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A Preamble1

For completeness, we briefly reproduce here some basic definitions concerning the most important2

elements of our paper.3

First, given a K-strongly convex regularizer h : X → R (the player index i is suppressed for4

simplicity), the associated Bregman divergence is defined as5

D(p, x) = h(p)− h(x)− 〈∇h(x), p− x〉 (A.1)

with∇h(x) denoting a continuous selection of ∂h(x). The induced prox-mapping is then given by6

Px(y) = arg min
x′∈X

{〈y, x− x′〉+D(x′, x)}

= arg max
x′∈X

{〈y +∇h(x), x′〉 − h(x′)} (A.2)

and is defined for all x ∈ dom ∂h, y ∈ Y (recall here that Y ≡ V∗ denotes the dual of the ambient7

vector space V in which the game’s action space X is embedded).18

With all this at hand, the multi-agent mirror descent algorithm with bandit feedback is defined as9

follows:10

X̂n = Xn + δnWn,

Xn+1 = PXn(γnv̂n).
(MD-b)

where the perturbation Wn and the estimate v̂n are given respectively by11

Wi,n = Zi,n − r−1i (Xi,n − pi) v̂i,n = (di/δn)ui(X̂n)Zi,n. (A.3)

In the above, the query directions Zi,n are drawn independently and uniformly across players at each12

stage n from the corresponding unit sphere; finally, Bri(pi) denotes a ball that is entirely contained13

in Xi. For a schematic representation, see also Fig. 1.14

B Monotone games15

We now turn to the game-theoretic examples of Section 2. Before studying them in detail, it will be16

convenient to introduce a straightforward second-order test for monotonicity based on the game’s17

Hessian matrix.18

Specifically, extending the notion of the Hessian of an ordinary (scalar) function, the (λ-weighted)19

Hessian of a game G is defined as the block matrix HG(x;λ) = (Hij(x;λ))i,j∈N with blocks20

Hij(x;λ) =
λi
2
∇j ∇i ui(x) +

λj
2

(∇i∇j uj(x))
>
. (B.1)

1We also recall here that Y comes naturally equipped with the dual norm ‖y‖∗ = max{|〈y, x〉| : ‖x‖ ≤ 1}.
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Figure 1: Schematic representation of (MD-b) with ordinary, Euclidean projections. To reduce visual clutter,
we did not include the feasibility adjustment r−1(x− p) in the action selection step Xn 7→ X̂n.

As was shown by Rosen (1965, Theorem 6), G satisifes (DSC) with weight vector λ whenever21

z>HG(x;λ)z < 0 for all x ∈ X and all nonzero z ∈ V ≡
∏
i Vi that are tangent to X at x.2 It is22

thus common to check for monotonicity by taking λi = 1 for all i ∈ N and verifying whether the23

unweighted Hessian of G is negative-definite on the affine hull of X .24

Cournot competition (Example 2.1). In the standard Cournot oligopoly model described in the25

main body of the paper, the players’ payoff functions are given by26

ui(x) = xi
(
a− b

∑
j xj
)
− cixi. (B.2)

Consequently, a simple differentiation yields27

Hij(x) =
1

2

∂2ui
∂xi∂xj

+
1

2

∂2uj
∂xj∂xi

= −b(1 + δij), (B.3)

where δij = 1{i = j} is the Kronecker delta. This matrix is clearly negative-definite, so the game is28

monotone.29

Resource allocation auctions (Example 2.2). In our auction-theoretic example, the players’ payoff30

functions are given by31

ui(xi;x−i) =
∑
s∈S

[
giqsxis

cs +
∑
j∈N xjs

− xis

]
(B.4)

To prove monotonicity in this example, we will consider the following criterion due to Goodman32

(1980): a game G satisfies (DSC) with weights λi, i ∈ N , if:33

a) Each payoff function ui is strictly concave in xi and convex in x−i.34

b) The function
∑
i∈N λiui(x) is concave in x.35

Since the function φ(x) = x/(c+ x) is strictly concave in x for all c > 0, the first condition above is36

trivial to verify. For the second, letting λi = 1/gi gives37 ∑
i∈N

λiui(x) =
∑
i∈N

∑
s∈S

qsxis
cs +

∑
j∈N xjs

−
∑
i∈N

∑
s∈S

xis

=
∑
s∈S

qs

∑
i∈N xis

cs +
∑
i∈N xis

−
∑
i∈N

∑
s∈S

xis. (B.5)

