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Abstract

Recent advances in recording technologies have allowed neuroscientists to record
simultaneous spiking activity from hundreds to thousands of neurons in multiple
brain regions. Such large-scale recordings pose a major challenge to existing
statistical methods for neural data analysis. Here we develop highly scalable
approximate inference methods for Poisson generalized linear models (GLMs)
that require only a single pass over the data. Our approach relies on a recently
proposed method for obtaining approximate sufficient statistics for GLMs using
polynomial approximations [7], which we adapt to the Poisson GLM setting.
We focus on inference using quadratic approximations to nonlinear terms in the
Poisson GLM log-likelihood with Gaussian priors, for which we derive closed-form
solutions to the approximate maximum likelihood and MAP estimates, posterior
distribution, and marginal likelihood. We introduce an adaptive procedure to
select the polynomial approximation interval and show that the resulting method
allows for efficient and accurate inference and regularization of high-dimensional
parameters. We use the quadratic estimator to fit a fully-coupled Poisson GLM to
spike train data recorded from 831 neurons across five regions of the mouse brain
for a duration of 41 minutes, binned at 1 ms resolution. Across all neurons, this
model is fit to over 2 billion spike count bins and identifies fine-timescale statistical
dependencies between neurons within and across cortical and subcortical areas.

1 Introduction

The Poisson GLM is a standard model of neural encoding and decoding that has proved useful
for characterizing heterogeneity and correlations in neuronal populations [12, 19, 23, 15, 13]. As
new large-scale recording technologies such as the Neuropixels probe are generating simultaneous
recordings of spiking activity from hundreds or thousands of neurons [8, 21, 4], Poisson GLMs
will be a useful tool for investigating encoding and statistical dependencies within and across brain
regions. However, the size of these datasets makes inference computationally expensive. For example,
it may not be possible to store the design matrix and data in local memory.

In this work, we develop scalable approximate inference methods for Poisson GLMs to analyze
such data. Our approach follows from the polynomial approximate sufficient statistics for GLMs
framework (PASS-GLM) developed in [7], which allows for inference to be performed with only
a single pass over the dataset. This method substantially reduces computation time and storage
requirements for inference in Poisson GLMs without sacrificing time resolution, as the sufficient
statistics are computed as sums over time.

Our specific contributions are the following. Using quadratic approximations to nonlinear terms in
the log-likelihood, we derive the closed-form approximate maximum likelihood and MAP estimates
of the parameters in Poisson GLMs with general link functions and Gaussian priors. We introduce
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Figure 1: a. The Poisson GLM as a model of spiking activity. b. Quadratic and 4th-order Chebyshev
approximations to f(x) and log f(x) for f(x) = exp(x) and f(x) = log(1 + exp(x)) over two
example intervals. The exponential approximation is over an interval for modeling spikes per second
and the softplus approximation is over an interval for modeling spikes per bin.

a procedure to adaptively select the interval of the quadratic approximation for each neuron. The
quadratic case is the most scalable PASS-GLM because it has the smallest memory footprint, and we
found that adaptive interval selection was necessary to realize these benefits. We also show that fourth
order approximations are useable for approximating the log-likelihood of Poisson GLMs. Finally,
we use the quadratic approximation to derive a fast, closed-form approximation of the marginal
likelihood in Poisson GLMs, enabling efficient evidence optimization.

After validating these estimators on simulated spike train data and a spike train recording from a
primate retinal ganglion cell, we demonstrate the scalability of these methods by fitting a fully-
coupled GLM to the responses of 831 neurons recorded across five different regions of the mouse
brain.

