
Supplement to “Measures of distortion for machine
learning”

A Proof of Theorems 1 and 2

Homogeneous metric: A metric, dX , on a vector space, X , is said to satisfy the property of
homogeneity if for all u, v ∈ X and for any scalar α ∈ R, dX satisfies the following condition:
dX(α · u, α · v) = |α| · dX(u, v). We refer to such a metric, dX , as a homogeneous metric and the
corresponding metric space, (X, dX), as a homogeneous metric space.

Translation invariant metric: A metric dX on a vector space X is said to be translation invariant if
for any u, v and w ∈ X , dX satisfies the following condition: dX(u+ w, v + w) = dX(u, v).

Recall that (X, dX) is an arbitrary metric space and (Y, dY ) is assumed to be a homogeneous
and a translation invariant metric. Let f, g : (X, dX) → (Y, dY ) be two injective mappings. For
any S ⊆

(
X
2

)
, let fS denote the restriction of the mapping f to the set S. Formally, fS :=

{(f(u), f(v))|(u, v) ∈ S}.

A.1 Scale and translation invariance

A distortion measure Φ is said to be scale invariant if for any α ∈ R

∀u ∈ X, f(u) = αg(u); =⇒ Φ(f) = Φ(g).

Φ is said to be translation invariant if for any y ∈ Y ,

∀u ∈ X, f(u) = g(u) + y; =⇒ Φ(f) = Φ(g).

(a) Φwc, Φnavg , Φε, Φklocal and Φσ are invariant to scaling:

Proof. The proofs naturally follow from the definitions of these distortion measures and rely on the
assumption of homogeneity of the target metric.

worstcase distortion: By the virtue of homogeneity of dY ,

Φwc(g) = max
u 6=v∈X

{
|α| · dY (f(u), f(v))

dX(u, v)

}
· max
u6=v∈X

{
dX(u, v)

|α| · dY (f(u), f(v))

}
= Φwc(f).

normalized average distortion:

Φnavg(g) =
2

n(n− 1)

∑
u6=v∈X

ρg(u, v)

min
u 6=v∈X

ρg(u, v)
, where ρg(u, v) =

dY (g(u), g(v))

dX(u, v)
.

ρg(u, v) =
|α| · dY (f(u), f(v))

dX(u, v)
= |α| · ρf (u, v). (from homogeneity of dY ).

Φnavg(g) =
2

n(n− 1)

∑
u6=v∈X

|α| · ρf (u, v)

min
u 6=v∈X

|α| · ρf (u, v)

= Φnavg(f).

ε-distortion: The scale invariance of ε-distortion follows from the fact that if f, g are two embeddings
that are scaled versions of each other, then for any subset S of

(
X
2

)
, the worstcase distortions of

fS , gS are equal: For any ε ∈ (0, 1),

Φε(g) = min
S⊂(X

2 ),|S|≥(1−ε) n(n−1)
2

Φwc(gS)
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and thus, for any S ⊂
(
X
2

)
,

Φwc(gS) = max
{{u,v}∈S}

{
dY (g(u), g(v))

dX(u, v)

}
· max
{{u,v}∈S}

{
dX(u, v)

dY (g(u), g(v))

}
= max
{{u,v}∈S}

{
|α| · dY (f(u), f(v))

dX(u, v)

}
· max
{{u,v}∈S}

{
dX(u, v)

|α| · dY (f(u), f(v))

}
= Φwc(fS).

k-local distortion: For any k ∈ IN and for any u ∈ X , let kNN(u) denote the k-nearest neighbours
of u in X according to dX . The set S defined as {{u, v} | u, v ∈ X, v ∈ kNN(u)} is a subset of(
X
2

)
. As shown in the case of ε-distortion, for any two embeddings f, g which are scaled versions of

each other, we have Φwc(gS) = Φwc(fS) and hence Φklocal(g) = Φklocal(f).

σ-distortion: For any {u, v} ∈
(
X
2

)
, let ρ̃f (u, v) denote the normalized ratio of distances defined as

ρf (u, v)/αf , where αf =
∑

{u,v}∈(X
2 )
ρf (u, v)/

(
n
2

)
. Observe that, by the virtue of homogeneity of dY ,

ρ̃f (u, v) = ρ̃g(u, v). Therefore,

Φσ(g) = EΠ(ρ̃g − 1)2 = EΠ(ρ̃f − 1)2 = Φσ(f).

(b) Φavg and Φlq are not invariant to scaling.