Since the summands above are all concave in their respective arguments, our claim follows.38

2By “tangent” we mean here that z belongs to the tangent cone TC(x) to X at x, i.e., the intersection of all
supporting (closed) half-spaces of X at x.
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C Properties of Bregman proximal mappings39

In this appendix, we provide some auxiliary results and estimates that are used throughout the40

convergence analysis of Appendix D. Some of the results we present here are not new (see e.g.,41

Nemirovski et al., 2009); however, the set of hypotheses used to obtain them varies widely in the42

literature, so we provide all proofs for completeness.43

In what follows, we will make frequent use of the convex conjugate h∗ : Y → R of h, defined here as44

h∗(y) = max
x∈X
{〈y, x〉 − h(x)}. (C.1)

By standard results in convex analysis (Rockafellar, 1970, Chap. 26), h∗ is differentiable on Y and45

its gradient satisfies the identity46

∇h∗(y) = arg max
x∈X

{〈y, x〉 − h(x)}. (C.2)

For notational convenience, we will also write47

Q(y) = ∇h∗(y) (C.3)

and we will refer to Q : Y → X as the mirror map generated by h.48

Together with the prox-mapping induced by h, all these notions are related as follows:49

Lemma 1. Let h be a regularizer on X . Then, for all x ∈ dom ∂h, y ∈ Y , we have:50

a) x = Q(y) ⇐⇒ y ∈ ∂h(x). (C.4a)

b) x+ = Px(y) ⇐⇒ ∇h(x) + y ∈ ∂h(x+) ⇐⇒ x+ = Q(∇h(x) + y). (C.4b)

Finally, if x = Q(y) and p ∈ X , we have51

〈∇h(x), x− p〉 ≤ 〈y, x− p〉. (C.5)

Remark. Note that (C.4b) directly implies that ∂h(x+) 6= ∅, i.e., x+ ∈ dom ∂h. An immediate52

consequence of this is that the update rule x ← Px(y) is well-posed, i.e., it can be iterated in53

perpetuity.54

Proof of Lemma 1. To prove (C.4a), note that x solves (C.2) if and only if y− ∂h(x) 3 0, i.e., if and55

only if y ∈ ∂h(x). Similarly, for (C.4b), comparing (A.2) and (C.1), we see that x+ solves (A.2) if56

and only if∇h(x) + y ∈ ∂h(x+), i.e., if and only if x+ = Q(∇h(x) + y).57

For the inequality (C.5), it suffices to show it holds for interior p ∈ X ◦ (by continuity). To do so, let58

φ(t) = h(x+ t(p− x))− [h(x) + 〈y, x+ t(p− x)〉]. (C.6)

Since h is strongly convex and y ∈ ∂h(x) by (C.4a), it follows that φ(t) ≥ 0 with equality if and59

only if t = 0. Moreover, note that ψ(t) = 〈∇h(x+ t(p−x))− y, p−x〉 is a continuous selection of60

subgradients of φ. Given that φ and ψ are both continuous on [0, 1], it follows that φ is continuously61

differentiable and φ′ = ψ on [0, 1]. Thus, with φ convex and φ(t) ≥ 0 = φ(0) for all t ∈ [0, 1], we62

conclude that φ′(0) = 〈∇h(x)− y, p− x〉 ≥ 0, from which our claim follows.63

We continue with some basic relations connecting the Bregman divergence relative to a target point64

before and after a prox step. The basic ingredient for this is a generalization of the law of cosines65

which is known in the literature as the “three-point identity” (Chen and Teboulle, 1993):66

Lemma 2. Let h be a regularizer on X . Then, for all p ∈ X and all x, x′ ∈ dom ∂h, we have67

D(p, x′) = D(p, x) +D(x, x′) + 〈∇h(x′)−∇h(x), x− p〉. (C.7)

Proof. By definition, we get:68

D(p, x′) = h(p)− h(x′)− 〈∇h(x′), p− x′〉
D(p, x) = h(p)− h(x)− 〈∇h(x), p− x〉
D(x, x′) = h(x)− h(x′)− 〈∇h(x′), x− x′〉.