2 Background

2.1 Poisson GLM

The Poisson GLM in neuroscience is used to identify statistical dependencies between observed
spiking activity and task-relevant variables such as environmental stimuli and recent spiking activity
across neurons (Figure 1a). The model is fit to binned spike counts yt for t = 1, ..., T with time bin
size ∆. The spike counts are conditionally Poisson distributed given a vector of parameters w and
time-dependent vector of covariates xt

yt|xt,w ∼ Poisson(yt; f(x>t w)∆). (1)

The log-likelihood of w given the vector of all observed spike counts y is

log p(y|X,w) =

T∑
t=1

log p(yt|xt,w) =

T∑
t=1

(
yt log f(x>t w)− f(x>t w)∆

)
(2)

where we have dropped terms constant in w and the t-th row of the design matrix X is xt. The
methods in this paper apply both when using the canonical log link function such that the nonlinearity
is f(x) = exp(x) and when using alternative nonlinearities.

2.2 Polynomial approximate sufficient statistics for GLMs (PASS-GLM)

With moderate amounts of data, first or second order optimization techniques can be used to quickly
find point estimates of the parameters w. However, inference can be prohibitive for large datasets,
as each evaluation of the log-likelihood requires passing through the entire design matrix. The
authors of [7] recently described a powerful approach to overcome these limitations using polynomial
approximations in GLM log-likelihoods. This method leads to approximate sufficient statistics that
can be computed in a single pass over the dataset, and therefore is called PASS-GLM. Formally, [7]
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considers log-likelihoods that are sums over K functions

log p(yt|xt,w) =

K∑
k=1

yαk
t φ(k)(y

βk
t x>t w − aky) (3)

where the values αk, βk, ak ∈ {0, 1} and the functions φ(k) depend on the specific GLM. In a Poisson
GLM with nonlinearity f(x), we have K = 2 with φ(1)(x) = log f(x), φ(2)(x) = f(x), α1 = 1,
and the other values set to zero. When f(x) = exp(x), the first function simplifies to φ(1)(x) = x.
In [7], each nonlinear φ(k) is approximated with an M -th order polynomial φM(k) using a basis of
orthogonal Chebyshev polynomials [11], and the authors show that this approximation leads to a
log-likelihood that is simply a sum over monomial terms. They provide theoretical guarantees on the
quality of the MAP estimates using this method and on the quality of posterior approximations for
specific cases, including the Poisson GLM with an exponential nonlinearity. We use this approach to
extend inference in Poisson GLMs to massive neural datasets.

2.3 Computing Chebyshev polynomial approximations

We use systems of orthogonal Chebyshev polynomials to compute polynomial approximations. Here,
we describe our procedure for computing the coefficients of an M -th order polynomial approximation
to a function f(x) over the interval [x0, x1]. We assume that f(x) has a Chebyshev expansion
over [x0, x1] given by f(x) =

∑∞
m=0 cmTm, where cm are coefficients and Tm is the degree-m

Chebyshev polynomial of the first kind over [x0, x1] [11]. By truncating this expansion at the desired
order M and collecting terms, we obtain an approximation f(x) ≈

∑M
m=0 amx

m. We note that the
coefficients am for m = 0, ...,M can be estimated by solving a weighted least-squares problem, by
minimizing the squared error over a grid of points on [x0, x1] between f(x) and an approximation
f̂(x) with monomial basis functions. The weighting function is w(x) = 1√

1−x2
over [−1, 1] and is

mapped to general intervals [x0, x1] via a change of variables.

2.4 Related work

An alternative approach for efficient inference in Poisson GLMs is the expected log-likelihood
approximation [14, 17], which replaces the nonlinear exponential term in the log-likelihood with
its expectation across data points. This is justified using knowledge of the covariance structure of
the stimulus or by arguments invoking the central limit theorem. The benefits of the polynomial
approximation approach are that it applies to arbitrary stimulus and covariate distributions, it does
not inherently require large amounts of data, and it can tradeoff storage costs with higher order
approximations for increased accuracy. Importantly, in contrast to the expected log-likelihood
approximation, the approach in this paper is easily extended to non-canonical link functions.

