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Abstract

We consider the problem of global optimization of an unknown non-convex smooth
function with noisy zeroth-order feedback. We propose a local minimax framework
to study the fundamental difficulty of optimizing smooth functions with adaptive
function evaluations. We show that for functions with fast growth around their
global minima, carefully designed optimization algorithms can identify a near
global minimizer with many fewer queries than worst-case global minimax theory
predicts. For the special case of strongly convex and smooth functions, our implied
convergence rates match the ones developed for zeroth-order convex optimization
problems. On the other hand, we show that in the worst case no algorithm can
converge faster than the minimax rate of estimating an unknown functions in `8-
norm. Finally, we show that non-adaptive algorithms, although optimal in a global
minimax sense, do not attain the optimal local minimax rate.

1 Introduction

Global function optimization with stochastic (zeroth-order) query oracles is an important problem in
optimization, machine learning and statistics. To optimize an unknown bounded function f : X ÞÑ R
defined on a known compact d-dimensional domain X Ď Rd, the data analyst makes n active queries
x1, . . . , xn P X and observes

yt “ fpxtq ` wt, wt
i.i.d.„ N p0, 1q, 1 t “ 1, . . . , n. (1)

The queries x1, . . . , xt are active in the sense that the selection of xt can depend on previous queries
and their responses x1, y1, . . . , xt´1, yt´1. After n queries, an estimate pxn P X is produced that
approximately minimizes the unknown function f . Such “active query” models are relevant in a
broad range of (noisy) global optimization applications, for instance in hyper-parameter tuning of
machine learning algorithms [40] and sequential design in material synthesis experiments where the
goal is to maximize strengths of the produced materials [35, 41]. Sec. 2.1 gives a rigorous formulation
of the active query model and contrasts it with the classical passive query model.

The error of an estimate pxn is measured by the difference of fppxnq and the global minimum of f :

Lppxn; fq :“ fppxnq ´ f˚ where f˚ :“ inf
xPX fpxq. (2)

Throughout the paper we take X to be the d-dimensional unit cube r0, 1sd, while our results can be
easily generalized to other compact domains satisfying minimal regularity conditions.

When f belongs to a smoothness class, say the Hölder class with exponent α, a straightforward
global optimization method is to first sample n points uniformly at random from X and then construct

1The exact distribution of εt is not important, and our results hold for sub-Gaussian noise too.
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nonparametric estimates pfn of f using nonparametric regression methods such as (high-order)
kernel smoothing or local polynomial regression [17, 46]. Classical analysis shows that the sup-norm
reconstruction error } pfn´f}8 “ supxPX | pfnpxq´fpxq| can be upper bounded by rOPpn´α{p2α`dqq2.
This global reconstruction guarantee then implies an rOPpn´α{p2α`dqq upper bound on Lppxn; fq by
considering pxn P X such that pfnppxnq “ infxPX pfnpxq (such an pxn exists because X is closed and
bounded). Formally, we have the following proposition (proved in the Appendix) that converts a
global reconstruction guarantee into an upper bound on optimization error:

Proposition 1. Suppose pfnppxnq “ infxPX pfnpxq. Then Lppxn; fq ď 2} pfn ´ f}8.

Typically, fundamental limits on the optimal optimization error are understood through the lens of
minimax analysis where the object of study is the (global) minimax risk:

inf
pxn

sup
fPF

EfLppxn, fq, (3)

where F is a certain smoothness function class such as the Hölder class. Although optimization
appears to be easier than global reconstruction, we show that the n´α{p2α`dq rate is not improvable
in the global minimax sense in Eq. (3) over Hölder classes. Such a surprising phenomenon was also
noted in previous works [9, 22, 44] for related problems. On the other hand, extensive empirical
evidence suggests that non-uniform/active allocations of query points can significantly reduce opti-
mization error in practical global optimization of smooth, non-convex functions [40]. This raises the
interesting question of understanding, from a theoretical perspective, under what conditions/in what
scenarios is global optimization of smooth functions easier than their reconstruction, and the power
of active/feedback-driven queries that play important roles in global optimization.

