
ATOMO: Communication-efficient Learning via
Atomic Sparsification

Hongyi Wang1∗, Scott Sievert2∗, Zachary Charles2, Shengchao Liu1,
Stephen Wright1, Dimitris Papailiopoulos2

1Department of Computer Sciences, 2Department of Electrical and Computer Engineering
University of Wisconsin-Madison

Abstract

Distributed model training suffers from communication overheads due to frequent
gradient updates transmitted between compute nodes. To mitigate these overheads,
several studies propose the use of sparsified stochastic gradients. We argue that
these are facets of a general sparsification method that can operate on any possible
atomic decomposition. Notable examples include element-wise, singular value,
and Fourier decompositions. We present ATOMO, a general framework for atomic
sparsification of stochastic gradients. Given a gradient, an atomic decomposition,
and a sparsity budget, ATOMO gives a random unbiased sparsification of the atoms
minimizing variance. We show that recent methods such as QSGD and TernGrad
are special cases of ATOMO and that sparsifiying the singular value decomposition
of neural networks gradients, rather than their coordinates, can lead to significantly
faster distributed training.

1 Introduction

Several machine learning frameworks such as TensorFlow [1], MXNet [2], and Caffe2[3], come with
distributed implementations of popular training algorithms, such as mini-batch SGD. However, the
empirical speed-up gains offered by distributed training, often fall short of the optimal linear scaling
one would hope for. It is now widely acknowledged that communication overheads are the main
source of this speedup saturation phenomenon [4, 5, 6, 7, 8].

Communication bottlenecks are largely attributed to frequent gradient updates transmitted between
compute nodes. As the number of parameters in state-of-the-art models scales to hundreds of millions
[9, 10], the size of gradients scales proportionally. These bottlenecks become even more pronounced
in the context of federated learning [11, 12], where edge devices (e.g., mobile phones, sensors, etc)
perform decentralized training, but suffer from low-bandwidth during up-link.

To reduce the cost of of communication during distributed model training, a series of recent studies
propose communicating low-precision or sparsified versions of the computed gradients during model
updates. Partially initiated by a 1-bit implementation of SGD by Microsoft in [5], a large number of
recent studies revisited the idea of low-precision training as a means to reduce communication [13,
14, 15, 16, 17, 18, 19, 17, 20, 21]. Other approaches for low-communication training focus on
sparsification of gradients, either by thresholding small entries or by random sampling [6, 22, 23, 24,
25, 26, 27, 28]. Several approaches, including QSGD and TernGrad, implicitly combine quantization
and sparsification to maximize performance gains [14, 16, 12, 29, 30], while providing provable
guarantees for convergence and performance. We note that quantization methods in the context of
gradient based updates have a rich history, dating back to at least as early as the 1970s [31, 32, 33].

∗These authors contributed equally

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

Our Contributions An atomic decomposition represents a vector as a linear combination of simple
building blocks in an inner product space. In this work, we show that stochastic gradient sparsification
and quantization are facets of a general approach that sparsifies a gradient in any possible atomic
decomposition, including its entry-wise or singular value decomposition, its Fourier decomposition,
and more. With this in mind, we develop ATOMO, a general framework for atomic sparsification of
stochastic gradients. ATOMO sets up and optimally solves a meta-optimization that minimizes the
variance of the sparsified gradient, subject to the constraints that it is sparse on the atomic basis, and
also is an unbiased estimator of the input.

5 10 15
Ranks

0.2

0.4

0.6

0.8

Si
gu

la
r

Va
lu

es

Data Pass: 0
Data Pass: 5
Data Pass: 10

Figure 1: The singular values
of a convolutional layer’s gradi-
ent, for ResNet-18 while training
on CIFAR-10. The gradient of
a layer can be seen as a matrix,
once we vectorize and appropri-
ately stack the conv-filters. For
all presented data passes, there is
a sharp decay in singular values,
with the top 3 standing out.

We show that 1-bit QSGD and TernGrad are in fact special cases of
ATOMO, and each is optimal (in terms of variance and sparsity), in
different parameter regimes. Then, we argue that for some neural
network applications, viewing the gradient as a concatenation of
matrices (each corresponding to a layer), and applying atomic spar-
sification to their SVD is meaningful and well-motivated by the fact
that these matrices are approximately low-rank (see Fig. 1). We show
that ATOMO on the SVD of each layer’s gradient, can lead to less
variance, and faster training, for the same communication budget
as that of QSGD or TernGrad. We present extensive experiments
showing that using ATOMO with SVD sparsification can lead to up
to 2×/3× faster training time (including the time to compute the
SVD) compared to QSGD/TernGrad. This holds using VGG and
ResNet-18 on SVHN and CIFAR-10.

Relation to Prior Work ATOMO is closely related to work on
communication-efficient distributed mean estimation in [29] and
[30]. These works both note, as we do, that variance (or equivalently
the mean squared error) controls important quantities such as convergence, and they seek to find a
low-communication vector averaging scheme that minimizes it. Our work differs in two key aspects.
First, we derive a closed-form solution to the variance minimization problem for all input gradients.
Second, ATOMO applies to any atomic decomposition, which allows us to compare entry-wise against
singular value sparsification for matrices. Using this, we derive explicit conditions for which SVD
sparsification leads to lower variance for the same sparsity budget.

The idea of viewing gradient sparsification through a meta-optimization lens was also used in [34].
Our work differs in two key ways. First, [34] consider the problem of minimizing the sparsity of a
gradient for a fixed variance, while we consider the reverse problem, that is, minimizing the variance
subject to a sparsity budget. The second more important difference is that while [34] focuses on
entry-wise sparsification, we consider a general problem where we sparsify according to any atomic
decomposition. For instance, our approach directly applies to sparsifying the singular values of a
matrix, which gives rise to faster training algorithms.

Finally, low-rank factorizations and sketches of the gradients when viewed as matrices were proposed
in [35, 36, 37, 38, 12]; arguably most of these methods (with the exception of [12]) aimed to address
the high flops required when training low-rank models. Though they did not directly aim to reduce
communication, this arises as a useful side effect.

2 Problem Setup
In machine learning, we often wish to find a model w minimizing the empirical risk

f(w) =
1

n

n∑
i=1

`(w;xi) (1)

where xi ∈ Rd is the i-th data point. One way to approximately minimize f(w) is by using stochastic
gradient methods that operate as follows:

wk+1 = wk − γĝ(wk)
where w0 is some initial model, γ is the stepsize, and ĝ(w) is a stochastic gradient of f(w), i.e.it is
an unbiased estimate of the true gradient g(w) = ∇f(w). Mini-batch SGD, one of the most common
algorithms for distributed training, computes ĝ as an average of B gradients, each evaluated on
randomly sampled data from the training set. Mini-batch SGD is easily parallelized in the parameter

2

server (PS) setup, where a PS stores the global model, and P compute nodes split the effort of
computing the B gradients. Once the PS receives these gradients, it applies them to the model, and
sends it back to the compute nodes.

To prove convergence bounds for stochastic-gradient based methods, we usually require ĝ(w) to
be an unbiased estimator of the full-batch gradient, and to have small variance E‖ĝ(w)‖2, as this
controls the speed of convergence. To see this, suppose w∗ is a critical point of f , then we have

E[‖wk+1 − w∗‖22] = E[‖wk − w∗‖22]−
(
2γ〈∇f(wk), wk − w∗〉 − γ2E[‖ĝ(wk)‖22]

)︸ ︷︷ ︸
progress at step t

.

