fixed 2o € X, dy (I(x¢), f(x0)) is also a constant. Therefore,
lm @upg(frn) =1= lim ®gpg(ly).
oo n—roo

n—
e-distortion:
Let f,, : X,, — X be an embedding as specified in the premise of the definition. Its easy to verify

that for any ¢ € (0,1) and for all n > £, there exists a set S C (3 ) such that, |S| > (1 — e)w
and the worstcase distortion of f,, restricted to S'is 1 = ®.(1,,).

o-distortion:

Let f,, : X,, — X be an embedding as specified in the premise of the definition. Let p(p) denote

> ps.(u,0)/(5) and for all i € [n], let o; = dy (f(x;), f(20))/dx (z;, zo). Then @y (f,,) is
uFveX
evaluated as

2 (z) (n—1) n-1
> psa(u,v) = p(p)] SO =)+ X [eu — plp))?

(w0)e(’y) _ =1 i=1
(5)(p)? (5)[u(p)]
(3)-(-D+'T o
By substituting p(p) = T" we have
DS ) - @) - = 1)'T a— ()T a2
(bg(fn) = = n—1 nizll = :
(GI(5) = (n=1)2+( ; ;) +2 ; ai((5) = (n—1))]?

Since I is an isometry, and since we have f(x;) = I(x;) by definition , we obtain that
Ay (), F(ro)) _ dy (£, ) _ dy (), £(zo)
dx(zi,z0)  dy(I(z), I(z0))  dy (f(z:), I(z0))
By subadditivity of dy, we have that, Vi € [n]

dy (I(o), f(0))
dy (1(z0), f(xi))

dy (I(wo), f(0))

dy (I(zo). f(z) T "

71‘<Oéi<



By construction, we have that dy (I(zo), f(x;)) = dy (I(z0), I(x;)) = dx(xo,x;) > 3 for some
£ > 0 and it follows that

dy (I(2o), f (o))
dy (I(zo), f(xi))

dy (I(x0), f(20))

3 + 1.

—1l<a; <

Hence there exists aconstant C € R such that for all 7 € IN, 0 < «; < C. It follows that

O<Zal (n—1)C, O<Za <(n=1)C% and 0 < (D> ) < ((n—1)C)%.
i=1 =1
By substltutlon and simplification, it follows that Vn > 2,

(5)°C*(n—1)
A TG e
O, (fn) > —2(5)((5) = (r=D)((n—1)C) = (5)((n—1)C)?
T HUG) (=12 + (0= 1)C)2 +2(n = 1DC((5) — (n— 1))

Observe that
—()((3) = (n— D)((n— 1)C) = (3)((n— 1)C)?

and

A ) = (- VP £ (- DO + 2= () — (=1 0 ™
(-1
lim =0.
n=oe (3)((3) — (n—1))?
Hence it follows that nh_>ngo D, (fn)=0= nh_}rgo D, (I,). O

(©) Puye; Pravg and Ppyocq; are not robust to outliers in data or distances.

Proof. Proof by a counterexample. We first construct a sequence of embeddings for which the
number of distances that are distorted is bounded by a constant K and the distances distorted stem
from mapping a single point away from an isometry. Then we show that in the limit, as the size of
the metric space tends to infinity, ®.c, Pravg and Priocqr do not have the same distortion as that of
an isometry.

Let {e;};;—, 4y denote the standard orthonormal basis for (R% ). Fix 2o = (a — 1) - eq for

some 1 < a < 2. Letxz; = eq. Forany n € IN, set X,, = {x2,23,...,2,}, such that for
all i € {2,3,...,n}, z; is sampled according to some distribution P on span {ey,...,eq—1}. Let
f: (R 1y) — (R%, 1) be the mapping defined as f(x) = x, Vo € R, 2 # xg and f(xo) = —mo.
Let f,, denote the mapping f restricted to X,, U {xo, z1}. It is easy to verify that the ratio of distances

ps. (o, 21) = aand py, (x4, 2;) = 1 forany {z;,z;} € (%) \ {zo, 21}
worstcase distortion:

The worstcase distortion evaluated on f,, : (X, U {zg,21},dx) — (X,dx) forany n € IN is «
and thus lim ®,,.(f,) = a > lim ®,.(I,) = 1, where I,, denotes the restriction of the mapping
n— o0 n—oo

Ito X, U {1‘0, 331}.
normalized average distortion:

The sequence of average distortions evaluated on mappings { f,,} is given by:
((5)—1Da+1
(bnavg(fn> = (2)7
(3)
ThUS, lim q)navg(fn) =a > q)n(wg(ln) =1
n—oo

k-local distortion:

Since x lies in the set of k-nearest neighbours of x1, for any n > 2, the k-local distortion evaluated
on the mapping f,, : (X, U{xg,z1},dx) — (X,dx) is o and thus lim Pyjocar(fn) = a >
n—oo

lim (I)klocal(jn) =1. O
n— 00



A.4 Incorporation of a probability distribution

Let (X, dx) be an arbitrary metric space. Let X,, = {1, 22, ..., x,} be a finite subset of X. Let
P denote a probability distribution on X,, and let II = P x P denote the product distribution on

X,, x X,,. Fix any arbitrary z*, y* € X,, such that P(z*) > P(y*). Let 2,y € X such that for

alli € [n], dx (z;,2') = adx (z;,2*) and dx (z;,y ) = adx (x:,y*). Let f,g: X, — X be two
embeddings such that:

f(x){x/7 ifa;:fv*. g(x){y/, ifx:y*,

x, otherwise. x, otherwise.