In this paper, we propose a theoretical framework that partially answers the above questions. In
contrast to classical global minimax analysis of nonparametric estimation problems, we adopt a local
analysis which characterizes the optimal convergence rate of optimization error when the underlying
function f is within the neighborhood of a “reference” function f0. (See Sec. 2.2 for a rigorous
formulation.) Our main results are to characterize the local convergence rates Rnpf0q for a wide
range of reference functions f0 P F . Our contributions can be summarized as follows:

1. We design an iterative (active) algorithm whose optimization error Lppxn; fq converges at a rate of
Rnpf0q depending on the reference function f0. When the level sets of f0 satisfy certain regularity
and polynomial growth conditions, the local rate Rnpf0q can be upper bounded by Rnpf0q “
rOpn´α{p2α`d´αβqq, where β P r0, d{αs is a parameter depending on f0 that characterizes the
volume growth of level sets of f0. (See assumption (A2), Proposition 2 and Theorem 1 for details).
The rate matches the global minimax rate n´α{p2α`dq for worst-case f0 where β “ 0, but has the
potential of being much faster when β ą 0. We emphasize that our algorithm has no knowledge
of f0, α or β and achieves this rate adaptively.

2. We prove local minimax lower bounds that match the n´α{p2α`d´αβq upper bound, up to loga-
rithmic factors in n. More specifically, we show that even if f0 is known, no (active) algorithm
can estimate f in close neighborhoods of f0 at a rate faster than n´α{p2α`d´αβq. We further show
that, if active queries are not available and x1, . . . , xn are i.i.d. uniformly sampled from X , the
n´α{p2α`dq global minimax rate also applies locally regardless of how large β is. Thus, there is
an explicit gap between local minimax rates of active and uniform query models.

3. In the special case when f is convex, the global optimization problem is usually referred to as
zeroth-order convex optimization and this problem has been widely studied [1, 2, 6, 18, 24, 36].
Our results imply that, when f0 is strongly convex and smooth, the local minimax rate Rnpf0q is
on the order of rOpn´1{2q, which matches the convergence rates in [1]. Additionally, our negative
results (Theorem 2) indicate that the n´1{2 rate cannot be achieved if f0 is merely convex, which
seems to contradict n´1{2 results in [2, 6] that do not require strong convexity of f . However, it
should be noted that mere convexity of f0 does not imply convexity of f in a neighborhood of
f0 (e.g., }f ´ f0}8 ď ε). Our results show significant differences in the intrinsic difficulty of
zeroth-order optimization of convex and near-convex functions.

2In the rOp¨q or rOPp¨q notation we drop poly-logarithmic dependency on n
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1.1 Related Work

Global optimization, known variously as black-box optimization, Bayesian optimization and the
continuous-armed bandit, has a long history in the optimization research community [25, 26]
and has also received a significant amount of recent interest in statistics and machine learning
[8, 9, 22, 31, 32, 40]. Many previous works [8, 28] have derived rates for non-convex smooth payoffs
in “continuum-armed” bandit problems; however, they do not consider local rates specific to objective
functions with certain growth conditions around the optima.

Among the existing works, [20, 34] is probably the closest to our paper, which studied a similar
problem of estimating the set of all optima of a smooth function in Hausdorff’s distance. For Hölder
smooth functions with polynomial growth, [34] derives an n´1{p2α`d´αβq minimax rate for α ă 1
(later improved to α ě 1 in his thesis [33]), which is similar to our Propositions 2 and 3. [20, 34] also
discussed adaptivity to unknown smoothness parameters. We however remark on several differences
between our work and [34]. First, in [20, 34] only functions with polynomial growth are considered,
while in our Theorems 1 and 2 functionals εUnpf0q and εLnpf0q are proposed for general reference
functions f0 satisfying mild regularity conditions, which include functions with polynomial growth as
special cases. In addition, [34] considers the harder problem of estimating maxima sets in Hausdorff
distance than producing a single approximate optima pxT . As a result, since the construction of
minimax lower bound in [34] is no longer valid as an algorithm, without distinguishing between
two functions with different optimal sets, can nevertheless produce a good approximate optimizer as
long as the two functions under consideration have overlapping optimal sets. New constructions and
information-theoretical techniques are therefore required to prove lower bounds under the weaker
(one-point) approximate optimization framework. Finally, we prove a minimax lower bounds when
only uniform query points are available and demonstrate a significant gap between algorithms having
access to uniform or adaptively chosen data points.

