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A Discussions and conclusions

In this section, we discuss related topics to our approach. Both theoreticians and practitioners may
find this section useful in terms of clarifying theoretical insights and precautions.

A.1 Connections and differences to empirical Bayes

In classic empirical Bayes [9, 6], we estimate the unknown parameters of the Bayesian model and
usually use a point estimate to proceed any Bayesian computations. One very popular approach
to estimate those unknown parameters is by maximizing the data likelihood. There also exit other
variants of empirical Bayes; for example, oracle Bayes, which “shows empirical Bayes in its most
frequentist mode” [4].

In this paper, we use a variant of empirical Bayes that constructs estimators for both the prior
distribution and the posterior distribution. For the estimators of the posterior, we do not use a plug-in
estimate like classic empirical Bayes but we construct them through Lemma. 6, which establishes the
unbiasedness and concentration bounds for those estimates.

A.2 Connections and differences to hierarchical Bayes

Hierarchical Bayes is a Bayesian hierarchical model that places priors on priors. For both of our finite
X case and continuous and compact X ∈ Rd case, we can write down a hierarchical Bayes model
that puts a normal inverse Wishart prior on µ(X), k(X) or u,Σ.

Our approach can be viewed as a special case of the hierarchical Bayes model using point estimates
to approximate the posterior. Neither our estimators nor our regret analyses depend on the prior
parameters of those hierarchical Bayes models. But one may analyze the regret of BO with a better
approximation from a full Bayesian perspective using hierarchical Bayes.

A.3 Future directions

Due to the limited space, we only give the formulation of meta BO in its simple and basic settings. Our
setting restricts the evaluated inputs in the training data to follow certain norms, such as where they
are and how many they are, but one may certainly extend our analyses to less restrictive scenarios.

Missing entries We did not consider any bounds in matrix completion [2] in our regret analyses,
and proceeded with the assumption that there is no missing entry in the training data. But if missing
data is a concern, one should definitely consider adapting bounds from [2] or use better estimators [8]
that take into account missing entries when bounding the estimates.
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A.4 Broader impact

We developed a statistically sound approach for meta BO with an unknown Gaussian process prior.
We verified our approach on simulated task and motion planning problems. We showed that our
approach is able to guide task and motion planning with good action recommendations, such that
the resulting plans are better and faster to compute. We believe the theoretical guarantees may
support better explanations for more practical BO approaches. In particular, our method can serve
as a building block of artificial intelligence systems, and our analyses can be combined with the
theoretical guarantees of other parts of the system to analyze an integrated system.

A.5 Caveats

We did not expand the experiment sections to include applications other than task and motion planning
in simulation. But there are many more scenarios that this meta BO approach will be useful. For
example, our finite X formulation can be used to adaptively recommend advertisements, movies or
songs to Internet users, by learning a mean and kernel for those discrete items.

Optimization objectives Like other bandit algorithms, our approach only treats objective functions
or any metrics to be optimized as given. Practitioners need to be very careful about what exactly they
are optimizing with our approach or other optimization algorithms. For example, maximizing number
of advertisement clicks or corporation profits may not be a good metric in recommendation systems;
maximizing a poorly designed reward function for robotic systems may result in unexpected hazards.

Guarantees with assumptions In real-world applications, practitioners need to be extra cautious
with our algorithm. We provided detailed assumptions and analyses, that are only based those
assumptions, in Section 3 and Section 4. Outside those assumptions, we do not claim that our
analyses will hold in any way. For example, in robotics applications, it may not be true that the
underlying reward/cost functions are actually sampled from a GP, in which case using our method
may harm the physical robot; even if those objective functions are in fact from a GP, because our
regret bounds only hold with high probability, meta BO may still give dangerous actions with certain
probabilities (as in frequency).

In addition, please notice that we did not provide any theoretical guarantees for using basis functions
trained with neural networks. We assume those basis functions are given, which is usually not the
case in practice. To the best of our knowledge, proving bounds for neural networks is very hard [5].

B Proofs for Section 4.1

Recall that we assume X is a finite set. The posterior given observations Dt is GP (µt, kt) where
µt(x) = µ(x) + k(x,xt)(k(xt) + σ2I)−1(yt − µ(xt)), ∀x ∈ X

kt(x, x
′) = k(x, x′)− k(x,xt)(k(xt) + σ2I)−1k(xt, x

′), ∀x, x′ ∈ X.