(C.8)

The lemma then follows by adding the two last lines and subtracting the first.69
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With all this at hand, we have the following upper and lower bounds:70

Proposition 3. Let h be a K-strongly convex regularizer on X , fix some p ∈ X , and let x+ = Px(y)71

for x ∈ dom ∂h, y ∈ Y . Then, we have:72

D(p, x) ≥ K

2
‖x− p‖2. (C.9a)

D(p, x+) ≤ D(p, x)−D(x+, x) + 〈y, x+ − p〉 (C.9b)

≤ D(p, x) + 〈y, x− p〉+
1

2K
‖y‖2∗ (C.9c)

Proof of (C.9a). By the strong convexity of h, we get73

h(p) ≥ h(x) + 〈∇h(x), p− x〉+
K

2
‖p− x‖2 (C.10)

so (C.9a) follows by gathering all terms involving h and recalling the definition of D(p, x).74

Proof of (C.9b) and (C.9c). By the three-point identity (C.7), we readily obtain75

D(p, x) = D(p, x+) +D(x+, x) + 〈∇h(x)−∇h(x+), x+ − p〉, (C.11)

and hence:76

D(p, x+) = D(p, x)−D(x+, x) + 〈∇h(x+)−∇h(x), x+ − p〉
≤ D(p, x)−D(x+, x) + 〈y, x+ − p〉, (C.12)

where, in the last step, we used (C.5) and the fact that x+ = Q(∇h(x) + y), by (C.4b), since77

x+ = Px(y). The above is just (C.9b), so the first part of our proof is complete.78

To proceed with the proof of (C.9c), note that (C.12) gives79

D(p, x+) ≤ D(p, x) + 〈y, x− p〉+ 〈y, x+ − x〉 −D(x+, x). (C.13)

By Young’s inequality (Rockafellar, 1970), we also have80

〈y, x+ − x〉 ≤ K

2
‖x+ − x‖2 +

1

2K
‖y‖2∗, (C.14)

and hence81

D(p, x+) ≤ D(p, x) + 〈y, x− p〉+
1

2K
‖y‖2∗ +

K

2
‖x+ − x‖2 −D(x+, x)

≤ D(p, x) + 〈y, x− p〉+
1

2K
‖y‖2∗, (C.15)

with the last step following from Lemma 1 after plugging in x in place of p.82

D Asymptotic convergence analysis83

Our goal in this appendix is to prove Theorem 5.1. Since this is our basic asymptotic convergence84

result, we reproduce it below for convenience:85

Theorem. Suppose that the players of a monotone game G ≡ G(N ,X , u) follow (MD-b) with86

step-size γn and query radius δn such that87

lim
n→∞

γn = lim
n→∞

δn = 0,

∞∑
n=1

γn =∞,
∞∑
n=1

γnδn <∞, and
∞∑
n=1

γ2n
δ2n

<∞. (D.1)

Then, the sequence of realized actions X̂n converges to Nash equilibrium with probability 1.88
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Our proof strategy will be based on a two-pronged approach. First, we will show that the pivot89

sequence Xn satisfies a “quasi-Fejér” property (Combettes, 2001; Combettes and Pesquet, 2015) with90

respect to the Bregman divergence. This quasi-Fejér property allows us to show that the Bregman91

divergence D(x∗, Xn) with respect to a Nash equilibrium x∗ of G converges. To show that this92

limit is actually zero for some Nash equilibrium, we prove that, with probability 1, the sequence Xn93

admits a (random) subsequence that converges to a Nash equilibrium. The theorem then follows by94

combining these two results.95

To carry all this out, we begin with an auxiliary lemma for the simultaneous perturbation stochastic96

approximation (SPSA) estimation process of Section 4:97

Lemma 4. The SPSA estimator v̂ = (v̂i)i∈N given by (4.2) satisfies98

E[v̂i] = ∇i uδi , (D.2)

with uδi as in (4.3). Moreover, we have ‖∇i uδi −∇i ui‖∞ = O(δ).99

Proof. By the independence of the sampling directions zi, i ∈ N , we have100

E[v̂i] =
di/δ∏
j vol(Sj)