[31, 32] impose additional assumptions on the level sets of the underlying function to obtain an
improved convergence rate. The level set assumptions considered in the mentioned references
are rather restrictive and essentially require the underlying function to be uni-modal, while our
assumptions are much more flexible and apply to multi-modal functions as well. In addition, [31, 32]
considered a noiseless setting in which exact function evaluations fpxtq can be obtained, while our
paper studies the noise corrupted model in Eq. (1) for which vastly different convergence rates are
derived. Finally, no matching lower bounds were proved in [31, 32].

[43] considered zeroth-order optimization of approximately convex functions and derived necessary
and sufficient conditions for the convergence rates to be polynomial in domain dimension d.

The (stochastic) global optimization problem is similar to mode estimation of either densities or
regression functions, which has a rich literature [13, 27, 39]. An important difference between
statistical mode estimation and global optimization is the way sample/query points x1, . . . , xn P X
are distributed: in mode estimation it is customary to assume the samples are independently and
identically distributed, while in global optimization sequential designs of samples/queries are allowed.
Furthermore, to estimate/locate the mode of an unknown density or regression function, such a mode
has to be well-defined; on the other hand, producing an estimate pxn with small Lppxn, fq is easier and
results in weaker conditions imposed on the underlying function.

Methodology-wise, our iterative procedure also resembles disagreement-based active learning meth-
ods [5, 14, 21]. The intermediate steps of candidate point elimination can also be viewed as sequences
of level set estimation problems [38, 42, 45] or cluster tree estimation [4, 12] with active queries.

Another line of research has focused on first-order optimization of quasi-convex or non-convex
functions [3, 10, 19, 23, 37, 48], in which exact or unbiased evaluations of function gradients are
available at query points x P X . [48] considered a Cheeger’s constant restriction on level sets which
is similar to our level set regularity assumptions (A2 and A2’). [15, 16] studied local minimax rates
of first-order optimization of convex functions. First-order optimization differs significantly from
our setting because unbiased gradient estimation is generally impossible in the model of Eq. (1).
Furthermore, most works on (first-order) non-convex optimization focus on convergence to stationary
points or local minima, while we consider convergence to global minima.
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Figure 1: Informal illustrations of our algorithm that attains Theorem 1 (details in the appendix). Solid blue
curves depict the underlying function f to be optimized, black and red solid dots denote the query points and
their responses tpxt, ytqu, and black/red vertical line segments correspond to uniform confidence intervals on
function evaluations constructed using current batch of data observed. The left figure illustrates the first epoch of
our algorithm, where query points are uniformly sampled from the entire domain X . Afterwards, sub-optimal
locations based on constructed confidence intervals are removed, and a shrinkt “candidate set” S1 is obtained.
The algorithm then proceeds to the second epoch, illustrated in the right figure, where query points (in red) are
sampled only from the restricted candidate set and shorter confidence intervals (also in red) are constructed and
updated. The procedure is repeated until Oplognq epochs are completed.

2 Background and Notation

We first review standard asymptotic notation that will be used throughout this paper. For two
sequences tanu8n“1 and tbnu8n“1, we write an “ Opbnq or an À bn if lim supnÑ8 |an|{|bn| ă 8,
or equivalently bn “ Ωpanq or bn Á an. Denote an “ Θpbnq or an — bn if both an À bn and
an Á bn hold. We also write an “ opbnq or equivalently bn “ ωpanq if limnÑ8 |an|{|bn| “ 0.
For two sequences of random variables tAnu8n“1 and tBnu8n“1, denote An “ OPpBnq if for every
ε ą 0, there exists C ą 0 such that lim supnÑ8 Prr|An| ą C|Bn|s ď ε. For r ą 0, 1 ď p ď 8
and x P Rd, we denote Bpr pxq :“ tz P Rd : }z ´ x}p ď ru as the d-dimensional `p-ball of radius r
centered at x, where the vector `p norm is defined as }x}p :“ přd

j“1 |xj |pq1{p for 1 ď p ă 8 and
}x}8 :“ max1ďjďd |xj |. For any subset S Ď Rd we denote by Bpr px;Sq the set Bpr pxq X S.

