
A Proof of Main Theorem

Theorem 1 Under Assumptions 1-6, for a randomly sampled x,y, with high probability

|Lp(WpFmx,y)− Lp (WpFx,y)| ≤ a(σr+σp)nσp

ct

(
r+
√
r2+

4εcBWrBFr
a(σr+σp)n

)
+

2εσpBWrBF

t (6)

Proof: From Assumption 4,

|Lp (WpFmx,yp)−Lp (WpFx,yp)| ≤σp‖Wr (Fm − F)x‖2
The key to bounding this value for an arbitrary (x,y) is to first upper bound it in terms of the
representative points,

∑n
i=1 ‖Wr (Fm − F)bi‖2, and then provide an upper bound on this term

with representative points.

Part 1: Upper bound in terms of representative points According to Assumption 5, for all x,
w.h.p.

‖Wr (Fm − F)x‖2 =

∥∥∥∥∥∥
n∑
j=1

αjWr (Fm − F)bj +Wr (Fm − F) η

∥∥∥∥∥∥
2

(7)

Using Cauchy-Schwarz, we further obtain

(7) ≤

√√√√ n∑
j=1

α2
j

√√√√ n∑
j=1

‖Wr (Fm − F)bj‖22 + ‖Wr (Fm − F) ‖2‖η‖2

≤
√
r

√√√√ n∑
j=1

‖Wr (Fm − F)bj‖22 +
2BWr

BFε

t
(8)

Part 2: Bounding A =
√∑n

j=1 ‖Wr (Fm − F)bj‖22
Let BL(Fm||F) denote the Bregman divergence,

BL(Fm||F) = L (Fm)− L (F)− 〈Fm − F,∇L (F)〉 (9)

where the dot-product notation for the matrices corresponds to element-wise product and summation.
We use the following two bounds, proved below.

BN (Fm||F) ≤ BL(Fm||F) (10)
BN (F||Fm) ≤ BLm

(F||Fm) (11)
BNb

(Fm||F) +BNb
(F||Fm) ≤ a[BN (Fm||F) +BN (F||Fm)] (12)

Obtaining inequalities in (10) and (11) The first term comes from the fact that L−N is strictly
convex. This is because the sum of strictly convex functions for N are a strict subset of sum of
strictly convex functions for L. Since L−N is still strictly convex, it provides a valid potential for
the Bregman divergence and gives

0 ≤ BL−N (Fm||F) = BL(Fm||F)−BN (Fm||F) =⇒ BL(Fm||F) ≥ BN (Fm||F).

The same reasoning applies to BLm
(F||Fm) ≥ BN (F||Fm).

Obtaining inequality in (12) The second term follows from Assumption 6. Notice that the
Bregman divergence for Nb and N simplifies as follows.

BNb
(Fm||F) +BNb

(F||Fm)

= Nb (Fm)−Nb (F)− 〈Fm − F,∇Nb (F)〉+Nb (F)−Nb (Fm)− 〈F− Fm,∇Nb (Fm)〉
= 〈Fm − F,∇Nb (Fm)−∇Nb (F)〉
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By the definition of directional derivatives,

〈Fm − F,∇Nb (F)〉 = lim
α→0

Nb(F+ α(Fm − F))−Nb(F)
α

= lim
α→0

Nb((1− α)F+ αFm)−Nb(F)
α

and so, because both limits exists,
〈Fm − F,∇Nb (Fm)−∇Nb (F)〉
= −〈Fm − F,∇Nb (F)〉 − 〈F− Fm,∇Nb (Fm)〉

= lim
α→0+

[Nb(F)−Nb((1− α)F+ αFm)

α
+
Nb(Fm)−Nb((1− α)Fm + αF)

α

]
≤ lim
α→0+

a
[N(F)−N((1− α)F+ αFm)

α
+
N(Fm)−N((1− α)Fm + αF)

α

]
= a 〈Fm − F,∇N (Fm)−∇N (F)〉
= a [BN (Fm||F) +BN (F||Fm)]

where the inequality follows from Assumption 6.