Proof. The proof follows from the linearity of the expectation. We prove the statement for the lq
distortion, the case of the average distortion then is the special case of q = 1.

Φlq (g) = EΠ(ρg(u, v)q)
1
q = EΠ(|α| · ρf (u, v)q)

1
q = |α| · Φlq (f).

(c) All the distortion measures, Φwc,Φlq ,Φnavg,Φε,Φklocal and Φσ are invariant to
translations.

Proof. It is straightforward to see that all the distortion measures derive this property from the
translation invariance of dY .

A.2 Monotonicity

For any f : (X, dX) → (Y, dY ), let αf =
(
n
2

)
/
∑

u6=v∈X
ρf (u, v). Observe that αf > 0. Let

f, g : (X, dX)→ (Y, dY ) be two embeddings such that for all u, v ∈ X ,

αf · ρf (u, v) ≤ αg · ρg(u, v) ≤ 1 or αf · ρf (u, v) ≥ αg · ρg(u, v) ≥ 1.

(a) Φwc,Φnavg,Φε,Φklocal and Φσ satisfy the property of monotonicity.

Proof. The proofs follow directly from the definitions and utilize the scale invariance property of the
corresponding distortion measure:

worstcase distortion:

Φwc(f) = Φwc(αf · f) (Scale invariance of Φwc)

= max
u6=v∈X

{αf · ρf (u, v)} · 1

min
u6=v∈X

{αf · ρf (u, v)}

≥ max
u6=v∈X

{αg · ρg(u, v)} · 1

min
u 6=v∈X

{αg · ρg(u, v)}

= Φwc(g).
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The inequality follows since max
u6=v∈X

{αf · ρf (u, v)} ≥ 1 and min
u6=v∈X

{αf · ρf (u, v)} ≤ 1.

normalized average distortion:

Φnavg(f) = Φnavg(αf · f) (Scale invariance of Φnavg)

=

∑
u6=v∈X

{αf · ρf (u, v)}

min
u6=v∈X

{αf · ρf (u, v)}

≥ 2

(n) · (n− 1) min
u 6=v∈X

{αg · ρg(u, v)}

= Φnavg(g).

The inequality follows since min
u6=v∈X

{αf · ρf (u, v)} ≤ 1.

ε-distortion: Let Ψ = arg min
S⊂(X

2 ),|S|>(1−ε) n(n−1)
2

Φwc(fS). Then,

Φε(f) = Φwc(fΨ) ≥ Φwc(gΨ) ≥ min
S⊂(X

2 ),|S|>(1−ε) n(n−1)
2

Φwc(gS) = Φε(g).

The first inequality follows due to the monotonicity of Φwc.

k-local distortion: For any k ∈ IN , the set S = {(u, v)|u, v ∈ X, v ∈ kNN(u)} is a subset of
(
X
2

)
.

Then,
Φklocal(f) = Φwc(fS) ≥ Φwc(gS) = Φklocal(g).

The first equality follows by definition and the first inequality follows due to the monotonicity of
Φwc.

σ-distortion For any f : (X, dX)→ (Y, dY ) and for all u ∈ X , let f
′
(u) = (n)(n−1)f(u)

2
∑
ρf (u,v) . Then

Φσ(f) = EΠ(ρf ′(u, v)− 1)2.

Observe that, by the definition of monotonicity, we have that for all u, v ∈ X , (ρf ′(u, v)− 1)2 ≥
(ρg′(u, v)− 1)2. Hence it follows that,

Φσ(f) = EΠ(ρf ′(u, v)− 1)2) ≥ EΠ(ρg′(u, v)− 1)2) = Φσ(g).

(b) Φavg,Φlq fail to satisfy the property of monotonicity.

Proof. Proof by contradiction.

average distortion, lq distortion:

Let f, g : (X, dX)→ (Y, dy) be two embeddings such that there exists a constant β > 1 and for all
u ∈ X , βf(u) = g(u). Let αf = (n)(n − 1)/2

∑
(u 6=v∈X)

ρf (u, v). Then for all {u, v} ∈
(
X
2

)
, f, g

satisfy the following condition:

αfρf (u, v) ≤ αgρg(u, v) ≤ 1 or αfρf (u, v) ≥ αgρg(u, v) ≥ 1.

However Φavg(f) =
Φavg(f)

β < Φavg(g).

A.3 Robustness to outliers

(a) Φavg,Φε and Φσ are robust to outliers in distances.

