
Appendix A Experimental Setup and Datasets

For both core and additional experiments models were trained on the MNIST [35], SVHN [38] and
CIFAR [36] datasets. Dataset sizes can be found in table 4. In addition to the datasets described

Table 4: Training and Evaluation Datasets

Dataset Train Valid Test Classes
MNIST 55000 5000 10000

10SVHN 73257 - 26032
CIFAR-10 50000 - 10000
CIFAR-100 50000 - 10000 100

above, the OMNIGLOT [37], SEMEION [41], LSUN [39] and TinyImagenet [40] datasets were used
for out-of-distribution input detection experiments. For these datasets only their test sets were used,
described in table 4. TinyImagenet was resized down to 32x32 from 64x64 and OMNIGLOT was
resized down to 28x28 using bilinear interpolation. For all datasets the input features were re-scaled

Table 5: Additional Evaluation Datasets
Dataset Size
OMNIGLOT 32460
SEMEION 1593
LSUN 10000
tinyImagenet 10000

to the range -1.0 and 1.0 from the range 0 and 255. No additional preprocessing was done models
trained on the MNIST and SVHN datasets. For models trained on CIFAR-10, images were randomly
flipped left-right, shifted by ±4 pixels and rotated by ± 15 degrees as a form of data augmentation.

All networks for all experiments were constructed using variants on the VGG [2] architecture for
image classification. Models were implemented in Tensorflow [42]. Details of the architectures used
for each dataset can be found in table 6. For convolutional layers dropout was used with a higher
keep probability than for fully-connected layers.

Table 6: Architecture Sizes
Dataset Arch. Activation Conv Depth FC Layers FC units
MNIST VGG-6 ReLU 4 1 100
SVHN VGG-16 Leaky ReLU 13 2 2048
CIFAR-10 VGG-16 Leaky ReLU 13 2 2048

The training configuration for all models is described in table 7. Interestingly, it was necessary to use
less dropout for the DPN, due to the regularization effect of the noise data. All models trained using
the NADAM optimizer [43]. For the models trained on MNIST exponentially decaying learning rates
were used. Models trained on SVHN and CIFAR-10 used 1-Cycle learning rates, where learning rates
are linearly increased from the initial learning rate to 10x the initial learning rate for half a cycle and
then linearly decreased back down to the initial learning rate for the remained of the cycle. Learning
rates are then linearly decreased until 1e-6 for the remaining training epochs. This approach has been
shown to act both as a reguralizer as well as speed up training of models [?].

Table 7: Training Configuration

Dataset Model Dropout LR Cycle Len. Epochs ↵̂0 CE weight OOD data

MNIST DNN 0.50 1e-3 - 30 - - -
DPN 0.95 1e-3 - 10 1e3 0.0 MNIST FA

SVHN DNN 0.50 1e-3 30 40 - - -
DPN 0.50 7.5e-4 30 40 1e3 1.0 CIFAR-10

CIFAR-10 DNN 0.50 1e-3 30 45 - - -
DPN 0.70 7.5e-4 70 100 1e2 1.0 CIFAR-100
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For the DPN trained on MNIST data the out-of-distribution data was synthesized using a Factor
Analysis model with a 50-dimensional latent space. In standard factor analysis the latent vectors have
an isotropic standard normal distribution. To push the FA model to produce data at the boundary of
the in-domain region the variance on the latent distribution was increased.

Appendix B Additional Experiments

Further experiments have been run in addition to the core experiments described in section 5. In
appendix B.1 the MNIST DNN and DPN described in section 5.2 is evaluated against other out-of-
distribution datasets. In appendix B.2 and B.3 a DPN is trained on the SVHN [38] and CIFAR-10 [36]
datasets, respectively, and evaluated on the tasks of misclassification detection and out-of-distribution
input detection.

B.1 Additional MNIST experiments

In Table 8 out-of-distribution input detection is run against the SEMEION, SVHN and CIFAR-10
datasets. SEMEION is a dataset of greyscale handwritten 16x16 digits, whose primary difference
from MNIST is that there is no padding between the edge of the image and the digit. SEMEION
digits were upscaled to 28x28 for these experiments. For the SVHN and CIFAR-10 experiments, the
images were transformed into greyscale and downsampled to 28x28 size.

The purpose here is to investigate how out-of-distribution input detection performance is affected by
the similarity of the OOD data to the in-domain data. Here, SEMEION is the most similar dataset
to MNIST, as it is also composed of greyscale handwritten digits. SVHN, also a dataset over digits
0-9, is less similar, as the digits are now embedded in street signs. CIFAR-10 is the most different,
as it is a dataset of real objects. In all experiments presented in table 8 the DPN outperforms the
baselines. Performance of all models is worst on SEMEION and best on CIFAR-10, illustrating how
OOD detection is more challenging as the datasets become less distinct. Note, As SEMEION is a
very small dataset it was not possible to get a balanced set of MNIST and SEMEION images, so
AUPR is a better performance metric than AUROC on this particular experiment.