3 Polynomial approximations for Poisson GLMs

3.1 Quadratic approximation to exponential nonlinearity

We first apply the polynomial approximation framework to Poisson GLMs with an exponential
nonlinearity using a quadratic approximation. With the canonical link function, the log f(x) term in
the log-likelihood is linear in the parameters and we only need to approximate the nonlinear term
f(x) = exp(x)∆. We approximate this term as

exp(x)∆ ≈ a2x2 + a1x+ a0 (4)

where the coefficients a2, a1, and a0 are computed using a Chebyshev polynomial approximation
over the interval [x0, x1] using the methods described in Section 2.3. We currently consider [x0, x1]
to be a fixed approximation interval and in Section 4.1 we discuss selection of this interval. Example
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approximations are shown in Figure 1b. We use this approximation to rewrite the log-likelihood as

log p(y|X,w) =

T∑
t=1

(
ytx
>
t w − exp(x>t w)∆

)
(5)

≈
T∑
t=1

(
ytx
>
t w − a2(x>t w)2 − a1(x>t w)− a0

)
(6)

= w>X>(y − a1)−w>a2X
>Xw (7)

where a1 is a vector with each element equal to a1 and throughout we have dropped terms that do not
depend on w. This form has approximate sufficient statistics

∑T
t=1 xt,

∑T
t=1 ytxt, and

∑T
t=1 xtx

>
t .

The approximate log-likelihood is a quadratic function in w and therefore is amenable to analytic
inference. First, the closed-form maximum likelihood (ML) estimate of the parameters is

ŵmle−pa2 = (2a2X
>X)−1X>(y − a1). (8)

Next, with a zero-mean Gaussian prior on w with covariance C such that w ∼ N (0,C), the
approximate MAP estimate and posterior distribution are

ŵmap−pa2 = (2a2X
>X + C−1)−1X>(y − a1) (9)

p(w|X,y,C) ≈ N (w; ΣX>(y − a1),Σ) (10)

where Σ = (2a2X
>X + C−1)−1 is the approximate posterior covariance. This enables efficient

usage of a host of Bayesian regularization techniques. In our experiments, we implement ridge
regression with C−1 = λI , Bayesian smoothing with C−1 = λL where L is the discrete Laplacian
operator [16, 14], and automatic relevance determination (ARD) with C−1ii = λi [10, 22, 18, 25]. In
section (4.2), we introduce a fast approximate evidence optimization scheme for the Poisson GLM to
optimize parameters in these priors.

3.2 Extension to non-canonical link functions

Nonlinearities such as the softplus function f(x) = log(1 + exp(x)) are often used in Poisson GLMs.
We extend the above methods to general nonlinearities f(x) by approximating both terms involving
f(x>t w) in the log-likelihood

f(x>t w)∆ ≈ a2(x>t w)2 + a1x
>
t w + a0 (11)

log f(x>t w) ≈ b2(x>t w)2 + b1x
>
t w + b0. (12)

Both sets of coefficients are computed using Chebyshev polynomials over the same interval [x0, x1].
The approximate log-likelihood is

log p(y|X,w) ≈
T∑
t=1

yt(b2(x>t w)2 + b1x
>
t w)− (a2(x>t w)2 + a1x

>
t w) (13)

= w>X>(b1y − a1)−w>(a2X
>X− b2X> diag(y)X)w. (14)

With non-canonical link functions we have one additional approximate sufficient statistic∑T
t=1 ytxtx

>
t . As in the previous section, we can solve this equation to get closed form approxima-

tions for the maximum likelihood and MAP estimates of w and posterior over w. In particular, with
a N (0,C) prior on w the MAP estimate (and posterior mean) is ŵmap−pa2 = ΣX>(b1y − a1)
where Σ = (2a2X

>X− 2b2X
> diag(y)X + C−1)−1 is the posterior covariance.