In particular, the progress made by the algorithm at a single step is, in expectation, controlled by the
term E[‖ĝ(wk)‖]22; the smaller it is, the bigger the progress. This is a well-known fact in optimization,
and most convergence bounds for stochastic-gradient based methods, including minibatch, involve
upper bounds on E[‖ĝ(wk)‖]22, in a multiplicative form, for both convex and nonconvex setups
[39, 40, 41, 42, 42, 43, 44, 45, 46, 47]. Hence, recent results on low-communication variants of SGD
design unbiased quantized or sparse gradients, and try to minimize their variance [14, 29, 34].

Since variance is a proxy for speed of convergence, in the context of communication-efficient
stochastic gradient methods, one can ask: What is the smallest possible variance of a stochastic
gradient that is represented with k bits? This can be cast as the following meta-optimization:

min
g

E‖ĝ(w)‖2

s.t. E[ĝ(w)] = g(w)

ĝ(w) can be expressed with k bits
Here, the expectation is taken over the randomness of ĝ. We are interested in designing a stochastic
approximation ĝ that “solves” this optimization. However, it seems difficult to design a formal,
tractable version of the last constraint. In the next section, we replace this with a simpler constraint
that instead requires that ĝ(w) is sparse with respect to a given atomic decomposition.

3 ATOMO: Atomic Decomposition and Sparsification
Let (V, 〈·, ·〉) be an inner product space over R and let ‖ · ‖ denote the induced norm on V . In what
follows, you may think of g as a stochastic gradient of the function we wish to optimize. An atomic
decomposition of g is any decomposition of the form g =

∑
a∈A λaa for some set of atoms A ⊆ V .

Intuitively, A consists of simple building blocks. We will assume that for all a ∈ A, ‖a‖ = 1, as this
can be achieved by a positive rescaling of the λa.

An example of an atomic decomposition is the entry-wise decomposition g =
∑
i giei where {ei}ni=1

is the standard basis. More generally, any orthonormal basis of V gives rise to a unique atomic
decomposition of g. While we focus on finite dimensional vectors, one could use Fourier and wavelet
decompositions in this framework. When considering matrices, the singular value decomposition
gives an atomic decomposition in the set of rank-1 matrices. More general atomic decompositions
have found uses in a variety of situations, including solving linear inverse problems [48].

We are interested in finding an approximation to g with fewer atoms. Our primary motivation is that
this reduces communication costs, as we only need to send atoms with non-zero weights. We can use
whichever decomposition is most amenable for sparsification. For instance, if X is a low rank matrix,
then its singular value decomposition is naturally sparse, so we can save communication costs by
sparsifying its singular value decomposition instead of its entries.

Suppose A = {ai}ni=1 and we have an atomic decomposition g =
∑n
i=1 λiai. We wish to find an

unbiased estimator ĝ of g that is sparse in these atoms, and with small variance. Since ĝ is unbiased,
minimizing its variance is equivalent to minimizing E[‖ĝ‖2]. We use the following estimator:

ĝ =

n∑
i=1

λiti
pi

ai (2)

where ti ∼ Bernoulli(pi), for 0 < pi ≤ 1. We refer to this sparsification scheme as atomic
sparsification. Note that the ti’s are independent. Recall that we assumed above that ‖ai‖2 = 1 for
all ai. We have the following lemma about ĝ.

Lemma 1. E[ĝ] = g and E[‖ĝ‖2] =
∑n
i=1 λ

2
i p
−1
i +

∑
i 6=j λiλj〈ai, aj〉.

3

Let λ = [λ1, . . . , λn]
T , p = [p1, . . . , pn]

T . In order to ensure that this estimator is sparse, we fix
some sparsity budget s. That is, we require

∑
i pi = s. This is a sparsity on average constraint. We

wish to minimize E[‖ĝ‖2] subject to this constraint. By Lemma 1, this is equivalent to

min
p

n∑
i=1

λ2i
pi

s.t. ∀i, 0 < pi ≤ 1,

n∑
i=1

pi = s. (3)

An equivalent form of this problem was presented in [29] (Section 6.1). The authors considered this
problem for entry-wise sparsification and found a closed-form solution for s ≤ ‖λ‖1/‖λ‖∞. We
give a version of their result but extend it to all s. A similar optimization problem was given in [34],
which instead minimizes sparsity subject to a variance constraint.

Algorithm 1: ATOMO probabilities
Input :λ ∈ Rn with |λ1| ≥ . . . |λn|; sparsity

budget s such that 0 < s ≤ n.
Output :p ∈ Rn solving (3).
i = 1;
while i ≤ n do

if |λi|s ≤
∑n

j=i |λi| then
for k = i, . . . , n do

pk = |λk|s
(∑n

j=i |λi|
)−1

;

end
i = n+ 1;

else
pi = 1, s = s− 1;
i = i+ 1;

end
end

We will show that Algorithm 1 produces p ∈ Rn
solving (3). While we show in Appendix B that this
can be derived via the KKT conditions, we focus on
an alternative method relaxes (3) to better understand
its structure. This approach also analyzes the variance
achieved by solving (3) more directly.

Note that (3) has non-empty feasible set only for
0 < s ≤ n. Define f(p) :=

∑n
i=1 λ

2
i /pi. To under-

stand how to solve (3), we first consider the following
relaxation:

min
p

n∑
i=1

λ2i
pi

s.t. ∀i, 0 < pi,

n∑
i=1

pi = s. (4)

We have the following lemma about
the solutions to (4), first shown in
[29].

Lemma 2 ([29]). Any feasible vector p to (4) satisfies f(p) ≥ 1

s
‖λ‖21. This is achieved iff pi =

|λi|s
‖λ‖1

.

Lemma 2 implies that if we ignore the constraint that pi ≤ 1, then the optimal p is achieved by setting
pi = |λi|s/‖λ‖1. If the quantity in the right-hand side is greater than 1, this does not give us an
actual probability. This leads to the following definition.
Definition 1. An atomic decomposition g =

∑n
i=1 λiai is s-unbalanced at entry i if |λi|s > ‖λ‖1.

We say that g is s-balanced otherwise. Clearly, an atomic decomposition is s-balanced iff s ≤
‖λ‖1/‖λ‖∞. Lemma 2 gives us the optimal way to sparsify s-balanced vectors, since the optimal p
for (4) is feasible for (3). If g is s-unbalanced at entry j, we cannot assign this pj as it is larger than 1.
In the following lemma, we show that in pj = 1 is optimal in this setting.
Lemma 3. Suppose that g is s-unbalanced at entry j and that q is feasible in (3). Then ∃p that is
feasible such that f(p) ≤ f(q) and pj = 1.

Let φ(g) =
∑
i 6=j λiλj〈ai, aj〉. Lemmas 2 and 3 imply the following theorem about solutions to (3).

Theorem 4. If g is s-balanced, then E[‖ĝ‖2] ≥ s−1‖λ‖21 + φ(g) with equality if and only if
pi = |λi|s/‖λ‖1. If g is s-unbalanced, then E[‖ĝ‖2] > s−1‖λ‖21 + φ(g) and is minimized by p with
pj = 1 where j = argmaxi=1,...,n |λi|.

Due to the sorting requirement in the input, Algorithm 1 requires O(n log n) operations. In
Appendix B we describe a variant that uses only O(sn) operations. Thus, we can solve (3) in
O(min{n, s} log(n)) operations.