Table 8: MNIST out-of-domain detection

OOD Data Model AUROC AUPR
Max.P Ent. M.I. D.Ent. Max.P Ent. M.I. D.Ent.

SEMEION
DNN 92.7 92.9 - - 76.4 76.7 - -
MCDP 95.2 95.3 95.4 - 84.1 84.2 87.3 -
DPN 99.5 99.6 99.1 99.7 96.9 97.5 90.8 98.6

SVHN
DNN 98.7 98.9 - - 98.5 98.7 - -
MCDP 98.2 98.4 98.1 - 98.0 98.3 97.9 -
DPN 99.9 100.0 99.5 100.0 99.9 100.0 98.5 100.0

CIFAR10
DNN 99.4 99.5 - - 99.3 99.4 - -
MCDP 99.1 99.3 98.9 - 98.9 99.2 98.6 -
DPN 100.0 100.0 99.5 100.0 100.0 100.0 98.2 100.0

B.2 SVHN Experiments

This section describes misclassification and out-of-distribution input detection experiments on the
SVHN dataset. A DPN trained on SVHN used the CIFAR-10 dataset as the noise dataset, rather than
using a generative model like Factor Analysis, VAE or GAN. Investigation of appropriate methods to
synthesize out-of-distribution data for complex datasets is beyond the scope of this work.

Table 9 describes the misclassification detection experiment on SVHN. Note, all models achieve
comparable classification error (4.3-5.1%). The DPN outperforms the baselines according to AUPR
but achieves lower performance in AUROC on misclassification detection using all measures.

Table 10 reports the out-of-distribution detection performance of SVHN vs CIFAR-10, CIFAR-100,
LSUN and TinyImageNet datasets, respectively. In all experiments the DPN is seen to consistently
achieves highest performance. Note, the DPN uses CIFAR-10 as the training out-of-distribution
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Table 9: SVHN test misclassification detection

Model AUROC AUPR % Err.Max.P Ent. M.I. D.Ent. Max.P Ent. M.I. D.Ent.
DNN 90.1 91.8 - - 47.7 46.8 - - 4.3

MCDP 92.0 92.2 92.0 - 46.4 43.5 40.4 - 4.3

DPN 90.1 90.1 90.1 91.2 55.3 54.8 54.8 46.0 5.1

dataset, so it is unsurprising that it achieves near-perfect performance on a held-out set of CIFAR-10
data. Interestingly, there is a larger margin between the DNN and MCDP on SVHN than on networks
trained either on MNIST or CIFAR-10.

Table 10: SVHN out-of-domain detection

OOD Data Model AUROC AUPR
Max.P Ent. M.I. D.Ent. Max.P Ent. M.I. D.Ent.

CIFAR10
DNN 92.5 93.8 - - 91.4 92.1 - -
MCDP 95.6 96.0 96.3 - 94.4 95.0 95.8 -
DPN 99.9 99.9 99.9 99.9 100.0 100.0 100.0 99.9

CIFAR100
DNN 92.4 93.8 - - 91.4 92.1 - -
MCDP 94.2 94.8 95.4 - 94.2 94.8 95.4 -
DPN 99.8 99.8 99.8 99.8 99.8 99.8 99.8 99.8

LSUN
DNN 91.9 93.4 - - 90.7 91.3 - -
MCDP 95.9 96.3 97.0 - 94.9 95.3 96.8 -
DPN 100.0 100.0 100.0 100.0 99.9 99.9 99.9 100.0

TIM
DNN 93.1 94.2 - - 91.8 92.5 - -
MCDP 96.3 96.7 97.1 - 95.3 95.8 96.8 -
DPN 100.0 100.0 100.0 100.0 99.9 99.9 99.9 100.0

B.3 CIFAR-10 Experiments

This section presents the results of misclassification and out-of-distribution input detection experi-
ments on the CIFAR-10 dataset. A DPN trained on CIFAR-10 used the CIFAR-100 dataset as the
out-of-distribution training dataset. CIFAR-100 is similar to CIFAR-10 but describes different objects
than CIFAR-10, so there is no class overlap. This is the most challenging set of experiments, as visu-
ally CIFAR-10 is much more similar to CIFAR-100, LSUN and TinyImageNet, so out-of-distribution
input detection is likely to more difficult than for simpler tasks like MNIST and SVHN.

Table 11 gives the results of the misclassification detection experiment on CIFAR-10. All mod-
els achieve comparable classification error (8-8.5%), with the DPN achieving a slightly higher
performance than the baselines in AUPR.