3.3 Higher order approximations

The approximation accuracy increases with the order of the polynomial approximation (Figure 1b).
Here, we investigate higher order approximations and return to the exponential nonlinearity. Unfortu-
nately, a third order approximation of the exponential over intervals of interest leads to a negative
leading coefficient, and therefore makes optimization of the log-likelihood trivial by increasing the
inner product x>w to infinity. However, a fourth order approximation is useable, which is in contrast
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with logistic regression, for which a sixth order approximation was the next useable order [7]. We
approximate the exponential using a fourth order polynomial over [x0, x1]

exp(x)∆ ≈ a4x4 + a3x
3 + a2x

2 + a1x+ a0 (15)

using Chebyshev polynomials and compute the approximate log-likelihood

log p(y|X,w) ≈
T∑
t=1

(
ytx
>
t w − a4(x>t w)4 − a3(x>t w)3 − a2(x>t w)2 − a1(x>t w)

)
(16)

= w>X>(y − a1)−w>a2X
>Xw

− a3X 3×̄1w×̄2w×̄3w − a4X 4×̄1w×̄2w×̄3w×̄4w (17)

where ×̄n is the tensor n-mode vector product and X 3 =
∑T
t=1 xt◦xt◦xt and X 4 =

∑T
t=1 xt◦xt◦

xt ◦ xt are the third and fourth order moment tensors summed across data points. The approximate
sufficient statistics are the third and fourth order moment tensors in addition to those from the quadratic
approximation. We note that computing and storing these higher order moments is expensive and
we can no longer analytically compute the maximum likelihood and MAP solutions. Once the
approximate sufficient statistics are computed, point estimates of the parameters can be identified via
optimization of the paGLM-4 objective.

4 Optimizing hyperparameters

4.1 Approximation interval selection

When using quadratic approximations for Poisson GLMs we found that the parameter estimates were
sensitive to the approximation interval [x0, x1], especially when using the exponential nonlinearity
(Figure 3a,b). Further, different approximation intervals will be appropriate for different nonlinearities,
bin sizes, and neurons (Figure 3). We therefore found it crucial to adaptively select the approximation
interval for each neuron and we provide a procedure to accomplish this.

We first generated a set of putative approximation intervals based on the nonlinearity and bin size,
which determine the expected centers and lengths of the approximation intervals. For example,
with f(x) = exp(x)∆ the output of exp(x) is a rate in spikes per second, so the approximation
intervals should be in the range x = −4 to x = 6, depending on the response properties of the
neuron. We found that approximation intervals with lengths 4 through 8 provided a balance between
approximation accuracy and coverage of a desired input range for the exponential nonlinearity, while
wider intervals could be used for the softplus nonlinearity.

For each interval in this set, we computed the approximate ML or MAP estimate of the parameters. We
then computed the exact log-likelihood of the estimate given a random subset of training data, whose
size was small enough to store in memory. We selected the approximation interval that maximized
the log-likelihood of the random subset of data. We emphasize that different approximation intervals
can be efficiently tested in the quadratic case as this only requires solving a least-squares problem for
each approximation interval, and the subset of data can be stored during the single pass through the
dataset. We note that cross-validation could also be used to select the approximation interval.

Empirically, this procedure provided large improvements in accuracy of the parameter estimates
and in the log-likelihood of training and held-out data (Figure 3a,b and Figure 5b). In general, we
conjecture that procedures to adapt the approximation interval will be useful for other implementations
of PASS-GLMs, for adapting the approximation interval to different datasets and models and for
refining the approximation interval post-hoc if the algorithm is making poor predictions in practice.

4.2 Marginal likelihood approximation

We are often interested in fitting Poisson GLMs with high-dimensional parameters, correlated
input (e.g. arising from naturalistic stimuli), and/or sparse spiking observations. For these reasons,
regularization of the parameters is important even when the number of spike count observations is
large [18, 5, 20, 6, 14, 3, 9, 1]. In this section, we derive an approximation to the marginal likelihood
in Poisson GLMs that follows directly from approximating the log-likelihood with a quadratic
polynomial. The approximation is closed-form such that approximate evidence optimization can be
performed efficiently, and we use it to optimize ridge and ARD hyperparameters.
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Figure 2: Simulated data experiment. a. The exact ML and paGLM-2 filter estimates are similar to
the true filters. b. The paGLM-2 estimate provides comparable mean squared error (MSE) to the
exact ML estimate (left) while the paGLM-2 method shows favorable computational scaling (right).