Bounding A using (10) - (12) and Assumptions 2 and 3
a [BL(Fm||F) +BLm

(F||Fm)]

≥ BNb
(Fm||F) +BNb

(F||Fm)

=
1

n

n∑
i=1

〈
F− Fm,W

>
r ∇Lr (WrFbi,yr,bi)b

>
i

〉
− 1

n

n∑
i=1

〈
F− Fm,W

>
r ∇Lr (WrFmbi,yr,bi)b

>
i

〉
=

1

n

n∑
i=1

〈
Wr (F− Fm)bi,∇Lr (WrFbi,yr,bi)−∇Lr (WrFmbi,yr,bi)

〉
≥ c

n

n∑
i=1

‖Wr (Fm − F)bi‖22

where the inequality comes from the assumption that function Lr is c-strongly convex.

Notice now that, because∇L(F) = 0 and∇Lm(Fm) = 0

BL(Fm||F) +BLm
(F||Fm)

= L (Fm)− L (F) + Lm (F)− Lm (Fm)

= (L (Fm)− Lm (Fm)) + (Lm (F)− L (F)) (13)

=
1

t

[
Lp (WpFmxm,yp,m)− Lp

(
WpFmx′m,y

′
p,m

)]
+

1

t

[
Lr (WrFmxm,yr,m)− Lr

(
WrFmx′m,y

′
r,m

)]
+

1

t

[
−Lp (WpFxm,yp,m) + Lp

(
WpFx

′
m,y

′
p,m

)]
+

1

t

[
−Lr (WrFxm,yr,m) + Lr

(
WrFx

′
m,y

′
r,m

)]
Because Lr is σr-admissible by Assumption 2, we have

|Lr (WrFmxm,yr,m)− Lr (WrFxm,yr,m) | ≤ σr‖Wr (Fm − F)xm‖2.
We get a similar result for Lp, using Assumption 4, but with σp. Therefore, we can bound (13) above,
and get

c

n

n∑
i=1

‖Wr (Fm − F)bi‖22 ≤
a(σr+σp)

t [‖Wr (Fm − F)xm‖2 + ‖Wr (Fm − F)x′m‖2] (14)

Putting it all together to get the upper bound on A From (14), we get
c

n
A2 ≤ 2a(σr+σp)

t

(√
rA+

2BWr
BFε

t

)
=⇒ A ≤ a(σr+σp)n

ct

(
√
r +

√
r +

4εcBWrBF

a(σr+σp)n

)
(15)
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Finally, therefore, again using (8),

|Lp (WpFmx,yp)− Lp (WpFx,yp)|
≤ σp‖Wr (Fm − F)x‖2

≤ σp
√
r

√√√√ n∑
j=1

‖Wr (Fm − F)bj‖22 + σp
2BWr

BFε

t

≤ a(σr+σp)nσp
ct

(
r +

√
r2+

4εcBWr
BFr

a(σr+σp)n

)
+

2εσpBWr
BF

t

�

B Examples of specific constants for the Main Theorem

Corollary 1 In Assumption 4, if Wp ∈ Rm×k,Wr ∈ Rd×k, d ≥ k ≥ m,Wr is full rank, Lp is
σ-admissible, then for W−1

r the inverse matrix of the first k rows of Wr, σp = σ‖Wp‖F ‖W−1
r ‖F .

Proof: Since Wr is full rank, we must have Wp = AWr, where the last d−k columns of A are all
zeros. Hence ‖Wp(F− Fm)x‖2 ≤ ‖A‖F ‖Wr(F− Fm)x‖2. In the meanwhile, ‖WpW

−1
r ‖F =

‖AWrW
−1
r ‖F = ‖A‖F , where W−1

r is the inverse matrix of the first k rows of Wr. Hence
‖A‖F ≤ ‖Wp‖F ‖W−1

r ‖F . It implies σp = σ‖Wp‖F ‖W−1
r ‖F , since

|Lp (WpFmx,yp)−Lp (WpFx,yp)|
≤ σ‖Wp(Fm − F)x‖2
≤ σ‖Wp‖F ‖W−1

r ‖F ‖Wr(F− Fm)x‖2.
�

Corollary 2 For Lr the least-squares loss,

c = 2 and σr = 2BWr
BFBx + 2Bx.

If Lp is

1. the least-squares loss, then σ = 2BWpBFBx + 2By

2. the cross-entropy, with yp ∈ {0, 1}m, then σ = 2
√
m

3. the cross-entropy, with yp ∈ {−1, 1}m, then σ =
√
m.