2.1 Passive and Active Query Models

Let U be a known random quantity defined on a probability space U . The following definitions
characterize all passive and active optimization algorithms:

Definition 1 (The passive query model). Let x1, . . . , xn be i.i.d. points uniformly sampled on X and
y1, . . . , yn be observations from the model Eq. (1). A passive optimization algorithm A with n queries
is parameterized by a mapping φn : px1, y1, . . . , xn, yn, Uq ÞÑ pxn that maps the i.i.d. observations
tpxi, yiquni“1 to an estimated optimum pxn P X , potentially randomized by U .

Definition 2 (The active query model). An active optimization algorithm can be parameterized by
mappings pχ1, . . . , χn, φnq, where for t “ 1, . . . , n,

χt : px1, y1, . . . , xt´1, yt´1, Uq ÞÑ xt

produces a query point xt P X based on previous observations tpxi, tiqut´1
i“1, and

φn : px1, y1, . . . , xn, yn, Uq ÞÑ pxn
produces the final estimate. All mappings pχ1, . . . , χn, φnq can be randomized by U .

2.2 Local Minimax Rates

We use the classical local minimax analysis [47] to understand the fundamental information-
theoretical limits of noisy global optimization of smooth functions. On the upper bound side,
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we seek (active) estimators pxn such that

sup
f0PΘ

sup
fPΘ1,}f´f0}8ďεnpf0q

Pr
f
rLppxn; fq ě C1 ¨Rnpf0qs ď 1{4, (4)

where C1 ą 0 is a positive constant. Here f0 P Θ is referred to as the reference function, and f P Θ1
is the true underlying function which is assumed to be “near” f0. The minimax convergence rate of
Lppxn; fq is then characterized locally by Rnpf0q which depends on the reference function f0. The
constant of 1{4 is chosen arbitrarily and any small constant leads to similar conclusions. To establish
negative results (i.e., locally minimax lower bounds), in contrast to the upper bound formulation,
we assume the potential active optimization estimator pxn has perfect knowledge about the reference
function f0 P Θ. We then prove locally minimax lower bounds of the form

inf
pxn

sup
fPΘ1,}f´f0}8ďεnpf0q

Pr
f
rLppxn; fq ě C2 ¨Rnpf0qs ě 1{3, (5)

where C2 ą 0 is another positive constant and εnpf0q, Rnpf0q are desired local convergence rates
for functions near the reference f0.

Although in some sense classical, the local minimax definition we propose warrants further discussion.

1. Roles of Θ and Θ1: The reference function f0 and the true functions f are assumed to belong
to different but closely related function classes Θ and Θ1. In particular, in our paper Θ Ď Θ1,
meaning that less restrictive assumptions are imposed on the true underlying function f compared
to those imposed on the reference function f0 on which Rn and εn are based.

2. Upper Bounds: It is worth emphasizing that the estimator pxn has no knowledge of the reference
function f0. From the perspective of upper bounds, we can consider the simpler task of producing
f0-dependent bounds (eliminating the second supremum) to instead study the (already interesting)
quantity:

sup
f0PΘ

Pr
f0
rLppxn; f0q ě C1Rnpf0qs ď 1{4.

As indicated above we maintain the double-supremum in the definition because fewer assumptions
are imposed directly on the true underlying function f , and further because it allows to more
directly compare our upper and lower bounds.

3. Lower Bounds and the choice of the “localization radius” εnpf0q: Our lower bounds allow
the estimator knowledge of the reference function (this makes establishing the lower bound more
challenging). Eq. (5) implies that no estimator pxn can effectively optimize a function f close to
f0 beyond the convergence rate of Rnpf0q, even if perfect knowledge of the reference function f0

is available a priori. The εnpf0q parameter that decides the “range” in which local minimax rates
apply is taken to be on the same order as the actual local rate Rnpf0q in this paper. This is (up to
constants) the smallest radius for which we can hope to obtain non-trivial lower-bounds: if we
consider a much smaller radius than Rnpf0q then the trivial estimator which outputs the minimizer
of the reference function would achieve a faster rate than Rnpf0q. Selecting the smallest possible
radius makes establishing the lower bound most challenging but provides a refined picture of the
complexity of zeroth-order optimization.

3 Main Results

With this background in place we now turn our attention to our main results. We begin by collecting
our assumptions about the true underlying function and the reference function in Section 3.1. We
state and discuss the consequences of our upper and lower bounds in Sections 3.2 and 3.3 respectively.
We defer most technical proofs to the Appendix and turn our attention to our optimization algorithm
in Section A.