4 Relation to QSGD and TernGrad

In this section, we will discuss how ATOMO is related to two recent quantization schemes, 1-bit
QSGD [14] and TernGrad [16]. We will show that in certain cases, these schemes are versions of the
ATOMO for a specific sparsity budget s. Both schemes use the entry-wise atomic decomposition.

4

QSGD takes as input g ∈ Rn and b ≥ 1. This b governs the number of quantization buckets. When
b = 1, QSGD produces a random vector Q(g) defined by

Q(g)i = ‖g‖2 sign(gi)ζi.
Here, the ζi ∼ Bernoulli(|gi|/‖g‖2) are independent random variables. One can show this is
equivalent to (2) with pi = |gi|/‖g‖2 and sparsity budget s = ‖g‖1/‖g‖2. Note that by definition,
any g is s-balanced for this s. Therefore, Theorem 4 implies that the optimal way to assign pi with
this given s is pi = |gi|/‖g‖2, which agrees with 1-bit QSGD.

TernGrad takes g ∈ Rn and produces a sparsified version T (g) given by
T (g)i = ‖g‖∞ sign(gi)ζi

where ζi ∼ Bernoulli(|gi|/‖g‖∞). This is equivalent to (2) with pi = |gi|/‖g‖∞ and sparsity budget
s = ‖g‖1/‖g‖∞. Once again, any g is s-balanced for this s by definition. Therefore, Theorem
4 implies that the optimal assignment of the pi for this s is pi = |gi|/‖g‖∞, which agrees with
TernGrad.

We can generalize both of these with the following quantization method. Fix q ∈ (0,∞]. Given
g ∈ Rn, we define the `q-quantization of g, denoted Lq(g), by

Lq(v)i = ‖g‖q sign(gi)ζi
where ζi ∼ Bernoulli(|gi|/‖g‖q). By the reasoning above, we derive the following theorem.

Theorem 5. `q-quantization performs atomic sparsification in the standard basis with pi = |gi|/‖g‖q .
This solves (3) for s = ‖g‖1/‖g‖q and satisfies E[‖Lq(g)‖22] = ‖g‖1‖g‖q .

In particular, for q = 2 we get 1-bit QSGD while for q =∞, we get TernGrad.

5 Spectral-ATOMO: Sparsifying the Singular Value Decomposition

Table 1: Communication cost and variance
of ATOMO for matrices.

Decomposition Comm. Var.

Entry-wise s
1

s
‖X‖21,1

SVD s(n+m)
1

s
‖X‖2∗

For a rank r matrix X , denote its singular value de-
composition (SVD) by X =

∑r
i=1 σiuiv

T
i . Let σ =

[σ1, . . . , σr]
T . We define the `p,q norm of a matrix

X by ‖X‖p,q = (
∑m
j=1(

∑n
i=1 |Xi,j |p)q/p)1/q. When

p = q = ∞, we define this to be ‖X‖max where
‖X‖max := maxi,j |Xi,j |.
Let V be the space of real n×m matrices. Given X ∈ V ,
there are two standard atomic decompositions of X . The
first is the entry-wise decomposition X =

∑
i,j Xi,jeie

T
j .

The second is its SVD X =
∑r
i=1 σiuiv

T
i . If r is small,

it may be more efficient to communicate the r(n+m) entries of the SVD, rather than the nm entries
of the matrix. Let X̂ and X̂σ denote the random variables in (2) corresponding to the entry-wise
decomposition and singular value decomposition of X , respectively. We wish to compare these two
sparsifications.

In Table 1, we compare the communication cost and variance of these two methods. The communica-
tion cost is the expected number of non-zero elements (real numbers) that need to be communicated.
For X̂ , a sparsity budget of s corresponds to s non-zero entries we need to communicate. For X̂σ , a
sparsity budget of s gives a communication cost of s(n+m) due to the singular vectors. We compare
the optimal variance from Theorem 4.

To compare the variance of these two methods under the same communication cost, we want X to be
s-balanced in its entry-wise decomposition. This holds iff s ≤ ‖X‖1,1/‖X‖max. By Theorem 4, this
gives E[‖X̂‖2F] = s−1‖X‖21,1. To achieve the same communication cost with X̂σ , we take a sparsity
budget of s′ = s/(n +m). The SVD of X is s′-balanced iff s′ ≤ ‖X‖∗/‖X‖2. By Theorem 4,
E[‖X̂σ‖2F] = (n+m)s−1‖X‖2∗. This leads to the following theorem.

Theorem 6. Suppose X ∈ Rn×m and

s ≤ min

{
‖X‖1,1
‖X‖max

, (n+m)
‖X‖∗
‖X‖2

}
.

5

Then X̂σ with sparsity s′ = s/(n+m) incurs the same communication cost as X̂ with sparsity s,
and E[‖X̂σ‖2] ≤ E[‖X̂‖2] if and only if (n+m)‖X‖2∗ ≤ ‖X‖21,1.

To better understand this condition, we will make use of the following well-known fact.

Lemma 7. For any n×m matrix X over R, 1√
nm
‖X‖1,1 ≤ ‖X‖∗ ≤ ‖X‖1,1.

For expository purposes, we give a proof of this Appendix C and show that these bounds are the best
possible. As a result, if the first inequality is tight, then E[‖X̂σ‖2] ≤ E[‖X̂‖2], while if the second is
tight then E[‖X̂σ‖2] ≥ E[‖X̂‖2]. As we show in the next section, using singular value sparsification
can translate in to significantly reduced distributed training time.

6 Experiments

We present an empirical study of Spectral-ATOMO and compare it to the recently proposed QSGD
[14], and TernGrad [16], on a different neural network models and data sets, under real distributed
environments. Our main findings are as follows:
• We observe that spectral-ATOMO provides a useful alternative to entry-wise sparsification methods,

it reduces communication compared to vanilla mini-batch SGD, and can reduce training time
compared to QSGD and TernGrad by up to a factor of 2× and 3× respectively. For instance,
on VGG11-BN trained on CIFAR-10, spectral-ATOMO with sparsity budget 3 achieves 3.96×
speedup over vanilla SGD, while 4-bit QSGD achieves 1.68× on a cluster of 16, g2.2xlarge
instances. Both ATOMO and QSGD greatly outperform TernGrad as well.

• We observe that spectral-ATOMO in distributed settings leads to models with negligible accuracy
loss when combined with parameter tuning.

Implementation and setup We compare spectral-ATOMO2 with different sparsity budgets to b-
bit QSGD across a distributed cluster with a parameter server (PS), implemented in mpi4py [49]
and PyTorch [50] and deployed on multiple types of instances in Amazon EC2 (e.g.m5.4xlarge,
m5.2xlarge, and g2.2xlarge), both PS and compute nodes are of the same type of instance. The PS
implementation is standard, with a few important modifications. At the most basic level, it receives
gradients from the compute nodes and broadcasts the updated model once a batch has been received.

In our experiments, we use data augmentation (random crops, and flips), and tuned the step-size for
every different setup as shown in Table 5 in Appendix D. Momentum and regularization terms are
switched off to make the hyperparamter search tractable and the results more legible. Tuning the
step sizes for this distributed network for three different datasets and eight different coding schemes
can be computationally intensive. As such, we only used small networks so that multiple networks
could fit into GPU memory. To emulate the effect of larger networks, we use synchronous message
communication, instead of asynchronous.