@) Poye, Pavgs Pravg, Pe, and P44 fail to incorporate a probability distribution into their
evaluation.

Proof. The proofs follow directly from the definitions of the distortion measures.

worstcase, normalized avg, e-distortion and k-local distortion: The above distortion measures,
by definition are independent of the probability distribution over the data space.

average (l,) distortion: The proof follows from explicit evaluation of the average distortion of any
two embeddings (f, ¢) that satisfy the conditions as specified in the definition. Average distortion of
f can be expressed as:

(I)a’ug(f) IE1_[ Pf u, U Z HU"'ZO‘Hl_FZHzQ

i,j7#1,2 i#1 1#£2
DPavg(f) — Pavg(g) = [Z (I — Wi2)(a — 1)]
i#1,2
= () ()L — Ma)(a - 1)
i#1,2
<0 ifa<l.
The case of [,-distortion follows similarly. O

(b) @, incorporates a probability distribution into its evaluation.

Proof. Observe that Y pr(u,v) = Y pg(u,v) = (5) = (n—1) + (n — 1)a. Letk =
uFveX uFveX

(2)/ Z pr(u,v) = (3)/ X pg(u,v). Then,

uFveX uFveX

o (f) = o (9) = Enl(kpy(u,v) — 1)*] = En[(kpg (u, v) — 1)%]
= IE1'[ [’i pf(u’ U)2 - 2pr(u U)] EH[H pg(u,v)2 - 2’%/)9(”71))}'

= K*(II; — TIy) (o — 1) (k(ar + 1) — 2) Z I1;.

It is easy to verify that for any o > 0 and for all n > 4, (k(ac+ 1) — 2)(a — 1) > 0 and by definition
IT; > II,. Therefore, @, (f) > ®,(g). O

B Proofs of Theorems 3 and 4

Doubling space: A metric space (X, dx) is referred to as a doubling space if there exists a doubling
constant A > 0 such that for any v € X and r > 0, the ball B(u,r) = {v | dx(u,v) < r} can be
covered by at most A balls of radius /2.



B.1 Theorem 3:

Abraham, Bartal, and Neiman, [201 1| showed the existence of an embedding from any arbitrary metric
space into an Euclidean space with properties as stated in Theorem[A] Combined with Lemma A,
this provides the sought upper bound on o-distortion.

Theorem A. (Abraham, Bartal, and Neiman, 2011) Given any arbitrary finite metric space (X, dx),
there exists an embedding  : X — lz? where D = O(logn) and for any € € (0,1), there exists a

set G. and constants Cy and Cs (independent of €,n) such that |G| > (1 —€) - (l)z(‘) and for any

€ Ge O < LI < 0y 1 log(2),

Lemma A. (Abraham, Bartal, and Neiman, [2011) Given any finite metric spaces (X,dx) and
(Y,dy) and an embedding f : X — Y satisfying properties described in Theorem A, for any

2
distribution II over X x X, there exists a constant K = K (II) such that Eyy (W) <K
dy (f(2),f(y))

Proof of Theorem 3: From theorem A, by choosing any € <

Lf@)=FIll, . .. £ (x)—f(»)ll,
1 < W implies C7 < Epg (W

ﬁ, we have that Vx,y € X,

). Recall that o-distortion is defined as

Enlpg(u,v) — ﬁ > py(u, )]
(oo 2 2y (w,0))?
Combined with Lemma A, this completes the proof of Theorem 3. O

B.2 Theorem 4:

(Abraham, Bartal, and Neiman, [2011)) also showed the existence of an embedding from any arbitrary
doubling metric space into an Euclidean space with properties as stated in Theorem [B]and Lemma|[B]
These results provide an upper bound on the o-distortion evaluated on this embedding.

Theorem B. (Abraham, Bartal, and Neiman, 2011) Given any finite metric space (X, dx) with
doubling constant )\, there exists an embedding f : X — l;? and a constant K = K(\) such D < K

and for any € € (0, 1), there exists a set G. and constants Cy and Cs (independent of €) such that

|G| > (1 —¢)- (‘)Q(I) and forany z,y € G.: C; < % <y '10g26(%)~

Lemma B. (Abraham, Bartal, and Neiman, 2011) Given a finite metric space (X, dx ) with doubling
constant A, another metric space (Y, dy) and an embedding f : X — Y satisfying the properties
described in Theorem B, then for any distribution 11 over X x X, there exists a constant K = K (IT)

2
such that By (W) < K.

x T,y

Proof of Theorem 4: Same as the proof of Theorem 4. O
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