3.1 Assumptions

We first state and motivate assumptions that will be used. The first assumption states that f is locally
Hölder smooth on its level sets.
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(A1) There exist constants κ, α,M ą 0 such that f restricted on Xf,κ :“ tx P X : fpxq ď
f˚ ` κu belongs to the Hölder class ΣαpMq, meaning that f is k-times differentiable on
Xf,κ and furthermore for any x, x1 P Xf,κ, 3

kÿ

j“0

ÿ

α1`...`αd“j
|f pα,jqpxq| `

ÿ

α1`...`αd“k

|f pα,kqpxq ´ f pα,kqpx1q|
}x´ x1}α´k8

ďM. (6)

Here k “ tαu is the largest integer lower bounding α and f pα,jqpxq :“
Bjfpxq{Bxα1

1 . . . Bxαdd .

We use ΣακpMq to denote the class of all functions satisfying (A1). We remark that (A1) is weaker
than the standard assumption that f on its entire domain X belongs to the Hölder class ΣαpMq. This
is because places with function values larger than f˚ ` κ can be easily detected and removed by a
pre-processing step. We give further details of the pre-processing step in Section A.3.

Our next assumption concern the “regularity” of the level sets of the “reference” function f0. Define
Lf0pεq :“ tx P X : f0pxq ď f0̊ ` εu as the ε-level set of f0, and µf0pεq :“ λpLf0pεqq as the
Lebesgue measure of Lf0pεq, also known as the distribution function. Define also NpLf0pεq, δq as
the smallest number of `2-balls of radius δ that cover Lf0pεq.

(A2) There exist constants c0 ą 0 and C0 ą 0 such that NpLf0pεq, δq ď C0r1` µf0pεqδ´ds for
all ε, δ P p0, c0s.

We use ΘC to denote all functions that satisfy (A2) with respect to parameters C “ pc0, C0q.
At a higher level, the regularity condition (A2) assumes that the level sets are sufficiently “regular”
such that covering them with small-radius balls does not require significantly larger total volumes.
For example, consider a perfectly regular case of Lf0pεq being the d-dimensional `2 ball of radius r:
Lf0pεq “ tx P X : }x´ x˚}2 ď ru. Clearly, µf0pεq — rd. In addition, the δ-covering number in `2
of Lf0pεq is on the order of 1` pr{δqd — 1` µf0pεqδ´d, which satisfies the scaling in (A2).

When (A2) holds, uniform confidence intervals of f on its level sets are easy to construct because
little statistical efficiency is lost by slightly enlarging the level sets so that complete d-dimensional
cubes are contained in the enlarged level sets. On the other hand, when regularity of level sets fails to
hold such nonparametric estimation can be very difficult or even impossible. As an extreme example,
suppose the level set Lf0pεq consists of n standalone and well-spaced points in X : the Lebesgue
measure of Lf0pεq would be zero, but at least Ωpnq queries are necessary to construct uniform
confidence intervals on Lf0pεq. It is clear that such Lf0pεq violates (A2), because NpLf0pεq, δq ě n
as δ Ñ 0` but µf0pεq “ 0.

3.2 Upper Bound

The following theorem is our main result that upper bounds the local minimax rate of noisy global
optimization with active queries.

Theorem 1. For any α,M, κ, c0, C0 ą 0 and f0 P ΣακpMq XΘC, where C “ pc0, C0q, define

εUnpf0q :“ sup
!
ε ą 0 : ε´p2`d{αqµf0pεq ě n{ logω n

)
, (7)

where ω ą 5 ` d{α is a large constant. Suppose also that εUnpf0q Ñ 0 as n Ñ 8. Then for
sufficiently large n, there exists an estimator pxn with access to n active queries x1, . . . , xn P X , a
constant CR ą 0 depending only on α,M, κ, c, c0, C0 and a constant γ ą 0 depending only on α
and d such that

sup
f0PΣακpMqXΘC

sup
fPΣακpMq,}f´f0}8ďεUnpf0q

Pr
f

”
Lppxn, fq ą CR logγ n ¨ pεUnpf0q ` n´1{2q

ı
ď 1{4.