Each compute node evaluates gradients sampled from its partition of data. Gradients are then
sparsified through QSGD or spectral-ATOMO, and then are sent back to the PS. Note that spectral-
ATOMO transmits the weighted singular vectors sampled from the true gradient of a layer. The PS then
combines these, and updates the model with the average gradient. Our entire experimental pipeline
is implemented in PyTorch [50] with mpi4py [49], and deployed on either g2.2xlarge, m5.2xlarge
and m5.4xlarge instances in Amazon AWS EC2. We conducted our experiments on various models,
datasets, learning tasks, and neural network models as detailed in Table 2.

Dataset CIFAR-10 CIFAR-100 SVHN

Data points 60,000 60,000 600,000

Model ResNet-18 / VGG-11-BN ResNet-18 ResNet-18

Classes 10 100 10

Parameters 11,173k / 9,756k 11,173k 11,173k

Table 2: The datasets used and their associated learning models and hyper-parameters.

2code available at: https://github.com/hwang595/ATOMO

6

https://github.com/hwang595/ATOMO

2 4 8 16
Number of Workers

0

5

10

15

20
Ti

m
e

pe
r i

te
ra

tio
n

(s
ec

)

SVD s=1
SVD s=2
SVD s=3
SVD s=4

QSGD b=1
QSGD b=2
QSGD b=4
QSGD b=8

Figure 2: The timing of the gradient coding methods (QSGD and spectral-ATOMO) for different quantization
levels, b bits and s sparsity budget respectively for each worker when using a ResNet-34 model on CIFAR10.
For brevity, we use SVD to denote spectral-ATOMO. The bars represent the total iteration time and are divided
into computation time (bottom, solid), encoding time (middle, dotted) and communication time (top, faded).

Scalability We study the scalability of these sparsification methods on clusters of different sizes.
We used clusters with one PS and n = 2, 4, 8, 16 compute nodes. We ran ResNet-34 on CIFAR-10
using mini-batch SGD with batch size 512 split among compute nodes. The experiment was run on
m5.4xlarge instances of AWS EC2 and the results are shown in Figure 2.

While increasing the size of the cluster, decreases the computational cost per worker, it causes the
communication overhead to grow. We denote as computational cost, the time cost required by each
worker for gradient computations, while the communication overhead is represented by the amount
time the PS waits to receive the gradients by the slowest worker. This increase in communication
cost is non-negligible, even for moderately-sized networks with sparsified gradients. We observed a
trade-off in both sparsification approaches between the information retained in the messages after
sparsification and the communication overhead.

End-to-end convergence performance We evaluate the end-to-end convergence performance on
different datasets and neural networks, training with spectral-ATOMO(with sparsity budget s =
1, 2, 3, 4), QSGD (with n = 1, 2, 4, 8 bits), and ordinary mini-batch SGD. The datasets and models
are summarized in Table 2. We use ResNet-18 [9] and VGG11-BN [51] for CIFAR-10 [52] and
SVHN [53]. Again, for each of these methods we tune the step size. The experiments were run on a
cluster of 16 compute nodes instantiated on g2.2xlarge instances.

The gradients of convolutional layers are 4 dimensional tensors with shape of [x, y, k, k] where x, y
are two spatial dimensions and k is the size of the convolutional kernel. However, matrices are
required to compute the SVD for spectral-ATOMO, and we choose to reshape each layer into a matrix
of size [xy/2, 2k2]. This provides more flexibility on the sparsity budget for the SVD sparsification.
For QSGD, we use the bucketing and Elias recursive coding methods proposed in [14], with bucket
size equal to the number of parameters in each layer of the neural network.

0 10 20
Wallclock Time (hrs)

40

60

80

Te
st

 se
t A

cc

Test Accuracy vs Runtime

Best of ATOMO
Best of QSGD
TernGrad
Vanilla SGD

(a) CIFAR-10, ResNet-18,
Best of QSGD and SVD

0 5 10 15 20
Wallclock Time (hrs)

20

40

60

80

Te
st

 se
t A

cc

Test Accuracy vs Runtime

Best of ATOMO
Best of QSGD
TernGrad
Vanilla SGD

(b) SVHN, ResNet-18,
Best of QSGD and SVD

0 10 20
Wallclock Time (hrs)

20

40

60

80

Te
st

 se
t A

cc

Test Accuracy vs Runtime

Best of ATOMO
Best of QSGD
TernGrad
Vanilla SGD

(c) CIFAR-10, VGG11,
Best of QSGD and SVD

Figure 3: Convergence rates for the best performance of QSGD and spectral-ATOMO, alongside TernGrad and
vanilla SGD. (a) uses ResNet-18 on CIFAR-10, (b) uses ResNet-18 on SVHN, and (c) uses VGG-11-BN on
CIFAR-10. For brevity, we use SVD to denote spectral-ATOMO.

7

Figure 3 shows how the testing accuracy varies with wall clock time. Tables 3 and 4 give a detailed
account of speedups of singular value sparsification compared to QSGD. In these tables, each method
is run until a specified accuracy.

SVD
s=1

SVD
s=2

QSGD
b=1

QSGD
b=2

TernGrad

Method

 6
0%

 6

3%

 6
5%

 6

8%
Te

st
 a

cc
ur

ac
y

3.06x 3.51x 2.19x 2.31x 1.45x

3.67x 3.6x 1.88x 2.22x 1.65x

3.01x 3.6x 1.46x 2.21x 2.19x

2.36x 2.78x 1.15x 2.01x 1.77x

SVD
s=3

SVD
s=4

QSGD
b=4

QSGD
b=8

TernGrad

Method

 6
5%

 7

1%

 7
5%

 7

8%
Te

st
 a

cc
ur

ac
y

2.63x 1.84x 2.62x 1.79x 2.19x

2.81x 2.04x 1.81x 2.62x 1.22x

2.01x 1.79x 1.41x 1.78x 1.18x

1.81x 1.8x 1.67x 1.73x N/A

Table 3: Speedups of spectral-ATOMO with sparsity budget s, b-bit QSGD, and TernGrad using ResNet-18 on
CIFAR10 over vanilla SGD. N/A stands for the method fails to reach a certain Test accuracy in fixed iterations.

SVD
s=3

SVD
s=4

QSGD
b=4

QSGD
b=8

TernGrad

Method

 7
5%

 7

8%

 8
2%

 8

4%
Te

st
 a

cc
ur

ac
y

3.55x 2.75x 3.22x 2.36x 1.33x

2.84x 2.75x 2.68x 1.89x 1.23x

2.95x 2.28x 2.23x 2.35x 1.18x

3.11x 2.39x 2.34x 2.35x 1.34x

SVD
s=3

SVD
s=4

QSGD
b=4

QSGD
b=8

TernGrad

Method

 8
5%

 8

6%

 8
8%

 8

9%
Te

st
 a

cc
ur

ac
y

3.15x 2.43x 2.67x 2.35x 1.21x

2.58x 2.19x 2.29x 2.1x N/A

2.58x 2.19x 1.69x 2.09x N/A

2.72x 2.27x 2.11x 2.14x N/A

Table 4: Speedups of spectral-ATOMO with sparsity budget s and b-bit QSGD, and TernGrad using ResNet-18
on SVNH over vanilla SGD. N/A stands for the method fails to reach a certain Test accuracy in fixed iterations.

We observe that QSGD and ATOMO speed up model training significantly and achieve similar
accuracy to vanilla mini-batch SGD. We also observe that the best performance is not achieve with
the most sparsified, or quantized method, but the optimal method lies somewhere in the middle
where enough information is preserved during the sparsification. For instance, 8-bit QSGD converges
faster than 4-bit QSGD, and spectral-ATOMO with sparsity budget 3, or 4 seems to be the fastest.
Higher sparsity can lead to a faster running time, but extreme sparsification can adversely affect
convergence. For example, for a fixed number of iterations, 1-bit QSGD has the smallest time cost,
but may converge much more slowly to an accurate model.