Proof. Let X, dX be an arbitrary metric space. Let XD = {x1, x2, ...., } be a subset of X . Let
f : XD → X be an injective mapping such that there exists a constant K ∈ IN such that the
set G =

{
{u, v} ∈

(
XD

2

)
| dX(f(u), f(v)) 6= dX(u, v)

}
satisfies |G| ≤ K. Let fn denote the
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restriction of f to Xn = {x1, x2, ..., xn}. Let I : (X, dX) → (X, dX) be an isometry and let In
denote the restriction of I to Xn.

average distortion: For any n ∈ IN , let Gn =
{
{u, v} ∈

(
Xn

2

)
: dX(fn(u), fn(v)) 6= dX(u, v)

}
.

By definition, it follows that for all n ∈ N, there exists a K ∈ N such that, |Gn| ≤ |G| ≤ K. This
implies that there exists a n0 ∈ N such that, for all n ≥ n0, Gn = G and |G| = K.

Therefore for any fixed n ≥ n0, ρfn can be expressed as

ρfn = [ 1, 1, ..., 1︸ ︷︷ ︸
(n
2)−K times

, α1, α2, ..., αK︸ ︷︷ ︸
K

],

where for all i = {1, 2, ...,K}, αi’s denote the ratio of distances ρf (u, v) corresponding to each
{u, v} ∈ G. Therefore for any fixed n ≥ n0, average distortion of fn can be expressed as

Φavg(fn) =

(
(
n
2

)
−K) +

K∑
i=1

αi(
n
2

) .

Hence lim
n→∞

Φavg(fn) = 1 = lim
n→∞

Φavg(In).

ε-distortion: For any ε ∈ (0, 1),

Φε(fn) = min
S⊂(Xn

2 ),|S|≥(1−ε) n(n−1)
2

Φwc(fnS
).

Observe that for all n > 1 +
√

1 + 8K
ε , there exists a set S ⊂

(
Xn

2

)
such that |S| ≥ (1− ε)n(n−1)

2

and Φwc(fnS
) = 1. Hence lim

n→∞
Φε(fn) = 1 = lim

n→∞
Φε(In).

σ-distortion: The proof follows along the same lines as that of average distortion.

For any fn : (Xn, dX)→ (X, dX), Φσ(fn) can be expressed as

Φσ(fn) =

∑
(u,v)∈(Xn

2 )
[
(
n
2

)
ρfn(u, v)−

∑
(u,v)∈(Xn

2 )
ρfn(u, v)]2(

n
2

)
[

∑
(u,v)∈(Xn

2 )
ρfn(u, v)]2

. (1)

For any n ∈ IN , let Gn = {(u, v) ∈ Xn : dX(fn(u), fn(v)) 6= dX(u, v)}. By definition, it follows
that for all n ∈ N, there exists a K ∈ N such that, |Gn| ≤ |G| ≤ K. This implies that there exists a
n0 ∈ N such that, for all n ≥ n0, Gn = G and |G| = K. Therefore for any fixed n ≥ n0, ρfn can be
expressed as

ρfn = [ 1, 1, ..., 1︸ ︷︷ ︸
(n
2)−K times

, α1, α2, ..., αK︸ ︷︷ ︸
K

],

where for all i = {1, 2, ...,K}, αi’s denote the ratio of distances ρf (u, v) corresponding to each
{u, v} ∈ G. Therefore for any fixed n ≥ n0, σ-distortion of fn can be expressed as

Φσ =

(
n
2

)
(K −

K∑
i=1

αi)
2(
(
n
2

)
−K) +

K∑
i=1

(
(
n
2

)
(αi − 1) +K −

K∑
i=1

αi)
2

(
n
2

)
(
(
n
2

)
−K +

K∑
i=1

αi)2

.

Hence, lim
n→∞

Φσ(fn) = 0 = lim
n→∞

Φσ(In).

(b) Φavg,Φε and Φσ are robust to outliers in data

Proof. The proofs follow by definition and utilize the subadditivity of the target metric dY .
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average distortion: Let fn : Xn → X be an embedding as specified in the premise of the definition.
Then the average distortion of fn is evaluated as

Φavg =

(
n
2

)
− (n− 1) +

n−1∑
i=1

αi(
n
2

) , where αi =
dY (f(xi), f(x0))

dX(xi, x0)
=
dY (f(xi), f(x0))

dY (f(xi), I(x0))
.

From the subadditivity of dY , it follows that

|dY (I(x0), f(x0))

dY (I(x0), f(xi))
− 1| < αi <

dY (I(x0), f(x0))

dY (I(x0), f(xi))
+ 1.