(8)

3the particular `8 norm is used for convenience only and can be replaced by any equivalent vector norms.
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Remark 1. Unlike the (local) smoothness class ΣακpMq, the additional function class ΘC that
encapsulates (A2) is imposed only on the “reference” function f0 but not the true function f to be
estimated. This makes the assumptions considerably weaker because the true function f may violate
(A2) while our results remain valid.
Remark 2. The estimator pxn does not require knowledge of parameters κ, c0, C0 or εUnpf0q, and
automatically adapts to them, as shown in the next section. While the knowledge of smoothness
parameters α and M seems to be necessary, we remark that it is possible to adapt to α and M by
running Oplog2 nq parallel sessions of pxn on Oplog nq grids of α and M values, and then using
Ωpn{ log2 nq single-point queries to decide on the location with the smallest function value. Such an
adaptive strategy was suggested in [20] to remove an additional condition in [34], which also applies
to our settings.
Remark 3. By repeating the algorithm independently for t times and using the “multiple query”
strategy in the above remark, the failure probability of our proposed algorithm can be reduced to as
small as 4´t, an exponentially decaying probability with respect to repetitions t.
Remark 4. When the distribution function µf0pεq does not change abruptly with ε the expression of
εUnpf0q can be significantly simplified. In particular, if for all ε P p0, c0s it holds that

µf0pε{ log nq ě µf0pεq{rlog nsOp1q, (9)

then εUnpf0q can be upper bounded as

εUnpf0q ď rlog nsOp1q ¨ sup
!
ε ą 0 : ε´p2`d{αqµf0pεq ě n

)
. (10)

It is also noted that if µf0pεq has a polynomial behavior of µf0pεq — εβ for some constant β ě 0,
then Eq. (9) is satisfied and so is Eq. (10).

The quantity εUnpf0q “ inftε ą 0 : ε´p2`d{αqµf0pεq ě n{ logω nu is crucial in determining the
convergence rate of optimization error of pxn locally around the reference function f0. While the
definition of εUnpf0q is mostly implicit and involves solving an inequality concerning the distribution
function µf0p¨q, we remark that it admits a simple form when µf0 has a polynomial growth rate
similar to a local Tsybakov noise condition [29, 46], as shown by the following proposition:
Proposition 2. Suppose µf0pεq À εβ for some constant β P r0, 2 ` d{αq. Then εUnpf0q “
rOpn´α{p2α`d´αβqq. In addition, if β P r0, d{αs then εUnpf0q ` n´1{2 À εUnpf0q “
rOpn´α{p2α`d´αβqq.
We remark that the condition β P r0, d{αs was also adopted in the previous work [34, Remark 6]
Also, for Lipschitz continuous functions (α “ 1) our conditions are similar to [20] and implies a
corresponding near-optimality dimension d1 considered in [20].

Proposition 2 can be easily verified by solving the system ε´p2`d{αqµf0pεq ě n{ logω n with the
condition µf0pεq À εβ . We therefore omit its proof. The following two examples give some simple
reference functions f0 that satisfy the µf0pεq À εβ condition in Proposition 2 with particular values
of β.
Example 1. The constant function f0 ” 0 satisfies (A1), (A2) and the condition in Proposition 2 with
β “ 0.
Example 2. f0 P Σ2

κpMq that is strongly convex 4 satisfies (A1), (A2) and the condition in Proposition
2 with β “ d{2.

Example 1 is simple to verify, as the volume of level sets of the constant function f0 ” 0 exhibits a
phase transition at ε “ 0 and ε ą 0, rendering β “ 0 the only parameter option for which µf0pεq À εβ .
Example 2 is more involved, and holds because the strong convexity of f0 lower bounds the growth
rate of f0 when moving away from its minimum. We give a rigorous proof of Example 2 in the
appendix. We also remark that f0 does not need to be exactly strongly convex for β “ d{2 to hold,
and the example is valid for, e.g., piecewise strongly convex functions with a constant number of
pieces too.