7 Conclusion

In this paper, we present and analyze ATOMO, a general sparsification method for distributed stochastic
gradient based methods. ATOMO applies to any atomic decomposition, including the entry-wise and
the SVD of a matrix. ATOMO generalizes 1-bit QSGD and TernGrad, and provably minimizes the
variance of the sparsified gradient subject to a sparsity constraint on the atomic decomposition. We
focus on the use ATOMO for sparsifying matrices, especially the gradients in neural network training.
We show that applying ATOMO to the singular values of these matrices can lead to faster training than
both vanilla SGD or QSGD, for the same communication budget. We present extensive experiments
showing that ATOMO can lead to up to a 2× speed-up in training time over QSGD and up to 3×
speed-up in training time over TernGrad.

In the future, we plan to explore the use of ATOMO with Fourier decompositions, due to its utility
and prevalence in signal processing. More generally, we wish to investigate which atomic sets lead to
reduced communication costs. We also plan to examine how we can sparsify and compress gradients
in a joint fashion to further reduce communication costs. Finally, when sparsifying the SVD of a
matrix, we only sparsify the singular values. We also note that it would be interesting to explore
jointly sparsification of the SVD and and its singular vectors, which we leave for future work.

8

References
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu

Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. TensorFlow: A system for
large-scale machine learning. In OSDI, volume 16, pages 265–283, 2016.

[2] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun Xiao, Bing Xu,
Chiyuan Zhang, and Zheng Zhang. Mxnet: A flexible and efficient machine learning library for
heterogeneous distributed systems. arXiv preprint arXiv:1512.01274, 2015.

[3] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Girshick,
Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture for fast feature
embedding. arXiv preprint arXiv:1408.5093, 2014.

[4] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao, Andrew
Senior, Paul Tucker, Ke Yang, Quoc V Le, et al. Large scale distributed deep networks. In
Advances in neural information processing systems, pages 1223–1231, 2012.

[5] Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu. 1-bit stochastic gradient descent
and its application to data-parallel distributed training of speech dnns. In Fifteenth Annual
Conference of the International Speech Communication Association, 2014.

[6] Nikko Strom. Scalable distributed DNN training using commodity gpu cloud computing. In
Sixteenth Annual Conference of the International Speech Communication Association, 2015.

[7] Hang Qi, Evan R. Sparks, and Ameet Talwalkar. Paleo: A performance model for deep neural
networks. In Proceedings of the International Conference on Learning Representations, 2017.

[8] Demjan Grubic, Leo Tam, Dan Alistarh, and Ce Zhang. Synchronous multi-GPU deep learning
with low-precision communication: An experimental study. 2018.

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[10] Gao Huang, Zhuang Liu, Kilian Q Weinberger, and Laurens van der Maaten. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, volume 1, page 3, 2017.

[11] H Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, et al. Communication-
efficient learning of deep networks from decentralized data. arXiv preprint arXiv:1602.05629,
2016.

[12] Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik, Ananda Theertha Suresh,
and Dave Bacon. Federated learning: Strategies for improving communication efficiency. arXiv
preprint arXiv:1610.05492, 2016.

[13] Christopher M De Sa, Ce Zhang, Kunle Olukotun, and Christopher Ré. Taming the wild: A
unified analysis of hogwild-style algorithms. In Advances in neural information processing
systems, pages 2674–2682, 2015.

[14] Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. Qsgd:
Communication-efficient SGD via gradient quantization and encoding. In Advances in Neural
Information Processing Systems, pages 1707–1718, 2017.

[15] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou. DoReFa-Net:
training low bitwidth convolutional neural networks with low bitwidth gradients. arXiv preprint
arXiv:1606.06160, 2016.

[16] Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Terngrad:
Ternary gradients to reduce communication in distributed deep learning. In Advances in Neural
Information Processing Systems, pages 1508–1518, 2017.

9

[17] Christopher De Sa, Matthew Feldman, Christopher Ré, and Kunle Olukotun. Understanding
and optimizing asynchronous low-precision stochastic gradient descent. In Proceedings of the
44th Annual International Symposium on Computer Architecture, pages 561–574. ACM, 2017.

[18] Hantian Zhang, Jerry Li, Kaan Kara, Dan Alistarh, Ji Liu, and Ce Zhang. Zipml: Training
linear models with end-to-end low precision, and a little bit of deep learning. In International
Conference on Machine Learning, pages 4035–4043, 2017.

[19] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Imagenet
classification using binary convolutional neural networks. In European Conference on Computer
Vision, pages 525–542. Springer, 2016.

[20] Christopher De Sa, Megan Leszczynski, Jian Zhang, Alana Marzoev, Christopher R Aberger,
Kunle Olukotun, and Christopher Ré. High-accuracy low-precision training. arXiv preprint
arXiv:1803.03383, 2018.

[21] Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Anima Anandkumar.
signSGD: compressed optimisation for non-convex problems. arXiv preprint arXiv:1802.04434,
2018.

[22] Horia Mania, Xinghao Pan, Dimitris Papailiopoulos, Benjamin Recht, Kannan Ramchandran,
and Michael I Jordan. Perturbed iterate analysis for asynchronous stochastic optimization.
arXiv preprint arXiv:1507.06970, 2015.

[23] Rémi Leblond, Fabian Pedregosa, and Simon Lacoste-Julien. ASAGA: asynchronous parallel
SAGA. arXiv preprint arXiv:1606.04809, 2016.

[24] Alham Fikri Aji and Kenneth Heafield. Sparse communication for distributed gradient descent.
arXiv preprint arXiv:1704.05021, 2017.

[25] Yujun Lin, Song Han, Huizi Mao, Yu Wang, and William J Dally. Deep gradient com-
pression: Reducing the communication bandwidth for distributed training. arXiv preprint
arXiv:1712.01887, 2017.

[26] Chia-Yu Chen, Jungwook Choi, Daniel Brand, Ankur Agrawal, Wei Zhang, and Kailash
Gopalakrishnan. Adacomp: Adaptive residual gradient compression for data-parallel distributed
training. arXiv preprint arXiv:1712.02679, 2017.

[27] Cèdric Renggli, Dan Alistarh, and Torsten Hoefler. SparCML: high-performance sparse
communication for machine learning. arXiv preprint arXiv:1802.08021, 2018.

[28] Yusuke Tsuzuku, Hiroto Imachi, and Takuya Akiba. Variance-based gradient compression for
efficient distributed deep learning. arXiv preprint arXiv:1802.06058, 2018.

[29] Jakub Konečnỳ and Peter Richtárik. Randomized distributed mean estimation: Accuracy vs
communication. arXiv preprint arXiv:1611.07555, 2016.

[30] Ananda Theertha Suresh, Felix X Yu, Sanjiv Kumar, and H Brendan McMahan. Distributed
mean estimation with limited communication. arXiv preprint arXiv:1611.00429, 2016.

[31] R Gitlin, J Mazo, and M Taylor. On the design of gradient algorithms for digitally implemented
adaptive filters. IEEE Transactions on Circuit Theory, 20(2):125–136, 1973.

[32] S Alexander. Transient weight misadjustment properties for the finite precision LMS algorithm.
IEEE Transactions on Acoustics, Speech, and Signal Processing, 35(9):1250–1258, 1987.

[33] José Carlos M Bermudez and Neil J Bershad. A nonlinear analytical model for the quan-
tized LMS algorithm-the arbitrary step size case. IEEE Transactions on Signal Processing,
44(5):1175–1183, 1996.