∫
S1
· · ·
∫
SN
ui(x1 + δz1, . . . , xN + δzN )zi dz1 · · · dzN

=
di/δ∏

j vol(δSj)

∫
δS1
· · ·
∫
δSN

ui(x1 + z1, . . . , xN + zN )
zi
‖zi‖

dz1 · · · dzN

=
di/δ∏

j vol(δSj)

∫
δSi

∫
∏

j 6=i δSj
ui(xi + zi;x−i + z−i)

zi
‖zi‖

dzi dz−i

=
di/δ∏

j vol(δSj)

∫
δBi

∫
∏

j 6=i δSj
∇i ui(xi + wi;x−i + z−i) dwi dz−i, (D.3)

where, in the last line, we used the identity101

∇
∫
δB
f(x+ w) dw =

∫
δS
f(x+ z)

z

‖z‖
dz (D.4)

which, in turn, follows from Stokes’ theorem (Flaxman et al., 2005; Lee, 2003). Since vol(δBi) =102

(δ/di) vol(δSi), the above yields E[v̂i] = ∇i uδi with uδi given by (4.3).103

For the second part of the lemma, let Li denote the Lipschitz constant of vi, i.e., ‖vi(x′)− vi(x)‖∗ ≤104

Li‖x′ − x‖ for all x, x′ ∈ X . Then, for all wi ∈ δBi and all zj ∈ δSj , j 6= i, we have105

‖∇i ui(xi + wi;x−i + z−i)−∇i ui(x)‖ ≤ Li
√
‖wi‖2 +

∑
j 6=i
‖zj‖2 ≤ Li

√
Nδ. (D.5)

Our assertion then follows by integrating and differentiating under the integral sign.106

With this basic estimate at hand, we proceed to establish the convergence of the Bregman divergence107

relative to the game’s Nash equilibria:108

Proposition 5. Let x∗ be a Nash equilibrium of G. Then, with assumptions as in Theorem 5.1, the109

Bregman divergence D(x∗, Xn) converges (a.s.) to a finite random variable D∞.110

Remark. For expository reasons, we tacitly assume above (and in what follows) that G satisfies (DSC)111

with weights λi = 1 for all i ∈ N . If this is not the case, the Bregman divergence D(p, x) should be112

replaced by the weight-adjusted variant113

Dλ(p, x) =
∑
i∈N

λiD(pi, xi). (D.6)

Since this adjustment would force us to carry around all player indices, the presentation would114

become significantly more cumbersome; to avoid this, we stick with the simpler, unweighted case.115

Proof. Let Dn = D(x∗, Xn) for some Nash equilibrium x∗ of G and write116

v̂n = v(Xn) + Un+1 + bn, (D.7)
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where, recalling the setup of Section 4 in the main body of the paper, the noise process Un+1 =117

v̂n − E[v̂n | Fn] is an Fn-adapted martingale difference sequence and bn = vδn(Xδn
n ) − v(Xn)118

denotes the systematic bias of the estimator v̂n.3 Then, by Proposition 3, we have119

Dn+1 = D(x∗, PXn(γnv̂n)) ≤ D(x∗, Xn) + γn〈v̂n, Xn − x∗〉+
γ2n
2K
‖v̂n‖2∗

= Dn + γn〈v(Xn) + Un+1 + bn, Xn − x∗〉+
γ2n
2K
‖v̂n‖2∗

≤ Dn + γnξn+1 + γnrn +
γ2n
2K
‖v̂n‖2∗, (D.8)

where, in the last line, we set ξn+1 = 〈Un+1, Xn − x∗〉, rn = 〈bn, Xn − x∗〉, and we used the120

variational characterization (VI) of Nash equilibria of monotone games. Thus, conditioning on Fn121

and taking expectations, we get122

E[Dn+1 | Fn] ≤ Dn + E[ξn+1 | Fn] + γn E[rn | Fn] +
γ2n
2K

E[‖v̂n‖2∗ | Fn]

