
A Technical proofs

A.1 Proof of Lemma 4.1.

Proof. Before we proceed with the main proof, we first introduce the following lemma in [7].
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Using Lemma A.1, we have that
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for any fixed v 2 Rp with kvk
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bound is similar.
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A.2 Proof of Lemma 4.3.

Proof. Before we proceed with the main proof, we first introduce the following lemma in [14].

Lemma A.2 (Lemma I.2 in [14]). Given a Gaussian random vector Y ⇠ N(0, S) with Y 2 Rm⇥1,
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We then proceed with the proof of Lemma 4.3. Denote qj = xj �M⇤ P
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Each Rj for j = 1, 2, 3 is a deviation term and can be bounded similarly. For R
3

, define the random
vector Y 2 Rm with component Yj = v>exj . Using Lemma A.2 and together with assumption EC,
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Combine these three bounds, for fixed v 2 Rp with kvk
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Setting t = 4
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p/m and taking the union bound on 1/4-covering of Sm�1
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completes the proof.
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A.3 Proof of Lemma 4.4.

Proof. Since M (0) is the unconstrained minimizer of L(M), we have L(M (0)
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A.4 Proof of Theorem 4.5.

Proof. According to Lemma 4.3 and Lemma 4.4, the initialization M (0) satisfies kM (0)�M⇤kF  C
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we can iteratively apply (A.13) for each t = 1, 2, ..., T and obtain
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which shows linear convergence up to statistical error. For large enough T , the final error is given by
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Together with (4.6) we see that this gives exactly the same rate as the convex relaxation method (4.3).

14