Proof: For the least-squares loss Lr, we get c = 2 because〈
x1 − x2,∇Lr (x1,y)−∇Lr (x2,y)

〉
= 〈x1 − x2, 2 (x1 − x2)〉
≥ 2‖x1 − x2‖22.

We get σr = 2BWr
BFBx + 2Bx because

|Lr (WrF1x,yr)− Lr (WrF2x,yr)|

=
∣∣∣‖WrF1x− yr‖22 − ‖WrF2x− yr‖22

∣∣∣
= |〈Wr (F1 − F2)x,WrF1x+WrF2x− 2yr〉|
≤ ‖Wr (F1 − F2)x‖2‖WrF1x+WrF2x− 2yr‖2
≤ (2BWr

BFBx + 2Bx) ‖Wr (F1 − F2)x‖2
Similarly, for Lp the least-squares loss, σ = 2BWpBFBx + 2By.

For the case where Lp is the cross-entropy loss, let

z = WpF1x

z′ = WpF2x

y = yp
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with ai denoting the i-th element of vector a. When y ∈ {0, 1}m,

|Lp (z,y)− Lp (z′,y)|

=

∣∣∣∣∣
m∑
i

[
−yi ln

1

1 + exp−zi
− (1− yi) ln

1

1 + expzi

+yi ln
1

1 + exp−z
′
i

+ (1− yi) ln
1

1 + expz
′
i

]∣∣∣∣
=

∣∣∣∣∣
m∑
i

[
yi

(
ln

1

1 + expzi
+ ln

1

1 + exp−z
′
i

− ln
1

1 + exp−zi
− ln

1

1 + expz
′
i

)
+ ln

1

1 + expz
′
i

− ln
1

1 + expzi

]∣∣∣∣
=

∣∣∣∣∣
m∑
i

[
yi ln

expz
′
i

expzi
+ ln

1

1 + expz
′
i

− ln
1

1 + expzi

]∣∣∣∣∣
=

∣∣∣∣∣
m∑
i

[
yi(z

′
i − zi) + ln

1 + expzi

1 + expz
′
i

]∣∣∣∣∣
≤

m∑
i

|yi (z′i − zi)|

+

m∑
i

min

(∣∣∣∣ln 1 + expzi

1 + expz
′
i

∣∣∣∣ ,
∣∣∣∣∣ln 1 + expz

′
i

1 + expzi

∣∣∣∣∣
)

≤ ‖z− z′‖1 +
m∑
i

min

(∣∣∣∣ln 1 + expzi

1 + expz
′
i

∣∣∣∣ ,
∣∣∣∣∣ln 1 + expz

′
i

1 + expzi

∣∣∣∣∣
)

To bound this second component, notice that if z′i ≤ zi,

1 + expzi

1 + expz
′
i

− expzi

expz
′
i

=
expz

′
i − expzi

expz
′
i

(
1 + expz

′
i

) ≤ 0.

This implies ∣∣∣∣ln 1 + expzi

1 + expz
′
i

∣∣∣∣ = ln
1 + expzi

1 + expz
′
i

≤ ln
expzi

expz
′
i

=

∣∣∣∣ln expzi

expz
′
i

∣∣∣∣ = |zi − z′i| .

Therefore, we get

|Lp (z,y)− Lp (z′,y)| ≤ ‖z− z′‖1 +
m∑
i

|zi − z′i|

= 2 ‖z− z′‖1
≤ 2
√
m ‖z− z′‖2 .

For yp ∈ {−1, 1}m, similarly to the case where {0, 1}m,∣∣∣∣∣ln 1 + expyiz
′
i

1 + expyizi

∣∣∣∣∣ ≤ |yiz′i − yizi| ≤ |z′i − zi| ,
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then we have

|Lp (z,y)− Lp (z′,y)|

=

∣∣∣∣∣
m∑
i

[
ln

1

1 + expyizi
− ln

1

1 + expyiz′
i

]∣∣∣∣∣
=

∣∣∣∣∣
m∑
i

[
1 + expyiz

′
i

1 + expyizi

]∣∣∣∣∣
≤

m∑
i

|(z′i − zi)|

≤ ‖z− z′‖1
≤
√
m ‖z− z′‖2

�
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