≤ Dn + γn E[rn | Fn] +
V 2

2K

γ2n
δ2n
. (D.9)

where we set V 2 =
∑
i d

2
i maxx∈X |ui(x)|2 and we used the fact that Xn is Fn-measurable, so123

E[ξn+1 | Fn] = 〈E[Un+1 | Fn], Xn − x∗〉 = 0. (D.10)

Finally, by Lemma 4, we have124

‖bn‖∗ = ‖vδn(Xδn
n )− v(Xn)‖∗ ≤ ‖vδn(Xδn

n )− v(Xδn
n )‖∗ + ‖v(Xδn

n )− v(Xn)‖∗ = O(δn),
(D.11)

where we used the fact that v is Lipschitz continuous and ‖vδ − v‖∞ = O(δ). This shows that there125

exists some B > 0 such that rn ≤ Bδn; as a consequence, we obtain126

E[Dn+1 | Fn] ≤ Dn +Bγnδn +
V 2

2K

γ2n
δ2n
. (D.12)

Now, letting Rn = Dn +
∑∞
k=n[Bγkδk + (2K)−1V 2γ2k/δ

2
k], the estimate (D.8) gives127

E[Rn+1 | Fn] = E[Dn+1 | Fn] +

∞∑
k=n+1

[
Bγkδk +

V 2

2K

γ2k
δ2k

]

≤ Dn +Bγnδn +
V 2

2K

γ2n
δ2n

+

∞∑
k=n+1

[
Bγkδk +

V 2

2K

γ2k
δ2k

]

≤ Dn +

∞∑
k=n

[
Bγkδk +

V 2

2K

γ2k
δ2k

]
= Rn, (D.13)

i.e., Rn is an Fn-adapted supermartingale.4 Since the series
∑∞
n=1 γnδn and

∑∞
n=1 γ

2
n/δ

2
n are both128

summable, it follows that129

E[Rn] = E[E[Rn | Fn−1]] ≤ E[Rn−1] ≤ · · · ≤ E[R1] ≤ E[D1] +

∞∑
n=1

[
Bγnδn +

V 2

2K

γ2n
δ2n

]
<∞

(D.14)
i.e., Rn is uniformly bounded in L1. Thus, by Doob’s convergence theorem for supermartingales130

(Hall and Heyde, 1980, Theorem 2.5), it follows that Rn converges (a.s.) to some finite random131

variable R∞. In turn, by inverting the definition of Rn, it follows that Dn converges (a.s.) to some132

random variable D∞, as claimed.133

3Recall here that Xδ
i , i ∈ N , denotes the δ-adjusted pivot Xδ

i = Xi + r−1
i δ(Xi − pi), i.e., including the

feasibility adjustment r−1
i (Xi − pi).

4In particular, this shows that E[Dn | Fn−1] is quasi-Fejér in the sense of Combettes (2001).
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Proposition 6. Suppose that the assumptions of Theorem 5.1 hold. Then, with probability 1, there134

exists a (random) subsequence Xnk
of (MD-b) which converges to Nash equilibrium.135

Proof. We begin with the technical observation that the set X ∗ of Nash equilibria of G is closed (and136

hence, compact). Indeed, let x∗n, n = 1, 2, . . . , be a sequence of Nash equilibria converging to some137

limit point x∗ ∈ X ; to show that X ∗ is closed, it suffices to show that x∗ ∈ X . However, since Nash138

equilibria of G satisfy the variational characterization (VI), we also have 〈v(x), x− x∗n〉 ≤ 0 for all139

x ∈ X . Hence, with x∗n → x∗ as n→∞, it follows that140

〈v(x), x− x∗〉 = lim
n→∞

〈v(x), x− x∗n〉 ≤ 0 for all x ∈ X , (D.15)

i.e., x∗ satisfies (VI). Since G is monotone, we conclude that x∗ is a Nash equilibrium, as claimed.141