10

[34] Jianqiao Wangni, Jialei Wang, Ji Liu, and Tong Zhang. Gradient sparsification for
communication-efficient distributed optimization. arXiv preprint arXiv:1710.09854, 2017.

[35] Jian Xue, Jinyu Li, and Yifan Gong. Restructuring of deep neural network acoustic models
with singular value decomposition. In Interspeech, pages 2365–2369, 2013.

[36] Tara N Sainath, Brian Kingsbury, Vikas Sindhwani, Ebru Arisoy, and Bhuvana Ramabhadran.
Low-rank matrix factorization for deep neural network training with high-dimensional output
targets. In Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International
Conference on, pages 6655–6659. IEEE, 2013.

[37] Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. Speeding up convolutional neural
networks with low rank expansions. arXiv preprint arXiv:1405.3866, 2014.

[38] Simon Wiesler, Alexander Richard, Ralf Schluter, and Hermann Ney. Mean-normalized
stochastic gradient for large-scale deep learning. In Acoustics, Speech and Signal Processing
(ICASSP), 2014 IEEE International Conference on, pages 180–184. IEEE, 2014.

[39] Andrew Cotter, Ohad Shamir, Nati Srebro, and Karthik Sridharan. Better mini-batch algorithms
via accelerated gradient methods. In Advances in neural information processing systems, pages
1647–1655, 2011.

[40] Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for nonconvex
stochastic programming. SIAM Journal on Optimization, 23(4):2341–2368, 2013.

[41] Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild: A lock-free
approach to parallelizing stochastic gradient descent. In Advances in neural information
processing systems, pages 693–701, 2011.

[42] Sébastien Bubeck et al. Convex optimization: Algorithms and complexity. Foundations and
Trends R© in Machine Learning, 8(3-4):231–357, 2015.

[43] Christopher De Sa, Christopher Re, and Kunle Olukotun. Global convergence of stochastic
gradient descent for some non-convex matrix problems. In International Conference on Machine
Learning, pages 2332–2341, 2015.

[44] Sashank J Reddi, Ahmed Hefny, Suvrit Sra, Barnabas Poczos, and Alex Smola. Stochastic
variance reduction for nonconvex optimization. In International conference on machine learning,
pages 314–323, 2016.

[45] Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence of gradient and proximal-
gradient methods under the Polyak-łojasiewicz condition. In Joint European Conference on
Machine Learning and Knowledge Discovery in Databases, pages 795–811. Springer, 2016.

[46] Soham De, Abhay Yadav, David Jacobs, and Tom Goldstein. Big Batch SGD: Automated
inference using adaptive batch sizes. arXiv preprint arXiv:1610.05792, 2016.

[47] Dong Yin, Ashwin Pananjady, Max Lam, Dimitris Papailiopoulos, Kannan Ramchandran,
and Peter Bartlett. Gradient diversity: a key ingredient for scalable distributed learning. In
International Conference on Artificial Intelligence and Statistics, pages 1998–2007, 2018.

[48] Venkat Chandrasekaran, Benjamin Recht, Pablo A Parrilo, and Alan S Willsky. The convex
geometry of linear inverse problems. Foundations of Computational mathematics, 12(6):805–
849, 2012.

[49] Lisandro D Dalcin, Rodrigo R Paz, Pablo A Kler, and Alejandro Cosimo. Parallel distributed
computing using python. Advances in Water Resources, 34(9):1124–1139, 2011.

[50] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
PyTorch. 2017.

11

[51] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

[52] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
2009.

[53] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng.
Reading digits in natural images with unsupervised feature learning. In NIPS workshop on deep
learning and unsupervised feature learning, volume 2011, page 5, 2011.

12

A Proof of results

A.1 Proof of Lemma 2

Proof. Suppose we have some p satisfying the conditions in (4). We define two auxiliary vectors
α, β ∈ Rn by

αi =
|λi|√
pi
.

βi =
√
pi.

Then note that using the fact that
∑
i pi = s, we have

f(p) =

n∑
i=1

λ2i
pi

=

(
n∑
i=1

λ2i
pi

)(
1

s

n∑
i=1

pi

)
=

1

s

(
n∑
i=1

λ2i
pi

)(
n∑
i=1

pi

)
=

1

s
‖α‖22‖β‖22.

By the Cauchy-Schwarz inequality, this implies

f(p) =
1

s
‖α‖22‖β‖22 ≥

1

s
|〈α, β〉|2 =

1

s

(
n∑
i=1

|λi|

)2

=
1

s
‖λ‖21. (5)

This proves the first part of Lemma 2. In order to have f(p) = 1
s‖λ‖

2
1, (5) implies that we need

|〈α, β〉| = ‖α‖2‖β‖2.
By the Cauchy-Schwarz inequality, this occurs iff α and β are linearly dependent. Therefore, cα = β
for some constant c. Solving, this implies pi = c|λi|. Since

∑n
i=1 pi = s, we have

c‖λ‖1 =

n∑
i=1

c|λi| =
n∑
i=1

pi = s.

Therefore, c = ‖λ‖1/s, which implies the second part of the theorem.

A.2 Proof of Lemma 3

Fix q that is feasible in (3). To prove Lemma 3 we will require a lemma. Given the atomic
decomposition g =

∑n
i=1 λiai, we say that λ is s-unbalanced at i if |λi|s > ‖λ‖1, which is

equivalent to g being unbalanced in this atomic decomposition at i. For notational simplicity, we will
assume that λ is s-unbalanced at i = 1. Let A ⊆ {2, . . . , n}. We define the following notation:

sA =
∑
i∈A

qi.

fA(q) =
∑
i∈A

λ2i
qi
.

(λA)i =

{
λi, for i ∈ A,
0, for i /∈ A.

Note that under this notation, Lemma 2 implies that for all p > 0,

fA(p) ≥
1

sA
‖λA‖21. (6)

Lemma 8. Suppose that q is feasible and that there is some set A ⊆ {2, . . . , n} such that

1. λA is (sA + q1 − 1)-balanced.

2. |λ1|(sA + q1 − 1) > ‖λA‖1.

Then there is a vector p that is feasible satisfying f(p) ≤ f(q) and p1 = 1.

13

Proof. Suppose that such a set A exists. Let B = {2, . . . , n}\A. Note that we have

f(q) =

n∑
i=1

λ2i
qi

=
λ21
q1

+ fA(q) + fB(q).

By (6), this implies

f(q) ≥ λ21
q1

+
1

sA
‖λA‖21 + fB(q). (7)

Define p as follows.

pi =

1, for i = 1,
|λi|(sA + q1 − 1)

‖λA‖1
, for i ∈ A,

qi, for i /∈ A.

Note that by Assumption 1 and Lemma 2, we have

fA(p) =
1

sA + q1 − 1
‖λA‖21.

Since pi = qi for i ∈ B, we have fB(p) = fB(q). Therefore,

f(p) = λ21 +
1

sA + q1 − 1
‖λA‖21 + fB(q). (8)

Combining (7) and (8), we have

f(q)− f(p) = λ21

(
1

q1
− 1

)
+ ‖λA‖21

(
1

sA
− 1

sA + q1 − 1

)
= λ21

(
1− q1
q1

)
+ ‖λA‖21

(
q1 − 1

sA(sA + q1 − 1)

)
.