We use the following estimators to approximate µt, kt:

µ̂t(x) = µ̂(x) + k̂(x,xt)k̂(xt,xt)
−1

(yt − µ̂(xt)), ∀x ∈ X, (1)

k̂t(x, x
′) =

N − 1

N − t− 1

(
k̂(x, x′)− k̂(x,xt)k̂(xt,xt)

−1
k̂(xt, x

′)
)
, ∀x, x′ ∈ X. (2)

We will prove a bound on the best-sample simple regret rT = maxx∈X f(x)−maxt∈[T ] f(xt). The
evaluated inputs xt = [xτ ]tτ are selected either by a special case of GP-UCB using the acquisition
function
αGP-UCB
t−1 (x) = µ̂t−1(x) + ζtk̂t−1(x)

1
2 , (3)

ζt =

(
6(N − 3 + t+ 2

√
t log 6

δ + 2 log 6
δ )/(δN(N − t− 1))

) 1
2

+ (2 log( 3
δ ))

1
2

(1− 2( 1
N−t log 6

δ )
1
2 )

1
2

, δ ∈ (0, 1) (4)

or by a special case of PI using the acquisition function

αPI
t−1(x) =

µ̂t−1(x)− f̂∗

k̂t−1(x)
1
2

.
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This special case of PI assumes additional information of the upper bound on function value f̂∗ ≥
maxx∈X f(x).

Corollary 1 ([11]). Let δ0 ∈ (0, 1). For any Gaussian variable x ∼ N (µ, σ2), x ∈ R,

Pr[x− µ ≤ ζ0σ] ≥ 1− δ0, Pr[x− µ ≥ −ζ0σ] ≥ 1− δ0

where ζ0 = (2 log( 1
2δ0

))
1
2 .

Proof. Let z = µ−x
σ ∼ N (0, 1). We have

Pr[z > ζ0] =

∫ +∞

ζ0

1√
2π
e−z

2/2 dz

=

∫ +∞

ζ0

1√
2π
e−(z−ζ0)2/2−ζ20/2−zζ0 dz

≤ e−ζ
2
0/2

∫ +∞

ζ0

1√
2π
e−(z−ζ0)2/2 dz

=
1

2
e−ζ

2
0/2.

Similarly, Pr[z < −ζ0] ≤ 1
2e
−ζ20/2. We reach the conclusion by rearranging the constants.

Lemma 2. Assume X1, · · · , Xn ∈ Rm are sampled i.i.d. from N (u, V ). Suppose we estimate the
sample mean to be û = 1

nX
T1n and the sample covariance to be V̂ = 1

n−1 (X − 1nû
T)T(X − 1nû

T)

where X = [Xi]
n
i=1 ∈ Rn×m. Then, û and V̂ are independent, and

û ∼ N (u,
1

n
V ), V̂ ∼ W(

1

n− 1
V, n− 1).

Lemma 2 is a combination of Theorem 3.3.2 and Corollary 7.2.3 of [1]. Interested readers can find
the proof of Lemma 2 in [1]. Corollary 3 directly follows Lemma 2.

Corollary 3. µ̂ and k̂ are independent and

µ̂(X) ∼ N (µ(X),
1

N
(k(X) + σ2I), k̂(X) ∼ W(

1

N − 1
(k(X) + σ2I), N − 1).

Corollary 4. For any X ∼ W(v, n), v ∈ R and b > 0, we have

Pr[
X

vn
≥ 1 + 2

√
b+ 2b] ≤ e−bn, Pr[

X

vn
≤ 1− 2

√
b] ≤ e−bn.

Proof. Let X be a random variable such that X ∼ W(v, n). So X
v is distributed according to a

chi-squared distribution with n degrees of freedom; namely, Xv ∼ χ2(n). By Lemma 1 in [7], we
have

Pr[
X

v
− n ≥ 2

√
na+ 2a] ≤ e−a, Pr[

X

v
− n ≤ −2

√
na] ≤ e−a.

As a result, if a = bn,

Pr[
X

vn
≥ 1 + 2

√
b+ 2b] ≤ e−bn, Pr[

X

vn
≤ 1− 2

√
b] ≤ e−bn.

Lemma 5. Let X ∈ Rd be a sample from N (w, V ) and define Z = (X − w)TV −1(X − w). Then,

we have Z ∼ χ2(d). With probability at least 1− δ0, Z < d+ 2
√
d log 1

δ0
+ 2 log 1

δ0
.