Suppose now ad absurdum that, with positive probability, the pivot sequenceXn generated by (MD-b)142

admits no limit points in X ∗.5 Conditioning on this event, and given that X ∗ is compact, there exists143

a (nonempty) compact set C ⊂ X such that C ∩ X ∗ = ∅ and Xn ∈ C for all sufficiently large n.144

Moreover, by (VI), we have 〈v(x), x − x∗〉 < 0 whenever x ∈ C and x∗ ∈ X ∗. Therefore, by the145

continuity of v and the compactness of X ∗ and C, there exists some c > 0 such that146

〈v(x), x− x∗〉 ≤ −c for all x ∈ C, x∗ ∈ X . (D.16)

To proceed, fix some x∗ ∈ X ∗ and let Dn = D(x∗, Xn) as in the proof of Proposition 5. Then,147

telescoping (D.8) yields the estimate148

Dn+1 ≤ D1 +

n∑
k=1

γk〈v(Xn), Xn − x∗〉+

n∑
k=1

γkξk+1 +

n∑
k=1

γkrk +

n∑
k=1

γ2k
2K
‖v̂n‖2∗, (D.17)

where, as in the proof of Proposition 5, we set149

ξn+1 = 〈Un+1, Xn − x∗〉 (D.18)

and150

rn = 〈bn, Xn − x∗〉. (D.19)

Subsequently, letting τn =
∑n
k=1 γk and using (D.16), we obtain151

Dn+1 ≤ D1 − τn
[
c−

∑n
k=1 γkξk+1

τn
−
∑n
k=1 γkrk
τn

−
(2K)−1

∑n
k=1 γ

2
k‖v̂k‖2∗

τn

]
. (D.20)

Since Un is a martingale difference sequence with respect to Fn, we have E[ξn+1 | Fn] = 0 (recall152

that Xn is Fn-measurable by construction). Moreover, by construction, there exists some constant153

σ > 0 such that154

‖Un+1‖2∗ ≤
σ2

δ2n
, (D.21)

and hence:155

∞∑
n=1

γ2n E[ξ2n+1 | Fn] ≤
∞∑
n=1

γ2n‖Xn − x∗‖2 E[‖Un+1‖2∗ | Fn]

≤ diam(X )2σ2
∞∑
n=1

γ2n
δ2n

<∞. (D.22)

Therefore, by the law of large numbers for martingale difference sequences (Hall and Heyde, 1980,156

Theorem 2.18), we conclude that τ−1n
∑n
k=1 γkξk+1 converges to 0 with probability 1.157

For the third term in the brackets of (D.20) we have rn → 0 as n→∞ (a.s.). Since
∑∞
n=1 γn =∞,158

it follows
∑n
k=1 γkrk

/∑n
k=1 γk → 0.159

5We assume here without loss of generality that X ∗ 6= X ; otherwise, there is nothing to show.
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Finally, for the last term in the brackets of (D.20), let Sn+1 =
∑n
k=1 γ

2
k‖v̂k‖2∗. Since v̂k is Fn-160

measurable for all k = 1, 2, . . . , n− 1, we have161

E[Sn+1 | Fn] = E

[
n−1∑
k=1

γ2k‖v̂k‖2∗ + γ2n‖v̂n‖2∗

∣∣∣∣∣Fn
]

= Sn + γ2n E[‖v̂n‖2∗ | Fn] ≥ Sn, (D.23)

i.e., Sn is a submartingale with respect to Fn. Furthermore, by the law of total expectation, we also162

have163

E[Sn+1] = E[E[Sn+1 | Fn]] ≤ V 2
n∑
k=1

γ2k
δ2k
≤ V 2

∞∑
k=1

γ2k
δ2k

<∞, (D.24)

implying in turn that Sn is uniformly bounded in L1. Hence, by Doob’s submartingale convergence164

theorem (Hall and Heyde, 1980, Theorem 2.5), we conclude that Sn converges to some (almost surely165

finite) random variable S∞ with E[S∞] <∞. Consequently, we have limn→∞ Sn+1/τn = 0 with166

probability 1.167

Applying all of the above to the estimate (D.20), we get Dn+1 ≤ D1− cτn/2 for sufficiently large n,168

and hence, D(x∗, Xn)→ −∞, a contradiction. Going back to our original assumption, this shows169

that at least one of the limit points of Xn must lie in X ∗, so our proof is complete.170