We restrict ourselves to the exponential nonlinearity, although the same approach can be used for
alternative nonlinearities. With a zero-mean Gaussian prior on w and a quadratic approximate
log-likelihood as in section (3.1), we recognize that we can analytically marginalize w from the joint
p(y,w|X,C) to obtain the following approximation to the marginal likelihood

log p(y|X,C) ≈ 1

2
log |Σ| − 1

2
log |C|+ 1

2
(y − a1)>XΣX>(y − a1) (18)

where Σ = (2a2X
>X + C−1)−1 is the covariance of the approximate posterior and we have

dropped terms that do not depend on C. It is important to note that evidence optimization for
Poisson GLMs already requires approximations such as the Laplace approximation and our approach
is a computationally cheaper alternative, as it does not require a potentially expensive numerical
optimization to find the MAP estimate. Instead, the approximate marginal likelihood can be directly
optimized using standard techniques.

5 Experiments

Throughout our experiments, we refer to estimates obtained using quadratic approximations by
paGLM-2, estimates obtained using fourth order approximations by paGLM-4, and estimates obtained
through optimization of the exact log-likelihood by exact.

5.1 Simulated data

We first tested the approximate maximum likelihood estimates when using a quadratic approximation
to the exponential function on simulated data. We simulated spike count data from a Poisson GLM
with stimulus, post-spike, and coupling filters when stimulated with a binary stimulus. The stimulus
filter had 10 weights governing 10 basis functions, the post-spike and coupling filters each had 5
weights governing 5 basis functions, and a bias parameter was included. In a sample dataset, we
found that the exact ML and paGLM-2 estimates of the filters were similar and close to the true filters
(Figure 2a, 1 million spike count observations). Next, we compared the scaling properties of the
paGLM-2 and exact ML approaches across 25 simulated data sets at each of 5 different amounts
of training data. We found that the mean squared error between the true weights and the estimated
weights decreased as the number of observations increased for both estimators. The optimization time
scaled more efficiently for paGLM-2 than the exact method (Figure 2b, quasi-Newton optimization
for exact vs. solving least squares equation for paGLM-2). We used an approximation interval of
[0, 3] for each run of this simulation. Interestingly, for smaller amounts of data, the exact ML estimate
had an increased mean squared error between the true and fit parameters, as it sometimes overfit the
data. Empirically, the approximation appears to help regularize this overfitting.

5.2 Retinal ganglion cell analysis

We next tested the paGLM-2 estimator using spike train data recorded from a single parasol retinal
ganglion cell (RGC) in response to a full field binary flicker stimulus binned at 8.66 ms [24]. First,
we fit a Poisson GLM with an exponential nonlinearity, a stimulus filter, and a baseline firing rate
to the responses in approximately 144,000 spike count bins. The stimulus filter was parameterized
by a vector of 25 weights which linearly combine the previous 25 bins of the stimulus at each time
point, and we set ∆ = 8.66 ms such that the firing rate was in spikes per second. On a grid of
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Figure 3: Analysis of paGLM estimators on RGC data with exponential (a.-d.) or softplus (e.-h.)
nonlinearities. a. For the exponential nonlinearity with ∆ = 8.66 ms, comparison of the exact ML
and paGLM-2 estimates of the stimulus filter for different approximation intervals (upper left of each
panel). The paGLM-2 estimate can be too large or small relative to the exact ML estimate. b. The
training log-likelihood (indicated by color) of the paGLM-2 estimate for different approximation
intervals. c. The distribution of the inner products between the covariates xt and the exact ML
estimate wmle. The interval [0, 6] covers most of this distribution. d. The exact ML, paGLM-2, and
paGLM-4 estimates for the exponential nonlinearity computed with approximation interval [0, 6].
e.-h. Same as (a.-d.), except for the softplus nonlinearity and with ∆ = 1 such that the rate is in
spikes per bin. The approximation interval is [−6, 3].