Table 11: CIFAR-10 test misclassification detection

Model AUROC AUPR % Err.Max.P Ent. M.I. D.Ent. Max.P Ent. M.I. D.Ent.
DNN 92.4 92.3 - - 48.7 47.1 - - 8.0

MCDP 92.5 92.0 90.4 - 48.4 45.5 37.6 - 8.0

DPN 92.2 92.1 92.1 90.9 52.7 51.0 51.0 45.5 8.5

Table 12 reports the results of the out-of-distribution detection of CIFAR-10 vs CIFAR-100, SVHN,
LSUN and TinyImageNet datasets. In all experiments the DPNs achieve the best performance,
outperforming the baselines by a larger margin than previously. Note, CIFAR-100 is used as OOD
training data for the DPN, so high performance on it is expected. TinyImageNet is the most similar to
CIFAR-10 (other than CIFAR-100) and it the most challenging OOD detection task, as the baseline
approaches achieve the lowest performance on it. Notably, In each experiment the performance of the
baseline approaches is noticeable lower than before, especially using mutual information of MCDP as
a measure of uncertainty. This indicates that it is indeed difficult to control the behaviour of Bayesian
distributions over distributions for complex tasks. This set of experiments clearly demonstrates that
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Prior Networks perform well on much more difficult datasets than MNIST and are able to outperform
previously proposed Bayesian and non-Bayesian approaches.

Table 12: CIFAR-10 out-of-domain detection

OOD Data Model AUROC AUPR
Max.P Ent. M.I. D.Ent. Max.P Ent. M.I. D.Ent.

CIFAR100
DNN 86.4 87.2 - - 82.6 84.3 - -
MCDP 86.4 87.5 85.7 - 83.0 84.9 81.5 -
DPN 95.6 95.7 95.7 95.8 95.1 95.1 95.1 95.5

SVHN
DNN 90.1 90.8 - - 84.6 85.1 - -
MCDP 89.6 90.6 83.7 - 84.1 84.8 73.1 -
DPN 98.1 98.2 98.2 98.5 97.7 97.8 97.8 98.2

LSUN
DNN 89.8 91.4 - - 87.0 90.0 - -
MCDP 89.1 90.9 89.3 - 86.5 89.6 86.4 -
DPN 94.4 94.4 94.4 94.6 93.3 93.4 93.4 93.3

TIM
DNN 87.5 88.7 - - 84.7 87.2 - -
MCDP 87.6 89.2 86.9 - 85.1 87.9 83.2 -
DPN 94.3 94.3 94.3 94.6 94.0 94.0 94.0 94.2

Appendix C Derivations for Uncertainty Measures and KL divergence

This appendix provides the derivations and shows how calculate the uncertainty measures discussed
in section 4 for a DNN/DPN and a Bayesian Monte-Carlo Ensemble. Additionally, it describes how
to calculate the KL divergence between two Dirichlet distributions.

C.1 Entropy of Predictive Distribution for Bayesian MC Ensemble

Entropy of the predictive posterior can be calculated for a Bayesian MC Ensemble using the following
derivation, which is taken from Yarin Gal’s PhD thesis [23].
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C.2 Differential Entropy of Dirichlet Prior Network

The derivation of differential entropy simply quotes the standard result for Dirichlet distributions.
Notably the ↵c are a function of x⇤ and  is the digamma function and Gamma is the Gamma

function.
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C.3 Mutual Information for Bayesian MC Ensemble

The Mutual information between class label and parameters can be calculated for a Bayesian MC
Ensemble using the following derivation, which is also taken from Yarin Gal’s PhD thesis [23]:

I[y,✓|x⇤,D]| {z }
Model Uncertainty

= H[Ep(✓|D)[P(y|x
⇤,✓)]]

| {z }
Total Uncertainty

� Ep(✓|D)[H[P(y|x⇤,✓)]]
| {z }

Expected Data Uncertainty

⇡ H[Eq✓(✓)[P(y|x
⇤,✓)]]� Eq✓(✓)[H[P(y|x⇤,✓)]]

⇡ H[
1

M

MX

i=1

P(!c|x
⇤,✓(i))]�

1

M

MX

i=1

H[P(y|x⇤,✓(i))]

C.4 Mutual Information for Dirichlet Prior Network

The mutual information between the labels y and the categorical µ for a DPN can be calculated as
follows, using the fact that MI is the difference of the entropy of the expected distribution and the
expected entropy of the distribution.
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The second term in this derivation is a non-standard result. The expected entropy of the distribution
can be calculated in the following way:
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Here the expectation is calculated by noting that the standard result of the expectation of lnµc wrt a
Dirichlet distribution can be used if the extra factor µc is accounted for by adding 1 to the associated
concentration parameter ↵c and multiplying by ↵c

↵0
in order to have the correct normalizing constant.

C.5 KL Divergence between two Dirichlet Distributions

The KL divergence between two Dirichlet distributions p(µ|↵) and p(µ|�) can be obtained in closed
form as follows:
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