We are finally in a position to prove Theorem 5.1 regarding the convergence of (MD-b):171

Proof of Theorem 5.1. By Proposition 6, there exists a (possibly random) Nash equilibrium x∗ of G172

such that ‖Xnk
− x∗‖ → 0 for some (random) subsequence Xnk

. By the assumed reciprocity of the173

Bregman divergence, this implies that lim infn→∞D(x∗, Xn) = 0 (a.s.). Since limn→∞D(x∗, Xn)174

exists with probability 1 (by Proposition 5), it follows that175

lim
n→∞

D(x∗, Xn) = lim inf
n→∞

D(x∗, Xn) = 0, (D.25)

i.e., Xn converges to x∗ by the first part of Proposition 3. Since δn → 0 and ‖X̂n − Xn‖ =176

δn‖Wn‖ = O(δn), our claim follows.177

E Rate of convergence178

We now turn to the finite-time analysis of (MD-b). To begin, we briefly recall that a game G is179

β-strongly monotone if it satisfies the condition180 ∑
i∈N

λi〈vi(x′)− vi(x), x′i − xi〉 ≤ −
β

2
‖x− x′‖2 (β-DSC)

for some λi, β > 0 and for all x, x′ ∈ X . Our aim in what follows will be to prove the following181

convergence rate estimate for multi-agent mirror descent in strongly monotone games:182

Theorem 7. Let x∗ be the (unique) Nash equilibrium of a β-strongly monotone game. Then:183

a) If the players have access to a gradient oracle satisfying (4.1) and they follow (MD) with184

Euclidean projections and step-size sequence γn = γ/n for some γ > 1/β, we have185

E[‖Xn − x∗‖2] = O(n−1). (E.1)

b) If the players only have bandit feedback and they follow (MD-b) with Euclidean projections186

and parameters γn = γ/n and δn = δ/n1/3 with γ > 1/(3β) and δ > 0, we have187

E[‖X̂n − x∗‖2] = O(n−1/3). (E.2)

Remark. Theorem 5.2 is recovered by the second part of Theorem 7 above; the first part (which was188

alluded to in the main paper) serves as a benchmark to quantify the gap between bandit and oracle189

feedback.190

For the proof of Theorem 7 we will need the following lemma on numerical sequences, a version of191

which is often attributed to Chung (1954):192
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Lemma 8. Let an, n = 1, 2, . . . , be a non-negative sequence such that193

an+1 ≤ an
(

1− P

np

)
+

Q

np+q
(E.3)

where 0 < p ≤ 1, q > 0, and P,Q > 0. Then, assuming P > q if p = 1, we have194

an ≤
Q

R

1

nq
+ o

(
1

nq

)
, (E.4)

with R = P if p < 1 and R = P − q if p = 1.195

Proof. Clearly, it suffices to show that lim supn→∞ nqan ≤ Q/R. To that end, write qn = n[(1 +196

1/n)q − 1], so (1 + 1/n)q = 1 + qn/n and qn → q as n→∞. Then, multiplying both sides of (E.3)197

by (n+ 1)q and letting ãn = ann
q , we get198

ãn+1 ≤ an(n+ 1)q
(

1− P

np

)
+
Q(n+ 1)q

np+q

= ãn

(
1 +

qn
n

)(
1− P

np

)
+
Q(1 + qn/n)

np

= ãn

[
1 +

qn
n
− P

np
+O

(
1

np+1

)]
+
Qn
np

, (E.5)

where we set Qn = Q(1 + qn/n), so Qn → Q as n→∞. Then, under the assumption that P > q199

when p = 1, (E.5) can be rewritten as200

ãn+1 ≤ ãn
(

1− Rn
np

)
+
Qn
np

, (E.6)

for some sequence Rn with Rn → R as n→∞.201

Now, fix some small enough ε > 0. From (E.6), we readily get202

ãn+1 ≤ ãn −
Rnãn −Qn

np
. (E.7)