Combining this with Assumption 2, we have

f(q)− f(p) ≥ ‖λA‖21
(sA + q1 − 1)2

(
1− q1
q1

)
+ ‖λA‖21

(
q1 − 1

sA(rA + q1 − 1)

)
. (9)

To show that the RHS of (9) is at most 0, it suffices to show
sA ≥ q1(sA + q1 − 1). (10)

However, note that since 0 < q1 < 1, the RHS of (10) satisfies
q1(sA + q1 − 1) = sAq1 − q1(1− q1) ≤ sAq1 ≤ sA.

Therefore, (10) holds, completing the proof.

We can now prove Lemma 3. In the following, we will refer to Conditions 1 and 2, relative to some
set A, as the conditions required by Lemma 8.

Proof. We first show this in the case that n = 2. Here we have the atomic decomposition
g = λ1a1 + λ2a2.

The condition that λ is s-unbalanced at i = 1 implies
|λ1|(s− 1) > |λ2|.

In particular, this implies s > 1. For A = {2}, Condition 1 is equivalent to
|λ2|(sA + q1 − 2) ≤ 0.

Note that sA = q2 and that q1+ q2−2 = s−2 by assumption. Since qi ≤ 1, we know that s−2 ≤ 0
and so Condition 1 holds. Similarly, Condition 2 becomes

|λ1|(s− 1) > |λ2|
which holds by assumption. Therefore, Lemma 3 holds for n = 2.

14

Now suppose that n > 2, q is some feasible probability vector, and that λ is s-unbalanced at index
1. We wish to find an A satisfying Conditions 1 and 2. Consider B = {2, . . . , n}. Note that for
such B, sB + q1 − 1 = s− 1. By our unbalanced assumption, we know that Condition 2 holds for
B = {2, . . . , n}. If λB is (s− 1)-balanced, then Lemma 8 implies that we are done.

Assume that λB is not (s− 1)-balanced. After relabeling, we can assume it is unbalanced at i = 2.
Let C = {3, . . . , n}. Therefore,

|λ2|(s− 2) > ‖λC‖1. (11)

Combining this with the s-unbalanced assumption at i = 1, we find

|λ1| >
‖λB‖1
s− 1

=
|λ2|
s− 1

+
‖λC‖1
s− 1

>
‖λC‖1

(s− 1)(s− 2)
+
‖λC‖1
s− 1

=
‖λC‖1
s− 2

.

Therefore,
|λ1|(s− q2 − 1) ≥ |λ1|(s− 2) > ‖λC‖1. (12)

Let D = {1, 3, 4, . . . , n} = {1, . . . , n}\{2}. Then note that (12) implies that λD is (s − q2)-
unbalanced at i = 1. Inductively applying this theorem, this means that we can find a vector
p′ ∈ R|D| such that p′1 = 1 and fD(p′) ≤ fD(q). Moreover, sD(p′) = s− q2. Therefore, if we let p
be the vector that equals p′ on D and with p2 = q2, we have

f(p2) = fC(p
′) +

λ22
q2
≤ fD(q) +

λ22
q2

= f(q).

This proves the desired result.

B Analysis of ATOMO via the KKT Condtions

In this section we show how to derive Algorithm 1 using the KKT conditions. Recall that we wish to
solve the following optimization problem:

min
p

f(p) :=

n∑
i=1

λ2i
pi

subject to ∀i, 0 < pi ≤ 1,

n∑
i=1

pi = s. (13)

We first note a few immediate consequences.

1. If s > n then the problem is infeasible. Note that when s ≥ n, the optimal thing to do is to
set all pi = 1, in which case no sparsification takes place.

2. If λi = 0, then pi = 0. This follows from the fact that this pi does not change the value
of f(p), and the objective could be decreased by allocating more to the pj associated to
non-zero λj . Therefore we can assume that all λi 6= 0.

3. If |λi| ≥ |λj | > 0, then we can assume pi ≥ pj . Otherwise, suppose pj > pi but |λi| ≥ |λj |.
Let p′ denote the vector with pi, pj switched. We then have

f(p)− f(p′) =
λ2i − λ2j
pi

+
λ2j − λ2i
pj

= λ2i

(
1

pi
− 1

pj

)
− λ2j

(
1

pi
− 1

pj

)
≥ 0.

We therefore assume 0 < s ≤ n and |λ1| ≥ |λ2| ≥ . . . ≥ |λn| > 0. As above we define
λ := [λ1, . . . , λn]

T . While the formulation of (13) does not allow direct application of the KKT
conditions, since we have a strict inequality of 0 < pi, this is fixed with the following lemma.

15

Lemma 9. The minimum of (13) is achieved by some p∗ satisfying

p∗i ≥
sλ2i
n‖λ‖22

.

Proof. Define p by pi = s/n. This vector is clearly feasible in (13). Let p be any feasible vector. If
f(p) ≤ f(q) then for any i ∈ [n] we have

λ2i
pi
≤ f(p) ≤ f(p).

Therefore, pi ≥ λ2i /f(p). A straightforward computations shows that f(p) = n‖λ‖22/s. Note that
this implies that we can restrict to the feasbile set

sλ2i
n‖λ‖22

≤ pi ≤ 1.

This defines a compact region C. Since f is continuous on this set, its maximum value is obtained at
some p∗.

The KKT conditions then imply that at any point p solving (13), we must have

0 ≤ 1− pi ⊥ µ−
λ2i
pi
≥ 0, i = 1, 2, . . . , n (14)

for some µ ∈ R. Since |λi| > 0 for all i, we actually must have µ > 0. We therefore have two
conditions for all i.

1. pi = 1 =⇒ µ ≥ λ2i .
2. pi < 1 =⇒ pi = |λi|/

√
µ.

Note that in either case, to have p1 feasible we must have µ ≥ λ21. Combining this with the fact
that we can always select p1 ≥ p2 ≥ . . . ≥ pn, we obtain the following partial characterization of
the solution to (13). For some ns ∈ [n], we have p1, . . . , pns

= 1 while pi = |λi|/
√
µ ∈ (0, 1) for

i = ns + 1, . . . , n. Combining this with the constraint that
∑n
i=1 pi = s, we have

s =

n∑
i=1

pi = ns +

n∑
i=ns+1

pi = ns +

n∑
i=ns+1

|λi|√
µ
. (15)

Rearranging, we obtain

µ =

(∑n
i=ns+1 |λi|

)2
(s− ns)2

(16)

which then implies that

pi = 1, i = 1, . . . , ns, pi =
|λi|(s− ns)∑n
j=ns+1 |λj |

, i = ns + 1, . . . , n. (17)

Thus, we need to select ns such that the pi in (17) are bounded above by 1. Let n∗s denote the first
element of [n] for which this holds. Then the condition that pi ≤ 1 for i = n∗s + 1, . . . , n is exactly
the condition that [λn∗

s+1, . . . , λn] is (s− ns)-balanced. In particular, Lemma 2 implies that, fixing
pi = 1 for i = 1, . . . , n∗s , the optimal way to assign the remaining pi is by

pi =
|λi|(s− n∗s)∑n
j=n∗

s+1 |λj |
.

This agrees with (17) for ns = n∗s . In particular, the minimal value of f occurs at the first value of ns
such that the pi in (17) are bounded above by 1.

Algorithm 1 scans through the sorted λi and finds the first value of ns for which the probabilities
in (17) are in [0, 1], and therefore finds the optimal p for (13). The runtime is dominated by the
O(n log n) sorting cost. It is worth noting that we could perform the algorithm in O(sn) time as well.
Instead of sorting and then iterating through the λi in order, at each step we could simply select the
next largest |λi| not yet seen and perform an analogous test and update as in the above algorithm.
Since we would have to do the selection step at most s times, this leads to an O(sn) complexity
algorithm.