Proof. By [10], Z ∼ χ2(d). The bound on Z follows Lemma 1 in [7].
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Lemma 6. Pick δ1 ∈ (0, 1) and δ2 ∈ (0, 1). For any fixed non-negative integer t < T , conditioned
on the observations Dt = {(xτ , yτ )}tτ=1, our estimators µ̂t and k̂t satisfy

E[µ̂t(X)] = µt(X), E[k̂t(X)] = kt(X) + σ2I.

Suppose N ≥ T + 2. Then, for any fixed inputs x, z ∈ X,

Pr
[
µ̂t(x)− µt(x) < ιt

√
(kt(x) + σ2) ∧ µ̂t(z)− µt(z) > −ιt

√
(kt(z) + σ2)

]
≥ 1− δ1, (5)

Pr[
k̂t(x)

kt(x) + σ2
< 1 + 2

√
bt + 2bt] ≥ 1− δ2, Pr[

k̂t(x)

kt(x) + σ2
> 1− 2

√
bt] ≥ 1− δ2. (6)

where ιt =

√
2
(
N−2+t+2

√
t log 2

δ1
+2 log 2

δ1

)
δ1N(N−t−2) and bt = 1

N−t−1 log 1
δ2

.

Proof. By assumption, all rows of the observation Y = [ȳij ]i∈[N ],j∈[M ] are sampled i.i.d. from
N (µ(X), k(X) + σ2I). By Corollary 3,

µ̂(X) ∼ N (µ,
1

N
(k(X) + σ2I)), k̂(X) ∼ W(

1

N − 1
(k(X) + σ2I), N − 1).

By Proposition 8.7 in [3], we have

k̂(x, x′)− k̂(x,xt)k̂(xt,xt)
−1
k̂(xt, x

′) ∼ W(
1

N − 1
(kt(x, x

′) + σ21x=x′), N − t− 1).

Hence, the estimate k̂t satisfy

k̂t(x) ∼ W(
1

N − t− 1
(kt(x) + σ2), N − t− 1) (7)

Clearly, E[k̂t(x)] = kt(x) + σ2. Now it is easy to show Eq. (6). By Corollary 4, for any fixed
t ∈ [T ] ∪ 0 and x, ∀ 1

4 ≥ bt > 0,

Pr[
k̂t(x)

kt(x) + σ2
≥ 1 + 2

√
bt + 2bt] ≤ e−bt(N−t−1),

Pr[
k̂t(x)

kt(x) + σ2
≤ 1− 2

√
bt] ≤ e−bt(N−t−1). (8)

where bt = 1
N−t−1 log 1

δ2
> 0 and δ2 ∈ (0, 1). Thus, we have shown Eq. (6).

We next prove the second half of the results for µ̂t in Eq. (5). We use the shorthand S =
1

N−1 (k(X) + σ2I). By definition of the Wishart distributions in [3] (Definition 8.1), there ex-
ist random vectors X1, · · · , XN−1 ∈ RM sampled iid from N (0, S),∀i = 1, · · · , N − 1, and
k̂(X) =

∑n−1
i=1 XiX

T
i . We denote X ∈ R(N−1)×M as a matrix whose i-th row is Xi. Clearly,

k̂(X) = XTX and k̂(Xa,Xb) = XT
·,aX·,b,∀a, b ⊆ [M ]. Let the indices of xt in X be Θt ⊆ [M ] and

the index of x in X be θ ∈ [M ]. Thus we have xt = XΘt and x = Xθ.

Conditional on µ̂(xt) and X·,Θt , the term k̂(x,xt)k̂(xt)
−1(yt − µ̂(xt)) is a weighted sum of

independent Gaussian variables, because XT
·,θ consists of independent Gaussian variables and

k̂(x,xt)k̂(xt)
−1(yt− µ̂(xt)) = XT

·,θP where P = X·,Θt
(
XT
·,ΘtX·,Θt

)−1
(yt− µ̂(xt)). Recall that

Xi ∼ N (0, S); hence, we have

X·,θ | X·,Θt ∼ N (X·,ΘtS
−1
Θt
SΘt,θ, IN−1 ⊗ Sθ|Θt),

where Sθ|Θt = Sθ − Sθ,ΘtS−1
Θt
ST
θ,Θt

. As a result, the Gaussian variable XT
·,θP has mean

E[XT
·,θP | µ̂(xt), X·,Θt ] = Sθ,ΘtS

−1
Θt

(yt − µ̂(xt))

and variance

V[XT
·,θP | µ̂(xt), X·,Θt ] = (yt − µ̂(xt))