To best interpret the results in Theorem 1 and Proposition 2, it is instructive to compare the “local”
rate n´α{p2α`d´αβq with the baseline rate n´α{p2α`dq, which can be attained by reconstructing f

4A twice differentiable function f0 is strongly convex if Dσ ą 0 such that ∇2f0pxq ľ σI,@x P X .
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in sup-norm and applying Proposition 1. Since β ě 0, the local convergence rate established in
Theorem 1 is never slower, and the improvement compared to the baseline rate n´α{p2α`dq is dictated
by β, which governs the growth rate of volume of level sets of the reference function f0. In particular,
for functions that grows fast when moving away from its minimum, the parameter β is large and
therefore the local convergence rate around f0 could be much faster than n´α{p2α`dq.
Theorem 1 also implies concrete convergence rates for special functions considered in Examples 1
and 2. For the constant reference function f0 ” 0, Example 1 and Theorem 1 yield that Rnpf0q —
n´α{p2α`dq, which matches the baseline rate n´α{p2α`dq and suggests that f0 ” 0 is the worst-case
reference function. This is intuitive, because f0 ” 0 has the most drastic level set change at εÑ 0`
and therefore small perturbations anywhere of f0 result in changes of the optimal locations. On
the other hand, if f0 is strongly smooth and convex as in Example 2, Theorem 1 suggests that
Rnpf0q — n´1{2, which is significantly better than the n´2{p4`dq baseline rate 5 and also matches
existing works on zeroth-order optimization of convex functions [1]. The faster rate holds intuitively
because strongly convex functions grows fast when moving away from the minimum, which implies
small level set changes. An active query algorithm could then focus most of its queries onto the small
level sets of the underlying function, resulting in more accurate local function reconstructions and
faster optimization error rate.

Our proof of Theorem 1 is constructive, by upper bounding the local minimax optimization error of
an explicit algorithm. At a higher level, the algorithm partitions the n active queries evenly into log n
epochs, and level sets of f are estimated at the end of each epoch by comparing (uniform) confidence
intervals on a dense grid on X . It is then proved that the volume of the estimated level sets contracts
geometrically, until the target convergence rate Rnpf0q is attained.

3.3 Lower Bounds

We prove local minimax lower bounds that match the upper bounds in Theorem 1 up to logarithmic
terms. As we remarked in Section 2.2, in the local minimax lower bound formulation we assume the
data analyst has full knowledge of the reference function f0, which makes the lower bounds stronger
as more information is available a priori.

To facilitate such a strong local minimax lower bounds, the following additional condition is imposed
on the reference function f0 of which the data analyst has perfect information.

(A2’) There exist constants c10, C 10 ą 0 such that MpLf0pεq, δq ě C 10µf0pεqδ´d for all ε, δ P
p0, c10s, where MpLf0pεq, δq is the maximum number of disjoint `2 balls of radius δ that can
be packed into Lf0pεq.

We denote Θ1C1 as the class of functions that satisfy (A2’) with respect to parameters C1 “ pc10, C 10q ą
0. Intuitively, (A2’) can be regarded as the “reverse” version of (A2), which basically means that
(A2) is “tight”.

We are now ready to state our main negative result, which shows, from an information-theoretical
perspective, that the upper bound in Theorem 1 is not improvable.
Theorem 2. Suppose α, c0, C0, c

1
0, C

1
0 ą 0 and κ “ 8. Denote C “ pc0, C0q and C1 “ pc10, C 10q.

For any f0 P ΘC XΘ1C1 , define

εLnpf0q :“ sup
!
ε ą 0 : ε´p2`d{αqµf0pεq ě n

)
. (11)

Then there exist constant M ą 0 depending on α, d,C,C1 such that, for any f0 P ΣακpM{2qXΘCX
ΘC1 ,

inf
pxn

sup
fPΣακpMq,}f´f0}8ď2εLnpf0q

Pr
f

“
Lppxn; fq ě εLnpf0q

‰ ě 1

3
. (12)

Remark 5. For any f0 and n it always holds that εLnpf0q ď εUnpf0q.
Remark 6. If the distribution function µf0pεq satisfies Eq. (9) in Remark 4, then εLnpf0q ě
εUnpf0q{rlog nsOp1q.

5Note that f0 being strongly smooth implies α “ 2 in the local smoothness assumption.
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Remark 7. As the upper bound in Theorem 1 might depends exponentially on domain dimension
d, there might also be an exponential gap of d between the upper and lower bounds established in
Theorems 1 and 2.