16

C Equivalence of norms

We are often interested in comparing norms on vectors spaces. This naturally leads to the following
definition.

Definition 2. Let V be a vector space over R or C. Two norms ‖ · ‖a, ‖ · ‖b are equivalent if there
are positive constants C1, C2 such that

C1‖x‖a ≤ ‖x‖b ≤ C2‖x‖a
for all x ∈ V .

As it turns out, norms on finite-dimensional vector spaces are always equivalent.

Theorem 10. Let V be a finite-dimensional vector space over R or C. Then all norms are equivalent.

In order to compare norms, we often wish to determine the tightest constants which give equivalence
between them. In Section 5, we are particularly interested in comparing the ‖X‖∗ and ‖X‖1,1 on the
space of n×m matrices. We have the following lemma.

Lemma 11. For all n×m real matrices,
1√
nm
‖X‖1,1 ≤ ‖X‖∗ ≤ ‖X‖1,1.

Proof. Suppose that X has the singular value decomposition

X =

r∑
i=1

σiuiv
T
i .

We will first show the left inequality. First, note that for any n×m matrix A, ‖A‖1,1 ≤
√
nm‖A‖F .

This follows directly from the fact that for a n-dimensional vector v, ‖v‖1 ≤
√
n‖v‖2. We will also

use the fact that for any vectors u ∈ Rn, v ∈ Rm, ‖uvT ‖F = ‖u‖2‖v‖2. We then have

‖X‖1,1 =

∥∥∥∥∥
r∑
i=1

σiuiv
T
i

∥∥∥∥∥
1,1

≤
r∑
i=1

σi‖uivTi ‖1,1

=

r∑
i=1

σi
√
nm‖uivTi ‖F

=
r∑
i=1

σi
√
nm‖ui‖2‖vi‖2

= ‖X‖∗.

For the right inequality, note that we have

X =
∑
i,j

Xi,jeie
T
j

where ei ∈ Rn is the i-th standard basis vector, while ej ∈ Rm is the j-th standard basis vector. We
then have

‖X‖∗ ≤
∑
i,j

|Xi,j |‖eieTj ‖∗ =
∑
i,j

|Xi,j | = ‖X‖1,1.

In fact, these are the best constants possible. To see this, first consider the matrix X with a 1 in the
upper-left entry and 0 elsewhere. Clearly, ‖X‖∗ = ‖X‖1,1 = 1, so the right-hand inequality is tight.
For the left-hand inequality, consider the all-ones matrix X . This has one singular value,

√
nm, so

‖X‖∗ =
√
nm. On the other hand, ‖X‖1,1 = nm. Therefore, ‖X‖1,1 =

√
nm‖X‖∗ in this case.

17

D Hyperparameter optimization

We firstly provide results of step size tunning, as shows in Table 5 we reported stepsize tunning results
for all of our experiments. We tuned these step sizes by evaluating many logarithmically spaced step
sizes (e.g., 2−10, . . . , 20) and evaluated on validation loss.

This step sizes tuning, for 8 gradient coding methods and 3 datasets was only possible because fairly
small networks were used.

Table 5: Tuned stepsizes for experiments
Experiments CIFAR-10 & ResNet-18 SVHN & ResNet-18 CIFAR-10 & VGG-11-BN

SVD rank 1 0.0625 0.1 0.125

SVD rank 2 0.0625 0.125 0.125

SVD rank 3 0.125 0.125 0.0625

SVD rank 4 0.0625 0.125 0.15

QSGD 1bit 0.0078125 0.0078125 0.0009765625

QSGD 2bit 0.0078125 0.0078125 0.0009765625

QSGD 4bit 0.125 0.046875 0.015625

QSGD 8bit 0.125 0.125 0.0625

E Additional Experiments

Runtime analysis: We empirically study runtime costs of spectral-ATOMO with sparsity budget
set at 1, 2, 3, 6 and made comparisons among b-bit QSGD and TernGrad. We deployed distributed
training on ResNet-18 with batch size B = 256 on the CIFAR-10 dataset run with m5.2xlarge
instances. As shown in Figure 4, there is a trade-off between the amount of communication per
iteration and the running time for both singular value sparsification and QSGD. In some scenarios,
spectral-ATOMO attains a higher compression ratio than QSGD and TernGrad. For example, singular
value sparsification with sparsity budget 1 may communicate smaller messages than {2, 4}-bit QSGD
and Terngrad.

QSGD
b=1

QSGD
b=2

QSGD
b=4

SVD
s=1

SVD
s=2

SVD
s=3

SVD
s=6

 TernGrad

Method

0

2

4

6

8

Ti
m

e
pe

r i
te

ra
tio

n
(s

ec
)

0
10
20
30
40
50
60
70

M
es

sa
ge

 si
ze

 (M
B)

Computation time
Encoding time
Communication time
Gradient message size

Figure 4: Runtime analysis of different sparsification methods (singular value sparsification, QSGD, and Tern-
Grad) for ResNet-18 trained on CIFAR-10. The values shown are computation, encoding and communication
time as well as the size of the message required to send gradients between workers.

18

0 1000 2000 3000
Number of Iterations

30
40
50
60
70
80

Te
st

 se
t A

cc

Test Accuracy vs Iterations

Best of ATOMO
Best of QSGD
Vanilla SGD
TernGrad

(a) CIFAR-10, ResNet-18, Best of
QSGD and SVD

500 1000 1500 2000
Number of Iterations

20

40

60

80

Te
st

 se
t A

cc

Test Accuracy vs Iterations

Best of ATOMO
Best of QSGD
TernGrad
Vanilla SGD

(b) SVHN, ResNet-18, Best of
QSGD and SVD

0 2000 4000
Number of Iterations

20

40

60

80

Te
st

 se
t A

cc

Test Accuracy vs Iterations

Best of ATOMO
Best of QSGD
TernGrad
Vanilla SGD

(c) CIFAR-10, VGG11, Best of
QSGD and SVD

Figure 5: Convergence rates with respect to number of iterations on: (a) CIFAR-10 on ResNet-18 of best
performances from QSGD and SVD (b) SVHN on ResNet-18 of best performances from QSGD and SVD, (c)
CIFAR-10 on VGG-11-BN best of performances from QSGD and SVD

SVD
s=1

SVD
s=2

SVD
s=3

SVD
s=4

QSGD
b=4

QSGD
b=8

Method

 6
5%

 6

8%

 7
1%

 7

4%
Te

st
 a

cc
ur

ac
y

3.66x 3.02x 2.78x 2.71x 1.25x 1.23x

2.71x 2.48x 2.53x 2.38x 1.13x 0.99x

3.16x 2.96x 2.55x 2.5x 1.57x 1.29x

2.89x 2.82x 3.96x 1.96x 1.68x 1.43x

Table 6: Speedups of spectral-ATOMO with sparsity budget s, b-bit QSGD, and TernGrad using VGG11 on
CIFAR-10 over vanilla SGD.

19

	Introduction
	Problem Setup
	Atomo: Atomic Decomposition and Sparsification
	Relation to QSGD and TernGrad
	Spectral-Atomo: Sparsifying the Singular Value Decomposition
	Experiments
	Conclusion
	Proof of results
	Proof of Lemma 2
	Proof of Lemma 3

	Analysis of Atomo via the KKT Condtions
	Equivalence of norms
	Hyperparameter optimization
	Additional Experiments