Tk̂(xt)
−1(yt − µ̂(xt))Sθ|Θt .
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By independence between k̂(X) and µ̂(X) shown in Corollary 3, we can show that k̂(x,xt) and µ̂(x)

are independent conditional on µ̂(xt) and k̂(xt), by noting that

p(µ̂(X), k̂(X)) = p(µ̂(X))p(k̂(X))

⇒p(µ̂(xt ∪ {x}), k̂(xt ∪ {x})) = p(µ̂(xt ∪ {x}))p(k̂(xt ∪ {x}))
⇒p(µ̂(xt ∪ {x}), k̂(xt ∪ {x})) = p(µ̂(xt ∪ {x}) | k̂(xt))p(k̂(xt ∪ {x}) | µ̂(xt))

⇒p(µ̂(x), k̂(x), k̂(x,xt) | µ̂(xt), k̂(xt)) = p(µ̂(x) | µ̂(xt), k̂(xt))p(k̂(x), k̂(x,xt) | µ̂(xt), k̂(xt))

⇒p(µ̂(x), k̂(x,xt) | µ̂(xt), k̂(xt)) = p(µ̂(x) | µ̂(xt), k̂(xt)))p(k̂(x,xt) | µ̂(xt)), k̂(xt)).

Hence, µ̂(x) and XT
·,θP = k̂(x,xt)k̂(xt)

−1(yt − µ̂(xt)) are independent conditional on µ̂(xt) and
k̂(xt). Moreover, XT

·,θP is dependent on X·,Θt only through k̂(xt) = XT
·,ΘtX·,Θt ; hence, we have

µ̂t(x) | µ̂(xt), k̂(xt) ∼ N (µ̄, S̄), (9)

By linearity of expectation and the Bienaymé formula,

µ̄ = E[µ̂(x) | µ̂(xt)] + k(x,xt)(k(xt) + σ2I)−1(yt − µ̂(xt)) (10)

= µ(x) + k(x,xt)(k(xt) + σ2I)−1(yt − µ(xt))

= µt(x),

S̄ = V[µ̂(x) | µ̂(xt)] +
(yt − µ̂(xt))

Tk̂(xt)
−1(yt − µ̂(xt))(kt(x) + σ2)

n− 1
, (11)

=
kt(x) + σ2

N
+

(yt − µ̂(xt))
Tk̂(xt)

−1(yt − µ̂(xt))(kt(x) + σ2)

N − 1
.

In Eq. (10) and Eq. (11), we use the conditional Gaussian distribution for µ̂(x) as follows

µ̂(x) | µ̂(xt) ∼ N (µ(x) + k(x,xt)(k(xt) + σ2I)−1(µ̂(xt)− µ(xt)),
kt(x) + σ2

N
).

By the law of total expectation,

E[µ̂t(x)] = E
[
E[µ̂t(x) | µ̂(xt), k̂(xt)]

]
= µt(x). (12)

By the law of total variance,

V[µ̂t(x)] = E
[
V[µ̂t(x) | µ̂(xt), k̂(xt)]

]
+ V

[
E[µ̂t(x) | µ̂(xt), k̂(xt)]

]
= E

[
S̄
]

+ V [µ̄]

=

(
N − 2 + (yt − µ(xt))

T(k(xt) + σ2I)−1(yt − µ(xt))
)

(kt(x) + σ2)

N(N − t− 2)

=
(N − 2 +Kxt,yt) (kt(x) + σ2)

N(N − t− 2)
.

where Kxt,yt = (yt − µ(xt))
T(k(xt) + σ2I)−1(yt − µ(xt)).

Notice that µ̂t(x) | µ̂(xt), k̂(xt) in Eq. (9) is a normal distribution centered at µt(x) regardless of
the conditional distribution. So the distribution of µ̂t(x) must be symmetric with a center at µt(x).
Hence, applying Chebyshev’s inequality, we have

Pr

[
µ̂t(x)− µt(x) <

√
(N − 2 +Kxt,yt) (kt(x) + σ2)

2δ′1N(N − t− 2)

]
≥ 1− δ′1,

Pr

[
µ̂t(x)− µt(x) > −

√
(N − 2 +Kxt,yt) (kt(x) + σ2)

2δ′1N(N − t− 2)

]
≥ 1− δ′1.