Since Rn → R and Qn → Q as n → ∞, we will have Rn > R − ε and Qn < Q + ε for all n203

greater than some nε. Thus, if n ≥ nε and (R− ε)ãn − (Q+ ε) > ε, we will also have204

ãn+1 ≤ ãn −
Rnãn −Qn

np
≤ ãn −

(R− ε)ãn − (Q+ ε)

np
≤ ãn −

ε

np
. (E.8)

The above shows that, as long as ãn > (Q+2ε)/(R−ε), ãn will decrease at least by ε/np at each step.205

In turn, since
∑∞
n=1(1/np) =∞, it follows by telescoping that lim supn→∞ ãn ≤ (Q+2ε)/(R−ε).206

Hence, with ε arbitrary, we conclude that lim supn→∞ ann
q ≤ Q/R, as claimed.207

Proof of Theorem 7. We begin with the second part of the theorem; the first part will follow by208

setting some estimates equal to zero, so the analysis is more streamlined that way. Also, as in the209

previous section, we tacitly assume that (β-DSC) holds with weights λi = 1 for all i ∈ N . If this210

is not the case, the Bregman divergence D(p, x) should be replaced by the weight-adjusted variant211

(D.6), but this would only make the presentation more difficult to follow, so we omit the details.212

The main component of our proof is the estimate (D.8), which, for convenience (and with notation as213

in the previous section), we also reproduce below:214

Dn+1 ≤ Dn + γn〈v(Xn), Xn − x∗〉+ γnξn+1 + γnrn +
γ2n
2K
‖v̂n‖2∗. (E.9)

In the above, since the algorithm is run with Euclidean projections, Dn = 1
2‖Xn − x∗‖2; other215

than that, ξn and rn are defined as in (D.18) and (D.19) respectively. Since the game is β-strongly216

monotone and x∗ is a Nash equilibrium, we further have217

〈v(Xn), Xn − x∗〉 ≤ 〈v(Xn)− v(x∗), Xn − x∗〉 ≤ −
β

2
‖Xn − x∗‖2 = −βDn, (E.10)
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so (E.9) becomes218

Dn+1 ≤ (1− βγn)Dn + γnξn+1 + γnrn +
γ2n
2K
‖v̂n‖2∗. (E.11)

Thus, letting D̄n = E[Dn] and taking expectations, we obtain219

D̄n+1 ≤ (1− βγn)D̄n +Bγnδn +
V 2

2K

γ2n
δ2n
, (E.12)

with B and V defined as in the proof of Theorem 5.1 in the previous section.220

Now, substituting γn = γ/np and δn = δ/nq in (E.12) readily yields221

D̄n+1 ≤
(

1− βγ

np

)
D̄n +

Bγδ

np+q
+

V 2γ2δ2

2Kn2(p−q)
. (E.13)

Hence, taking p = 1 and q = 1/3, the last two exponents are equated, leading to the estimate222

D̄n+1 ≤
(

1− βγ

n

)
D̄n +

C

n4/3
, (E.14)

with C = γδB + (2K)−1γ2δ2V 2. Thus, with βγ > 1/3, applying Lemma 8 with p = 1 and223

q = 1/3, we finally obtain D̄n = O(1/n1/3).224

The proof for the oracle case is similar: the key observation is that the bound (E.12) becomes225

D̄n+1 ≤ (1− βγn)D̄n +
V 2

2K
γ2n, (E.15)

with V defined as in (4.1). Hence, taking γn = γ/n with βγ > 1 and applying again Lemma 8 with226

p = q = 1, we obtain D̄n = O(1/n) and our proof is complete.227

To conclude, we note that the O(1/n1/3) bound of Theorem 7 cannot be readily improved by228

choosing a different step-size schedule of the form γn ∝ 1/np for some p < 1. Indeed, applying229

Lemma 8 to the estimate (E.13) yields a bound which is either O(1/nq) or O(1/np−2q), depending230

on which exponent is larger. Equating the two exponents (otherwise, one term would be slower than231

the other), we get q = p/3, leading again to a O(1/n1/3) bound. Unless one has finer control on the232

bias/variance of the SPSA gradient estimator used in (MD-b), we do not see a way of improving this233

bound in the current context.234
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