By construction, we have that dY (I(x0), f(xi)) = dY (I(x0), I(xi)) = dX(x0, xi) > β for some
β > 0 and it follows that

0 < |dY (I(x0), f(x0))

dY (I(x0), f(xi))
− 1| < αi <

dY (I(x0), f(x0))

β
+ 1.

This implies, (
n
2

)
− (n− 1)(
n
2

) < Φavg(fn) <

(
n
2

)
− (n− 1) + (n−1)dY (I(x0),f(x0))

β(
n
2

) .

Note that β > 0 is a constant and for a fixed x0 ∈ X , dY (I(x0), f(x0)) is also a constant. Therefore,
lim
n→∞

Φavg(fn) = 1 = lim
n→∞

Φavg(In).

ε-distortion:

Let fn : Xn → X be an embedding as specified in the premise of the definition. Its easy to verify
that for any ε ∈ (0, 1) and for all n > 8

ε , there exists a set S ⊂
(
X
2

)
such that, |S| > (1− ε)n(n−1)

2
and the worstcase distortion of fn restricted to S is 1 = Φε(In).

σ-distortion:

Let fn : Xn → X be an embedding as specified in the premise of the definition. Let µ(ρ) denote∑
u6=v∈X

ρfn(u, v)/
(
n
2

)
and for all i ∈ [n], let αi = dY (f(xi), f(x0))/dX(xi, x0). Then Φσ(fn) is

evaluated as ∑
(u,v)∈(Xn

2 )
[ρfn(u, v)− µ(ρ)]2(
n
2

)
µ(ρ)2

=

(n
2)−(n−1)∑
i=1

[1− µ(ρ)]2 +
n−1∑
i=1

[αi − µ(ρ)]2(
n
2

)
[µ(ρ)]2

.

By substituting µ(ρ) =
(n
2)−(n−1)+

n−1∑
i=1

αi

(n
2)

we have

Φσ(fn) =

(
n
2

)2
(
n−1∑
i=1

α2
i )− (2

(
n
2

)
(
(
n
2

)
− (n− 1)))

n−1∑
i=1

αi −
(
n
2

)
(
n−1∑
i=1

αi)
2

(
n
2

)
[(
(
n
2

)
− (n− 1))2 + (

n−1∑
i=1

αi)2 + 2
n−1∑
i=1

αi(
(
n
2

)
− (n− 1))]2

.

Since I is an isometry, and since we have f(xi) = I(xi) by definition , we obtain that

dY (f(xi), f(x0))

dX(xi, x0)
=
dY (f(xi), f(x0))

dY (I(xi), I(x0))
=
dY (f(xi), f(x0))

dY (f(xi), I(x0))
.

By subadditivity of dY , we have that, ∀i ∈ [n]

|dY (I(x0), f(x0))

dY (I(x0), f(xi))
− 1| < αi <

dY (I(x0), f(x0))

dY (I(x0), f(xi))
+ 1.
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By construction, we have that dY (I(x0), f(xi)) = dY (I(x0), I(xi)) = dX(x0, xi) > β for some
β > 0 and it follows that

0 < |dY (I(x0), f(x0))

dY (I(x0), f(xi))
− 1| < αi <

dY (I(x0), f(x0))

β
+ 1.

Hence there exists a constant C ∈ R such that for all i ∈ IN , 0 < αi < C. It follows that

0 <

n−1∑
i=1

αi < (n− 1)C, 0 <

n−1∑
i=1

α2
i < (n− 1)C2 and 0 < (

n−1∑
i=1

αi)
2 < ((n− 1)C)2.

By substitution and simplification, it follows that ∀n > 2,

Φσ(fn) <

(
n
2

)2
C2(n− 1)(

n
2

)
(
(
n
2

)
− (n− 1))2

and

Φσ(fn) >
−(2

(
n
2

)
(
(
n
2

)
− (n− 1)))((n− 1)C)−

(
n
2

)
((n− 1)C)2(

n
2

)
[(
(
n
2

)
− (n− 1))2 + ((n− 1)C)2 + 2(n− 1)C(

(
n
2

)
− (n− 1))]2

.

Observe that

lim
n→∞

−(2
(
n
2

)
(
(
n
2

)
− (n− 1)))((n− 1)C)−

(
n
2

)
((n− 1)C)2(

n
2

)
[(
(
n
2

)
− (n− 1))2 + ((n− 1)C)2 + 2(n− 1)C(

(
n
2

)
− (n− 1))]2

= 0 and

lim
n→∞

(
n
2

)2
C2(n− 1)(

n
2

)
(
(
n
2

)
− (n− 1))2

= 0.

