
Automating Bayesian optimization with Bayesian
optimization: supplementary material

Gustavo Malkomes, Roman Garnett
Department of Computer Science and Engineering

Washington University in St. Louis
St. Louis, MO 63130

{luizgustavo, garnett}@wustl.edu

1 Experiments

In this section, we provide more details about our experiments. First, we give more information about
the synthetic test functions that we used in Table 1, then we describe the “real-world” functions.

Tuning hyperparameters of machine learning algorithms We consider hyperparameter-tuning
benchmark functions available in the HPOLib package [1]: Support Vector Machine (SVM), Online
Latent Dirichlet Allocation (LDA) and Logistic Regression, with, respectively, 3, 3, and 4 hyperparam-
eters. In these datasets, all values were pre-computed for different configurations of hyperparameters.
The number of observations are 1 400, 289, and 9 680 for each dataset respectively.

Next, we repeat the experiments of [7] for training a 1-hidden layer neural network and performing
active learning for robot pushing.1 Here we describe the former and in the next block the latter.
Neural networks were trained to perform regression on the Boston housing dataset and classification
with the breast cancer dataset [4]. The four tuned hyperparameters were the number of neurons,
the damping factor µ, the µ-decrease factor, and the µ-increase factor. The neural network’s initial
weights and all other parameters were set to be the same. The L2-loss on the validation set of the
Boston housing dataset is the objective function to be minimized, and the classification error on the
validation set of the breast cancer dataset is the black-box function.

Active learning for robot pushing Bayesian optimization was used to do active learning for the
pre-image learning problem for pushing [3]. The objective function to be optimized takes as input
the pushing action of the robot, and outputs the distance of the pushed object to the goal location.
The goal is to minimize the function in order to find a good pre-image for pushing the object to
a given location. Two functions were tested: a 3-dimensional input with robot location (rx, ry)
and pushing duration tr, and a 4-dimensional input which has the robot location and the angle
(rx, ry, rθ) and the pushing duration tr. To facilitate reproducibility, we selected one goal location
and precomputed 20 000 values for each test function. The inputs were random locations created
using a low-discrepancy Sobol sequence and an appropriate mapping to the input domain.

Determining Cosmological Parameters Finally, we test our approach on the task of determining
cosmological constants of standard physical models of the universe (e.g., Hubble’s constant, dark
energy density, matter density, etc.). The exact values of those constants are unknown but scientists
can run simulations to estimate the likelihood of a particular setting of constants given our current
experimentally observed data of the universe. Our goal is to find the set of constants (a total of 9
parameters) with maximum likelihood. We use the same data and software used by the authors of [2]
and described in [6]. We also precomputed the objective function values but for an even larger set of
locations, 50 000 in total.

1Code available online:https://github.com/zi-w/Max-value-Entropy-Search/
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Table 1: Test functions used in our experiments. The analytic form of these functions as well as the
global minimum can be found online [5].

test function domain

Ackley [−5, 5]d, d ∈ {2, 5}
Beale [−4.5, 4.5]5
Branin [−5, 10]× [0, 15]
Eggholder [−512, 512]2
Six-Hump Camel [−3, 3]× [−2, 2]
Drop-Wave [−5.12, 5.12]2
Griewank [−600, 600]d, d ∈ {2, 5}
Rastrigin [−5.12, 5.12]2, d ∈ {2, 4}
Rosenbrock [−5, 10]2
Shubert [−10, 10]2
Hartmann [0, 1]d, d ∈ {3}
Levy [−10, 10]3
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(a) Robot pushing 4D
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(b) Neural Network Cancer

Figure 1: Averaged (log) minimum observed function value and standard error of all methods for the
remaining functions.
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