Remark 5 shows that there might be a gap between the locally minimax upper and lower bounds in
Theorems 1 and 2. Nevertheless, Remark 6 shows that under the mild condition of µf0pεq does not
change too abruptly with ε, the gap between εUnpf0q and εLnpf0q is only a poly-logarithmic term in n.
Additionally, the following proposition derives explicit expression of εLnpf0q for reference functions
whose distribution functions have a polynomial growth, which matches the Proposition 2 up to log n
factors. Its proof is again straightforward.

Proposition 3. Suppose µf0pεq Á εβ for some β P r0, 2`d{αq. Then εLnpf0q “ Ωpn´α{p2α`d´αβqq.

The following proposition additionally shows the existence of f0 P Σα8pMqXΘCXΘC1 that satisfies
µf0pεq — εβ for any values of α ą 0 and β P r0, d{αs. Its proof is given in the appendix.

Proposition 4. Fix arbitrary α,M ą 0 and β P r0, d{αs. There exists f0 P ΣακpMq XΘC XΘC1
for κ “ 8 and constants C “ pc0, C0q, C1 “ pc10, C 10q that depend only on α, β,M and d such that
µf0pεq — εβ .

Theorem 2 and Proposition 3 show that the n´α{p2α`d´αβq upper bound on local minimax con-
vergence rate established in Theorem 1 is not improvable up to logarithmic factors of n. Such
information-theoretical lower bounds on the convergence rates hold even if the data analyst has
perfect information of f0, the reference function on which the n´α{p2α`d´αβq local rate is based.
Our results also imply an n´α{p2α`dq minimax lower bound over all α-Hölder smooth functions,
showing that without additional assumptions, noisy optimization of smooth functions is as difficult as
reconstructing the unknown function in sup-norm.

Our proof of Theorem 2 also differs from existing minimax lower bound proofs for active nonpara-
metric models [11]. The classical approach is to invoke Fano’s inequality and to upper bound the
KL divergence between different underlying functions f and g using }f ´ g}8, corresponding to the
point x P X that leads to the largest KL divergence. Such an approach, however, does not produce
tight lower bounds for our problem. To overcome such difficulties, we borrow the lower bound
analysis for bandit pure exploration problems in [7]. In particular, our analysis considers the query
distribution of any active query algorithm A “ pϕ1, . . . , ϕn, φnq under the reference function f0 and
bounds the perturbation in query distributions between f0 and f using Le Cam’s lemma. Afterwards,
an adversarial function choice f can be made based on the query distributions of the considered
algorithm A.

Theorem 2 applies to any global optimization method that makes active queries, corresponding to
the query model in Definition 2. The following theorem, on the other hand, shows that for passive
algorithms (Definition 1) the n´α{p2α`dq optimization rate is not improvable even with additional
level set assumptions imposed on f0. This demonstrates an explicit gap between passive and adaptive
query models in global optimization problems.

Theorem 3. Suppose α, c0, C0, c
1
0, C

1
0 ą 0 and κ “ 8. Denote C “ pc0, C0q and C1 “ pc10, C 10q.

Then there exist constant M ą 0 depending on α, d,C,C1 and N depending on M such that, for
any f0 P ΣακpM{2q XΘC XΘC1 satisfying εLnpf0q ď rεLn “: rlog n{nsα{p2α`dq,

inf
qxn

sup
fPΣακpMq,}f´f0}8ď2rεLn

Pr
f

“
Lppxn; fq ě rεLn

‰ ě 1

3
for all n ě N. (13)

Intuitively, the apparent gap demonstrated by Theorems 2 and 3 between the active and passive query
models stems from the observation that, a passive algorithm A only has access to uniformly sampled
query points x1, . . . , xn and therefore cannot focus on a small level set of f in order to improve
query efficiency. In addition, for functions that grow faster when moving away from their minima
(implying a larger value of β), the gap between passive and active query models becomes bigger as
active queries can more effectively exploit the restricted level sets of such functions.
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4 Conclusion

In this paper we consider the problem of noisy zeroth-order optimization of general smooth functions.
Matching lower and upper bounds on the local minimax convergence rates are established, which
are significantly different from classical minimax rates in nonparametric regression problems. Many
interesting future directions exist along this line of research, including exploitation of additive
structures in the underlying function f to completely remove curse of dimensionality, functions with
spatially heterogeneous smoothness or level set growth behaviors, and to design more computationally
efficient algorithms that work well in practice.
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