Hence it follows that lim
n→∞

Φσ (fn) = 0 = lim
n→∞

Φσ (In).

(c) Φwc,Φnavg and Φklocal are not robust to outliers in data or distances.

Proof. Proof by a counterexample. We first construct a sequence of embeddings for which the
number of distances that are distorted is bounded by a constant K and the distances distorted stem
from mapping a single point away from an isometry. Then we show that in the limit, as the size of
the metric space tends to infinity, Φwc,Φnavg and Φklocal do not have the same distortion as that of
an isometry.

Let {ei}{i=1,..,d} denote the standard orthonormal basis for (Rd, l2). Fix x0 = (α − 1) · ed for
some 1 < α < 2. Let x1 = ed. For any n ∈ IN , set Xn = {x2, x3, ..., xn}, such that for
all i ∈ {2, 3, ..., n}, xi is sampled according to some distribution P on span {e1, ..., ed−1}. Let
f : (Rd, l2)→ (Rd, l2) be the mapping defined as f(x) = x, ∀x ∈ Rd, x 6= x0 and f(x0) = −x0.
Let fn denote the mapping f restricted to Xn∪{x0, x1}. It is easy to verify that the ratio of distances
ρfn(x0, x1) = α and ρfn(xi, xj) = 1 for any {xi, xj} ∈

(
Xn

2

)
\ {x0, x1}.

worstcase distortion:

The worstcase distortion evaluated on fn : (Xn ∪ {x0, x1} , dX) → (X, dX) for any n ∈ IN is α
and thus lim

n→∞
Φwc(fn) = α > lim

n→∞
Φwc(In) = 1, where In denotes the restriction of the mapping

I to Xn ∪ {x0, x1}.
normalized average distortion:

The sequence of average distortions evaluated on mappings {fn} is given by:

Φnavg(fn) =
(
(
n
2

)
− 1)α+ 1(
n
2

)
Thus, lim

n→∞
Φnavg(fn) = α > Φnavg(In) = 1.

k-local distortion:

Since x0 lies in the set of k-nearest neighbours of x1, for any n ≥ 2, the k-local distortion evaluated
on the mapping fn : (Xn ∪ {x0, x1} , dX) → (X, dX) is α and thus lim

n→∞
Φklocal(fn) = α >

lim
n→∞

Φklocal(In) = 1.
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A.4 Incorporation of a probability distribution

Let (X, dX) be an arbitrary metric space. Let Xn = {x1, x2, ..., xn} be a finite subset of X . Let
P denote a probability distribution on Xn and let Π = P × P denote the product distribution on
Xn ×Xn. Fix any arbitrary x∗, y∗ ∈ Xn such that P (x∗) > P (y∗). Let x

′
, y
′ ∈ X such that for

all i ∈ [n], dX(xi, x
′
) = αdX(xi, x

∗) and dX(xi, y
′
) = αdX(xi, y

∗). Let f, g : Xn → X be two
embeddings such that:

f(x) =

{
x
′
, if x = x∗.

x, otherwise.
, g(x) =

{
y
′
, if x = y∗.

x, otherwise.

(a) Φwc,Φavg,Φnavg,Φε, and Φklocal fail to incorporate a probability distribution into their
evaluation.

Proof. The proofs follow directly from the definitions of the distortion measures.

worstcase, normalized avg, ε-distortion and k-local distortion: The above distortion measures,
by definition are independent of the probability distribution over the data space.

average (lq) distortion: The proof follows from explicit evaluation of the average distortion of any
two embeddings (f, g) that satisfy the conditions as specified in the definition. Average distortion of
f can be expressed as:

Φavg(f) = EΠ[ρf (u, v)] = [
∑

i,j 6=1,2

Πij +
∑
i6=1

αΠi1 +
∑
i6=2

Πi2].

Φavg(f)− Φavg(g) = [
∑
i6=1,2

(Πi1 −Πi2)(α− 1)]

= (
∑
i6=1,2

(Πi)(Π1 −Π2)(α− 1))

< 0 if α < 1.

The case of lq-distortion follows similarly.

(b) Φσ incorporates a probability distribution into its evaluation.