5



Notice that the randomness of Kxt,yt is from yt and yt ∼ N (µ(xt), k(xt) + σ2I). So we can

further boundKxt,yt ≤ t+2
√
t log 1

δ′′1
+2 log 1

δ′′1
with probability at most δ′′1 by Corollary 4. Hence,

if we set δ′1 = δ1
4 and δ′′1 = δ1

2 , with probability at least 1− δ1, we have

µ̂t(x)− µt(x) < ιt
√

(kt(x) + σ2) ∧ µ̂t(z)− µt(z) > −ιt
√

(kt(z) + σ2),

for fixed inputs x, x′.

Combining this result and the results in Eq. (7), Eq. (8), Eq. (12), we proved the lemma.

Lemma 7 (Lemma 1 in the paper). Pick probability δ ∈ (0, 1). For any nonnegative integer t < T ,
conditioned on the observations Dt = {(xτ , yτ )}tτ=1, the estimators in Eq. (1) and Eq. (2) satisfy
E[µ̂t(X)] = µt(X),E[k̂t(X)] = kt(X) + σ2I. Moreover, if the size of the training dataset satisfy
N ≥ T + 2, then for any input x ∈ X, with probability at least 1− δ, both

|µ̂t(x)− µt(x)|2 < at(kt(x) + σ2) and 1− 2
√
bt < k̂t(x)/(kt(x) + σ2) < 1 + 2

√
bt + 2bt

hold, where at =
4
(
N−2+t+2

√
t log (4/δ)+2 log (4/δ)

)
δN(N−t−2) and bt = 1

N−t−1 log 4
δ .

Proof. By a union bound on Eq. (8) of Lemma 6, we have

Pr
[
1− 2

√
bt < k̂t(x)/(kt(x) + σ2) < 1 + 2

√
bt + 2bt

]
≥ 1− 2e−bt(N−t−1)

where bt = 1
N−t−1 log 1

δ2
> 0 and δ2 ∈ (0, 1). By Lemma 6, we also have

Pr
[
µ̂t(x)− µt(x) < ιt

√
(kt(x) + σ2) ∧ µ̂t(z)− µt(z) > −ιt

√
(kt(z) + σ2)

]
≥ 1− δ1,

where ιt =

√
2
(
N−2+t+2

√
t log 2

δ1
+2 log 2

δ1

)
δ1N(N−t−2) . We get the conclusion of this lemma by setting at =

ιt, δ1 = δ2 = δ
2 , and z = x.

Corollary 8 (Corollary of Bernoulli’s inequality). For any 0 ≤ x ≤ c and a > 0, we have
x ≤ c log(1+ ax

c )

log(1+a) .

Proof. By Bernoulli’s inequality, (1 + a)
x
c ≤ 1 + ax

c . Because log(1 + a) > 0, by rearranging, we

have x ≤ c log(1+ ax
c )

log(1+a) .

Lemma 9. For any 0 ≤ x ≤ c and a > 0, we have
√
x <
√
x+ a− a

2
√
c+a

.

Proof. Numerically, for any n ≥ 1, 1√
n
< 2
√
n− 2

√
n− 1 [12]. Let n = x

a + 1. Then, we have

1√
x
a + 1

< 2

√
x

a
+ 1− 2

√
x

a

a√
a+ c

<
a√
a+ x

< 2
√
x+ a− 2

√
x

√
x <
√
x+ a− a

2
√
a+ c

.

Lemma 10 (Lemma 5.3 of [11]). Let xT = [xt]
T
t=1 ⊆ X. The mutual information between the

function values f(xT ) and their observations yT = [yt]
T
t=1 satisfy

I(f(xT );yT ) =
1

2
log det(I + σ−2k(xt)) =

1

2

∑k

t=1
log(1 + σ−2kt−1(xt)).
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Theorem 11. Assume there exist constant c ≥ maxx∈X k(x) and a training dataset is available
whose size is N ≥ 4 log 6

δ + T + 2. Define

ιt−1 =

√√√√6
(
N − 3 + t+ 2

√
t log 6

δ + 2 log 6
δ

)
δN(N − t− 1)

, bt−1 =
1

N − t
log

6

δ
, for any t ∈ [T ],

and ρT = max
A∈X,|A|=T

1
2 log |I + σ−2k(A)|. Then, with probability at least 1 − δ, the best-sample

simple regret in T iterations of meta BO with GP-UCB that uses Eq. (4) as its hyperparameter
satisfies

rGP-UCB
T ≤ ηGP-UCB

√
2cρT

T log(1 + cσ−2)
+ σ2 −

(2 log(3
δ ))

1
2σ2

√
c+ σ2

,

where ηGP-UCB = (
ιT−1+(2 log( 3

δ ))
1
2√

1−2
√
bT−1

√
1 + 2

√
bT−1 + 2bT−1 + ιT−1 + (2 log( 3

δ ))
1
2 ).

With probability at least 1− δ, the best-sample simple regret in T iterations of meta BO with PI that
uses f̂∗ ≥ maxx∈X f(x) as its target value satisfies

rPI
T < ηPI

√
2cρT

T log(1 + cσ−2)
+ σ2 −

(2 log( 3
2δ ))

1
2σ2

2
√
c+ σ2

,

where ηPI = ( f̂∗−µτ−1(x∗)√
kτ−1(x∗)+σ2

+ ιτ−1)

√
1+2b

1
2
τ−1+2bτ−1

1−2b
1
2
τ−1

+ ιτ−1 + (2 log( 3
2δ ))

1
2 , τ =

arg mint∈[T ] kt−1(xt).

Proof. We first show the regret bound for GP-UCB with our estimators of prior and posterior. All
of the probabilities mentioned in the proofs need to be interpreted in a frequentist manner. Let
τ = arg mint∈[T ] kt−1(xt). By Corollary 1, with probability at least 1− δ

3 ,

rGP-UCB
T = f∗ −maxt∈[T ] f(xt)

≤ f∗ − f(xτ )

≤ f∗ − µτ−1(xτ ) + µτ−1(xτ )− f(xτ )

≤ µτ−1(x∗) + ζ ′
√
kτ−1(x∗)− µτ−1(xτ ) + ζ ′

√
kτ−1(xτ ),

where ζ ′ = (2 log( 3
δ ))

1
2 . By Lemma 6, with probability at least 1− δ

3 ,

µτ−1(x∗)− µτ−1(xτ ) < µ̂τ−1(x∗)− µ̂τ−1(xτ ) + ιτ−1

√
kτ−1(x∗) + σ2 + ιτ−1

√
kτ−1(xτ ) + σ2,

where ιt =

√
6
(
N−2+t+2

√
t log 6

δ+2 log 6
δ

)
δN(N−t−2) ≤ ιT−1.

Lemma 6 and Lemma 9 also show that with probability at least 1− δ
6 , we have

√
kτ−1(x∗) ≤

√
kτ−1(x∗) + σ2 − σ2

2
√
c+ σ2

<

√
k̂τ−1(x∗)

1− 2
√
bτ−1

− σ2

2
√
c+ σ2

where bt = 1
N−t−1 log 6

δ ≤ bT−1 ∈ (0, 1
4 ). Notice that because of the input selection strategy of

GP-UCB with ζt = ιt−1+ζ′√
1−2
√
bt−1

, the following inequality holds with probability at least 1− δ
6 ,

µ̂τ−1(x∗) + (ιt−1 + ζ ′)
√
kτ−1(x∗) + σ2 ≤ µ̂τ−1(x∗) + ζt

√
k̂τ−1(x∗)

≤ µ̂τ−1(xτ ) + ζt

√
k̂τ−1(xτ ).

7



Hence, with probability at least 1− δ,

rGP-UCB
T ≤ µτ−1(x∗) + ζ ′

√
kτ−1(x∗) + σ2 − µτ−1(xτ ) + ζ ′

√
kτ−1(xτ ) + σ2 − ζ ′σ2

√
c+ σ2

< µ̂τ−1(x∗)− µ̂τ−1(xτ ) + (ιt−1 + ζ ′)(
√
kτ−1(x∗) + σ2 +

√
kτ−1(xτ ) + σ2)− ζ ′σ2

√
c+ σ2

≤ ζt
√
k̂τ−1(xτ ) + (ιt−1 + ζ ′)

√
kτ−1(xτ ) + σ2 − ζ ′σ2

√
c+ σ2

< (ζt

√
1 + 2

√
bt−1 + 2bt−1 + ιt−1 + ζ ′)

√
kτ−1(xτ ) + σ2 − ζ ′σ2

√
c+ σ2

< ηGP-UCB
√
kτ−1(xτ ) + σ2 − ζ ′σ2

√
c+ σ2

,

where ηGP-UCB = ( ιT−1+ζ′√
1−2
√
bT−1

√
1 + 2

√
bT−1 + 2bT−1 + ιT−1 + ζ ′). By Corollary 8 and the fact

that τ = arg mint∈[T ] kt−1(xt), we have

kτ−1(xτ ) ≤ 1

T

∑T

t=1
kt−1(xt)

≤ 1

T

∑T

t=1

c log(1 + cσ−2kt−1(xt)
c )

log(1 + cσ−2)

=
c

T log(1 + cσ−2)

∑T

t=1
log(1 + σ−2kt−1(xt)).

Notice that here Corollary 8 applies because 0 ≤ kτ−1(xτ ) ≤ c.

By Lemma 10, I(f(xT );yT ) = 1
2

∑T
t=1 log(1 + σ−2kt−1(xt)) ≤ ρT , so

kτ−1(xτ ) ≤ 2cρT
T log(1 + cσ−2)

,

which implies

rGP-UCB
T < η

√
2cρT

T log(1 + cσ−2)
+ σ2 − ζ ′σ2

√
c+ σ2

.

Next, we show the proof for a special case of PI with f̂∗, an upper bound on f , as its target value.
Again, by Corollary 1, with probability at least 1− δ

3 ,

rPI
T = f̂∗ −maxt∈[T ] f(xt)

≤ f̂∗ − f(xτ )

≤ f̂∗ − µτ−1(xτ ) + µτ−1(xτ )− f(xτ )

≤ f̂∗ − µτ−1(xτ ) + ζ ′
√
kτ−1(xτ ),

where ζ ′ = (2 log( 3
2δ ))

1
2 and τ = arg mint∈[T ] kt−1(xt). By Lemma 6 and the selection strategy of

PI, with probability at least 1− 2δ
3 ,

f̂∗ − µτ−1(xτ ) < f̂∗ − µ̂τ−1(xτ ) + ιτ−1

√
kτ−1(xτ ) + σ2

≤ f̂∗ − µ̂τ−1(x∗)√
k̂τ−1(x∗)

√
k̂τ−1(xτ ) + ιτ−1

√
kτ−1(xτ ) + σ2

≤
f̂∗ − µτ−1(x∗) + ιτ−1

√
kτ−1(x∗) + σ2√

k̂τ−1(x∗)

√
k̂τ−1(xτ ) + ιτ−1

√
kτ−1(xτ ) + σ2

<

(
f̂∗ − µτ−1(x∗)√
kτ−1(x∗) + σ2

+ ιτ−1)

√√√√1 + 2b
1
2
τ−1 + 2bτ−1

1− 2b
1
2
τ−1

+ ιτ−1

√kτ−1(xτ ) + σ2.
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Hence, with probability at least 1− δ, the best-sample simple regret of PI satisfy

rPI
T < ηPI

√
2cρT

T log(1 + cσ−2)
+ σ2 − ζ ′σ2

2
√
c+ σ2

,

where ηPI = ( f̂∗−µτ−1(x∗)√
kτ−1(x∗)+σ2

+ ιτ−1)

√
1+2b

1
2
τ−1+2bτ−1

1−2b
1
2
τ−1

+ ιτ−1 + ζ ′.

Theorem 12 (Theorem 2 in th paper). Assume there exist constant c ≥ maxx∈X k(x) and a training
dataset is available whose size is N ≥ 4 log 6

δ + T + 2. Then, with probability at least 1 − δ, the
best-sample simple regret in T iterations of meta BO with special cases of either GP-UCB or PI
satisfies

rUCB
T < ηUCB

T (N)λT , rPI
T < ηPI

T (N)λT , λ2
T = O(ρT /T ) + σ2,

where ηUCBT (N) = (m+C1)(
√

1+m√
1−m +1), ηPI

T (N) = (m+C2)(
√

1+m√
1−m +1)+C3,m = O(

√
1

N−T ),

C1, C2, C3 > 0 are constants, and ρT = max
A∈X,|A|=T

1
2 log |I + σ−2k(A)|.

Proof. This theorem is a condensed version of Thm. 11 with big O notations.

C Proofs for Section 4.2

Recall that we assume X is a compact set which is a subset of Rd. We only considers a special case
of GPs that assumes f(x) = Φ(x)TW , W ∼ N (u,Σ) and the basis functions Φ(x) ∈ RK are given.
The mean function and kernel are defined as

µ(x) = Φ(x)Tu and k(x) = Φ(x)TΣΦ(x).

Given noisy observations Dt = {(xτ , yτ )}tτ=1, t ≤ K, we have

µt(x) = Φ(x)Tut and kt(x, x
′) = Φ(x)TΣtΦ(x′),

where the posterior of W ∼ N (ut,Σt) satisfies

ut = u + ΣΦ(xt)(Φ(xt)
TΣΦ(xt) + σ2I)−1(yt − Φ(xt)

Tu),

Σt = Σ− ΣΦ(xt)(Φ(xt)
TΣΦ(xt) + σ2I)−1Φ(xt)

TΣ.

Our estimators for ut and Σt are

ût = û + Σ̂Φ(xt)(Φ(xt)
TΣ̂Φ(xt))

−1(yt − Φ(xt)
Tu),

Σ̂t =
N − 1

N − t− 1

(
Σ̂− Σ̂Φ(xt)(Φ(xt)

TΣ̂Φ(xt))
−1Φ(xt)

TΣ̂
)
.

We can compute the approximated conditional mean and variance of the observation on x ∈ X to be

µ̂t(x) = Φ(x)Tût and k̂t(x) = Φ(x)TΣ̂tΦ(x).

Again, we prove a bound on the best-sample simple regret rT = maxx∈X f(x) −maxt∈[T ] f(xt).
The evaluated inputs xt = [xτ ]tτ are selected either by a special case of GP-UCB using the acquisition
function

αGP-UCB
t−1 (x) = µ̂t−1(x) + ζtk̂t−1(x)

1
2 , with

ζt =

(
6(N − 3 + t+ 2

√
t log 6

δ + 2 log 6
δ )/(δN(N − t− 1))

) 1
2

+ (2 log( 3
δ ))

1
2

(1− 2( 1
N−t log 6

δ )
1
2 )

1
2

, δ ∈ (0, 1),

or by a special case of PI using the acquisition function

αPI
t−1(x) =

µ̂t−1(x)− f̂∗

k̂t−1(x)
1
2

.
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This special case of PI assumes additional information of the upper bound on function value f̂∗ ≥
maxx∈X f(x).

For convenience of the notations, we define σ̄2(x) = σ2Φ(x)T(Φ(x̄)Φ(x̄)T)−1Φ(x).

Corollary 13 combines Lemma 2 and basic properties of the Wishart distribution [3].

Corollary 13. Assume the matrix Φ(x̄) ∈ RK×M has linearly independent rows. Then, û and Σ̂
are independent and

û ∼ N
(
u,

1

N
(Σ + σ2(Φ(x̄)Φ(x̄)T)−1)

)
, Σ̂ ∼ W

(
1

N − 1

(
Σ + σ2(Φ(x̄)Φ(x̄)T)−1

)
, N − 1

)
.

For finite set of inputs x ⊂ X, µ̂(x) and k̂(x) are also independent; they satisfy

µ̂(x) ∼ N
(
µ,

1

N
(k(x) + σ̄2(x))

)
, k̂(x) ∼ W

(
1

N − 1

(
k(x) + σ̄2(x)

)
, N − 1

)
.

The proofs of Lemma 3 and Theorem 4 in the paper directly follow Corollary 13 and proofs of
Lemma 6, Theorem 11 in this appendix.

D Proofs for Section 4.3

We show that the simple regret with x̂∗T = xτ , τ = arg maxt∈[T ] yt is very close to the best-sample
simple regret.

Lemma 14. With probability at least 1− δ, RT − rT ≤ 2(2 log 1
δ )

1
2σ.

Proof. Let τ ′ = arg maxt∈[T ] f(xt) and τ = arg maxt∈[T ] yt. Note that yτ ≥ yτ ′ . By Corollary 1,
with probability at least 1 − δ, f(xτ ) + Cσ ≥ yτ ≥ yτ ′ ≥ f(xτ ′) − Cσ, where C = (2 log 1

δ )
1
2 .

Hence RT − rT = f(xτ ′)− f(xτ ) ≤ 2Cσ.

E Experiments

For Plain and TLSM-BO with UCB in our experiments, we used the same ζt as PEM-BO.

In the following, we include extra experiments that we performed with PI acquisition function and
matrix completion for the missing entry case in the discrete domains. The PI approach uses the
maximum function value in the training dataset D̄N as the target value. These results show that our
approach is resilient to missing data. BO with the PI acquisition function performs similarly to UCB.
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