approximation intervals, we computed the paGLM-2 estimate of the parameters and evaluated the
training log-likelihood of the data given the paGLM-2 estimate. The stimulus filter estimates and
training log-likelihood varied considerably as a function of the approximation interval (Figure 3a,b).
In particular, the paGLM-2 estimate was highly similar to the exact ML estimate for some intervals
while too large or small for other intervals. Adaptive interval selection using either the full dataset
or a random subset of the data identified the interval [0, 6], demonstrating the importance of this
approach. This interval tightly covered the distribution of inner products between the covariates and
the exact ML estimate of the weights (Figure 3c). The paGLM-2 and paGLM-4 estimates of the
stimulus filter computed over [0, 6] closely matched the exact ML estimate (Figure 3d).

The performance of paGLM-2 was more robust to the approximation interval for the Poisson GLM
with a softplus nonlinearity and with ∆ = 1, such that the rate is in spikes per bin (Figure 3e,f). Due to
the change in nonlinearity and in ∆, the distribution of inner products between the covariates and the
exact ML estimate shifted to the left and widened (Figure 3g). The interval [−6, 3] covered most of
this distribution, and the paGLM-2 estimate of the stimulus filter computed using this approximation
interval was indistinguishable from the exact ML stimulus filter (Figure 3h).

To investigate the quality of paGLM-2 MAP estimates and to verify our procedure for approximate
evidence optimization, we increased the dimensionality of the stimulus filter to 100 weights and fit the
filter to a smaller set of 21,000 spike counts binned at ∆ = 1.66 ms, where the stimulus was upsampled.
We used ridge regression to regularize the weights. We selected the approximation interval using
a random subset of the data and optimized the ridge penalty by optimizing the approximate log-
likelihood (18). The computation time for this procedure, including computing the final paGLM-2
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MAP estimate, was 0.7 seconds, compared to 0.7 seconds for computing the exact MAP once and
30 seconds for identifying the optimal ridge parameter using the Laplace approximation. The two
methods provided similar estimates of the marginal likelihood and MAP stimulus filter (Figure 4a).
Finally, we found that the exact MAP and paGLM-2 MAP estimates computed with a Bayesian
smoothing prior were also similar (Figure 4b).

5.3 Fully-coupled GLM fit to 831 neurons

We fit a fully-coupled Poisson GLM to the spiking responses of N = 831 neurons simultaneously
recorded from the mouse thalamus, visual cortex, hippocampus, striatum, and motor cortex using two
Neuropixels probes [8]. These responses were recorded during spontaneous activity for 46 minutes.
To maintain precise spike-timing information, we binned the data at 1 ms (Figure 5a). For each
neuron, the GLM consisted of a baseline rate parameter, a post-spike filter, and coupling filters from
all other neurons. We used an exponential nonlinearity such that the firing rate λt of a neuron at
time t was λt = exp(µ +

∑N
n=1 hn ∗ y

hist(t)
n ) where µ is the baseline log firing rate and y

hist(t)
n is

the spike train history of the n-th neuron at time t. We parametrized each filter hn as a weighted
combination of three raised cosine bumps [15]. For each neuron we fit in total 2494 parameters for
the baseline rate, post-spike filter, and coupling filters.