Proof. Observe that
∑

u6=v∈X
ρf (u, v) =

∑
u 6=v∈X

ρg(u, v) =
(
n
2

)
− (n − 1) + (n − 1)α. Let κ =(

n
2

)
/
∑

u6=v∈X
ρf (u, v) =

(
n
2

)
/
∑

u6=v∈X
ρg(u, v). Then,

Φσ(f)− Φσ(g) = EΠ[(κρf (u, v)− 1)2]− EΠ[(κρg(u, v)− 1)2]

= EΠ[κ2ρf (u, v)2 − 2κρf (u, v)]− EΠ[κ2ρg(u, v)2 − 2κρg(u, v)].

= κ2(α2 − 1)
∑

i,j 6=1,2

(Π1i −Π2i)− 2κ(α− 1)
∑

i,j 6=1,2

(Π1i −Π2i)

= K2(Π1 −Π2)(α− 1)(κ(α+ 1)− 2)
∑
i 6=1,2

Πi.

It is easy to verify that for any α ≥ 0 and for all n > 4, (κ(α+ 1)− 2)(α− 1) ≥ 0 and by definition
Π1 > Π2. Therefore, Φσ(f) ≥ Φσ(g).

B Proofs of Theorems 3 and 4

Doubling space: A metric space (X, dX) is referred to as a doubling space if there exists a doubling
constant λ > 0 such that for any u ∈ X and r > 0, the ball B(u, r) = {v | dX(u, v) < r} can be
covered by at most λ balls of radius r/2.
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B.1 Theorem 3:

Abraham, Bartal, and Neiman, 2011 showed the existence of an embedding from any arbitrary metric
space into an Euclidean space with properties as stated in Theorem A. Combined with Lemma A,
this provides the sought upper bound on σ-distortion.
Theorem A. (Abraham, Bartal, and Neiman, 2011) Given any arbitrary finite metric space (X, dX),
there exists an embedding f : X → lDp where D = O(log n) and for any ε ∈ (0, 1), there exists a
set Gε and constants C1 and C2 (independent of ε,n) such that |Gε| ≥ (1 − ε) ·

(|X|
2

)
and for any

x, y ∈ Gε: C1 ≤
‖f(x)−f(y)‖p

dX(x,y) ≤ C2 · log( 2
ε ).

Lemma A. (Abraham, Bartal, and Neiman, 2011) Given any finite metric spaces (X, dX) and
(Y, dY ) and an embedding f : X → Y satisfying properties described in Theorem A, for any

distribution Π over X ×X , there exists a constant K = K(Π) such that EΠ

(
dY (f(x),f(y))

dX(x,y)

)2

< K

and EΠ

(
dY (f(x),f(y))

dX(x,y)

)
< K.

Proof of Theorem 3: From theorem A, by choosing any ε < 2
n(n−1) , we have that ∀x, y ∈ X ,

C1 ≤
‖f(x)−f(y)‖p

dX(x,y) implies C1 ≤ EΠ

(‖f(x)−f(y)‖p
dX(x,y)

)
. Recall that σ-distortion is defined as

EΠ[ρf (u, v)− 2
n(n−1)

∑
ρf (u, v)]2

( 2
n(n−1)

∑
ρf (u, v))2

.

Combined with Lemma A, this completes the proof of Theorem 3.

B.2 Theorem 4:

(Abraham, Bartal, and Neiman, 2011) also showed the existence of an embedding from any arbitrary
doubling metric space into an Euclidean space with properties as stated in Theorem B and Lemma B.
These results provide an upper bound on the σ-distortion evaluated on this embedding.
Theorem B. (Abraham, Bartal, and Neiman, 2011) Given any finite metric space (X, dX) with
doubling constant λ, there exists an embedding f : X → lDp and a constant K = K(λ) such D < K
and for any ε ∈ (0, 1), there exists a set Gε and constants C1 and C2 (independent of ε) such that

|Gε| ≥ (1− ε) ·
(|X|

2

)
and for any x, y ∈ Gε: C1 ≤

‖f(x)−f(y)‖p
dX(x,y) ≤ C2 · log26( 1

ε ).

Lemma B. (Abraham, Bartal, and Neiman, 2011) Given a finite metric space (X, dX) with doubling
constant λ, another metric space (Y, dY ) and an embedding f : X → Y satisfying the properties
described in Theorem B, then for any distribution Π over X ×X , there exists a constant K = K(Π)

such that EΠ

(
dY (f(x),f(y))

dX(x,y)

)2

< K.

Proof of Theorem 4: Same as the proof of Theorem 4.

8


	Proof of Theorems 1 and 2
	Scale and translation invariance
	Monotonicity
	Robustness to outliers
	Incorporation of a probability distribution

	Proofs of Theorems 3 and 4
	Theorem 3:
	Theorem 4:


