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1 Proofs

Proof 1 (of Theorem 1) Since R and R′ differs only in two features in one rule, and has the same
size of the rules, so we only need to compare the probability of feature selection for the rule. Let
l′mj1

, l′mj2
represent the number of items taking feature j1 and j2 in the m-th rule in R′. l′mj1

=
lmj1 + 1, l′mj2

= lmj2 − 1

p(rm|Lm, θ)

p(r′m|Lm, θ)
=

Γ(lmj1 + θj1)

Γ(l′mj1
+ θj1)

Γ(lmj2 + θj2)

Γ(l′mj2
+ θj2)

=
lmj2 + θj2 − 1

lmj1 + θj1
< 1.

Proof 2 (of Lemma 1) Given a MRS model R, let TP, FP, TN and FN be the number of true positives,
false positives, true negatives and false negatives in S classified by R. The conditional likelihood is

p(y|x, R =
B(TP + α+,FP + β+)

B(α+, β+)

B(TN + α−,FN + β−)

B(α−, β−)
.

We then compute the likelihood for model R\z . The most extreme case is when rule z is an 100%
accurate rule that applies only to real positive data points and those data points satisfy only z.
Therefore once removing it, the number of true positives decreases by supp(z) and the number of
false negatives increases by supp(z). That is,

p(y|x, R\z) ≥
B(TP− supp(z) + α+,FP + β+)

B(α+, β+)

B(TN + α−,FN + supp(z) + β−)

B(α−, β−)

=p(y|x, A) · g(supp(z)), (1)

where

g(supp(z)) =
Γ(TP + α+ − supp(z))

Γ(TP + α+)

Γ(TP + FP + α+ + β+)

Γ(TP + FP + α+ + β+ − supp(z))
Γ(FN + β− + supp(z))

Γ(FN + β−)

Γ(TN + FN + α− + β−)

Γ(TN + FN + α− + β− + supp(z))
. (2)
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Now we break down g(supp(z)) to find a lower bound for it. The first two terms in (2) become

Γ(TP + α+ − supp(z))
Γ(TP + α+)

Γ(TP + FP + α+ + β+)

Γ(TP + FP + α+ + β+ − supp(z))

=
(TP + FP + α+ + β+ − supp(z)) . . . (TP + FP + α+ + β+ − 1)

(TP + α+ − supp(z)) . . . (TP + α+ − 1)

≥
(

TP + FP + α+ + β+ − 1

TP + α+ − 1

)supp(z)

≥
(
N+ + α+ + β+ − 1

N+ + α+ − 1

)supp(z)

. (3)

Equality holds in (3) when TP = N+,FP = 0. Similarly, the last two terms in (2) become

Γ(FN + β− + supp(z))
Γ(FN + β−)

Γ(TN + FN + α− + β−)

Γ(TN + FN + α− + β− + supp(z))

=
(FN + β−) . . . (FN + β− + supp(z)− 1)

(TN + FN + α− + β−) . . . (TN + FN + α− + β− + supp(z)− 1)

≥
(

FN + β−

FN + TN + α− + β−

)supp(z)

≥
(

β−

N− + α− + β−

)supp(z)

. (4)

Equality in (4) holds when TN = N−,FN = 0. Combining (1), (2), (3) and (4), we obtain

p(y|x, R\z) ≥
(
N+ + α+ + β+ − 1

N+ + α+ − 1

β−

N− + α− + β−

)supp(z)

· p(y|x, R)

= Υsupp(z)p(y|x, R). (5)

Proof 3 (of Theorem 2)
Step 1 We first prove the upper bound on M∗. Since R∗ ∈ argmaxR p(R|S), p(R∗|S) ≥ v[t], i.e.,

log p(S|R∗) + log p(R∗) ≥ v[t]. (6)

Since p(S|R∗) ≤ L∗, we only need to upper bound p(R∗).

The prior probability of R∗ depends on the number of rules M∗, the number of items in each rule,
which we denote as Lm,m ∈ {1, ...,M∗}, and the number of items containing each feature, denoted
as {lmj}j , so the prior probability for R∗ is

p(R∗) ∝ p(M∗|αM , βM )

M∏
m=1

p(Lm|αL, βL)p(rm|Lm, θ) (7)

where

p(M∗|αM , βM ) =
Γ(M∗ + αM )

Γ(M∗ + 1)Γ(αM )

(
1

βM + 1

)M (
βM

βM + 1

)αM

≤αM (αM + 1) · · · (αM +M∗ − 1)

1 · 2 · · ·M∗

(
1

βM + 1

)M∗ (
βM

βM + 1

)αM

=

(
αM

βM + 1

)M∗ (
βM

βM + 1

)αM

(8)

Similarly, for each m ∈ {1, ...,M},

p(Lm|αL, βL) ≤
(

αL

βL + 1

)Lm
(

βL

βL + 1

)αL

2



We also upper bound p(rm|Lm, θ):

p(zm|Lm, θ) =
Γ(
∑J

j=1 θj)

Γ(Lm +
∑

j=1 θj)

J∏
j=1

Γ(lmj + θj)

Γ(θj)