To compare the performance of the exact and paGLM-2 MAP estimators on this dataset, we first
restricted ourselves to the first 11 minutes of the recording so that we could store the entire dataset and
design matrix in memory. We held out the first minute as a validation set and used the next 10 minutes
to compute the exact and paGLM-2 MAP estimates with a fixed ridge prior, as hyperparameter
optimization was computationally infeasible in the exact MAP case. We used a random subset of
the training data to select the approximation interval for each neuron and we computed the exact
MAP estimates using 50 iterations of quasi-Newton optimization. We performed this analysis on
50 randomly selected neurons with firing rates above 0.5 Hz due to the cost of computing the exact
MAP. On average, the fitting time was about 3 seconds for the paGLM-2 MAP estimates and about
3 minutes for the exact MAP estimates (Figure 5b). Despite the computational difference, the two
estimates provided highly similar training and held-out performance. The paGLM-2 MAP estimates
computed using the adaptive interval outperformed the estimates using a fixed interval.

We then fit the model to the responses from the first 41 minutes of spiking responses, giving 2.46
million time bins of observations for each neuron. In this case, the design matrix was too large to
store in memory (>30 GB). By storing only the approximate summary statistics and one minute of
data, we reduced storage costs by a factor of ≈40. We computed paGLM-2 MAP estimates using
adaptive interval selection and evidence optimization. We placed an ARD prior over each set of 3
coupling weights incoming from other neurons, and optimized the ARD hyperparameters using the
fixed-point update equations [2, 18]. We found that sometimes this method under-regularized and
therefore we thresholded the prior precisions values from below at 26. Fitting the entire model took
about 3.6 seconds per neuron.
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Figure 5: Neuropixels recording analysis. a. Raster plot of spikes recorded from motor cortex (MCX),
striatum (STR), visual cortex (VCX), hippocampus (HC), and thalamus (TH). b. Computation time
per neuron (left), training performance (middle), and held-out performance (right) for the exact and
paGLM-2 MAP estimates fit to 10 minutes of Neuropixels data, with adaptive and fixed intervals
of approximation. The fixed interval [−2, 6] was chosen to tightly cover the optimal approximation
intervals across neurons. For c.-e., the model was fit to the first 41 minutes and validated on the last 5
minutes of responses. c. Histogram of spike prediction accuracy on validation data for neurons with
firing rates greater than 0.5 Hz. d. Example paGLM-2 MAP estimates of post-spike and coupling
filters. e. Coupling matrix with summed MAP estimates of the coupling filters before exponentiation.

The fit model had positive spike prediction accuracy for 79.6% of neurons (469 out of 589) whose
firing rates were greater than 0.5 Hz in both the training and validation periods (Figure 5c). This
measure quantifies the improvement in prediction we obtain from the fit parameters of the GLM over
predictions given the mean firing rate of the held-out spikes. Coupling filters for example neurons
are shown in Figure 5d. To summarize the coupling filters across all of the neurons, we computed a
coupling matrix whose i, j-th entry was the summed coupling filter before exponentiation for neuron
j fit to the spiking responses of neuron i (Figure 5e). The rows of this matrix correspond to the set of
incoming coupling filters for a neuron. We thresholded values with magnitudes larger than 10 (0.05%
of coupling filters) to show the dynamic range. The coupling in the fit model was often stronger
within regions and between neurons that were anatomically closer to each other, as the neurons in the
coupling matrix are sorted by depth on the probe, with the thalamus, hippocampus, and visual cortex
on probe one and the striatum and motor cortex on probe two [8].

6 Conclusion

We have developed a method for scalable inference in Poisson GLMs that is suitable for large-scale
neural recordings. 1 The method is based on polynomial approximations for approximate sufficient
statistics in GLMs [7]. This method substantially reduces storage and computation costs yet retains
the ability to model fine time-scale statistical dependencies. While we focused on Gaussian priors
in this paper, optimizing the paGLM objective with non-Gaussian, sparsity-inducing priors is an
interesting direction of future work. As the approximate sufficient statistics scale with the number of
parameters, scaling the method to larger numbers of parameters may require low-rank approximations
to the sufficient statistics. Finally, efficient computation and storage of higher order moments will
make the more accurate fourth order methods appealing.

1An implementation of paGLM is available at https://github.com/davidzoltowski/paglm.
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