≤
Γ(
∑J

j=1 θj)Γ(Lm +max(θ))

Γ(Lm +
∑J

j=1 θj)Γ(max(θ))

=
max(θ)(max(θ) + 1) · · · (max(θ) + Lm − 1)

(
∑J

j=1 θj)(
∑J

j=1 θj + 1) · · · (
∑J

j=1 θj + Lm − 1)

≤

(
max(θ) + Lm − 1∑J

j=1 θj + Lm − 1

)Lm

≤ max(θ)∑J
j=1 θj

(9)

(9) is because
(

max(θ)+Lm−1∑J
j=1 θj+Lm−1

)Lm

decreases monotonically with Lm. Therefore

p(R∗) ≤
(

αM

βM + 1

)M∗ (
βM

βM + 1

)αM M∏
m=1

(
αL

βL + 1

)Lm max(θ)∑J
j=1 θj

(
βL

βL + 1

)αL

≤
(

αM

βM + 1

)M∗ (
βM

βM + 1

)αM M∏
m=1

αL

βL + 1

max(θ)∑J
j=1 θj

(
βL

βL + 1

)αL

(10)

(10) follows because αL < βL. Since p(∅) =
(

βM

βM+1

)αM

,Ω =
(βM+1)(βL+1)αL+1 ∑J

j=1 θj

αMβ
αL
L αL max(θ)

, and
Ω > 1, we have

p(R∗) =p(∅)

(
αMβαL

L αL max(θ)

(βM + 1)(βL + 1)αL+1
∑J

j=1 θj

)M∗

=p(∅)( 1
Ω
)M

∗
(11)

Now we apply (6) combining with (11), we get

logL∗ + log p(∅) +M∗ log
1

Ω
≥ v[t] (12)

Then solving for M∗ yields:

M∗ ≤M [t] =

⌊
logL∗ + log p(∅)− v[t]

log Ω

⌋
. (13)

where we use M [t] to denote the upper bound derived at time t.

Step 2: Now we prove the lower bound on the support. We would like to prove that a MAP model
does not contain rules of support less than a threshold. To show this, we prove that if any rule z has
support smaller than some constant, then removing it yields a better objective, i.e.,

p(R∗|S) ≤ p(R∗
\z|S). (14)

Our goal is to find the constant such that this inequality holds. We relate P (R\z) with P (R). We
multiply P (R\z; θ) with 1 in disguise to relate it to P (R):

p(R∗
\z) =p(M∗ − 1;αM , βM )

M∗∏
m ̸=z

p(Lm;αL, βL)p(rm|Lm, θ)

=
p(M∗ − 1;αM , βM )

p(M∗;αM , βM )p(Lz;αL, βL)p(rm|Lm;α)
p(A)

≥ M∗(βM + 1)

(M∗ + αM − 1)

(
βL + 1

βL

)αL
(
βL + 1

αL

)Lz
(∑J

j=1 θj

max(θ)

)
p(R)
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≥
M∗(βM + 1)(βL + 1)αL+1(

∑J
j=1 θj)

(M∗ + αM − 1)βαL

L αL max(θ)
p(A)

=
M∗αM

M∗ + αM − 1
Ωp(R). (15)

From Theorem 1 we also have

p(y|x, R\z) ≥ Υsupp(z)p(y|x, R). (16)

Then combining (15) with (16), the joint probability of S and R\z is lower bounded by

p(R\z) ≥
M∗αM

M∗ + αM − 1
· ΩΥsupp(z)p(R|S).

In order to get p(R\z|S) ≥ p(R|S), we need

M∗αM

M∗ + αM − 1
· ΩΥsupp(z) ≥ 1,

i.e.,

Υsupp(z) ≥ M∗ + αM − 1

M∗αMΩ
≥ M [t] + αM − 1

M [t]αMΩ
,

We have Υ ≤ 1, thus

supp(z) ≤
log M [t]αMΩ

M [t]+αM−1

log 1
Υ

. (17)

Therefore, for any rule z in a MAP model R∗,

supp(z) ≥

 log
M [t]αMΩ

M [t]+αM−1

log 1
Υ

 . (18)

2 Inference Algorithm

Below we present the full inference algorithm

Algorithm 1 Inference algorithm.

procedure SIMULATED ANNEALING(Niter)
R[0] ← a randomly generated rule set
for t = 0→ Niter do

(xk, yk)← a random example drawn from data points misclassified by R[t]

if yk = 1 then

R[t+1] ←


AddValue(R[t]), with probability 1

3

RemoveCondition(R[t]), with probability 1
3

AddRule(R[t]), with probability 1
3 (using Theorem 2)

else

R[t+1] ←
{

AddCondition(R[t]), with probability 1
2

RemoveRule(R[t]), with probability 1
2

Rmax ← argmax(p(Rmax|S), p(R[t+1]|S)) (Check for improved optimal solution)

α = min
{
1, exp

(
p(R[t+1]|S)−p(R[t]|S)

T [t]

)}
(Probability of an annealing move)

R[t+1] ← R[t+1], with probability α
end for
return Amax

end procedure

4


	Proofs
	Inference Algorithm

