
A Detailed Variational Approximation

In this section, we repeat the derivation of the variational approximation in more detail.

Since exact inference in this model is intractable, we discuss a variational approximation to the
model’s true marginal likelihood and posterior in this section. Analogously to y, we denote the
random vectors which contain the function values of the respective functions and outputs as a and f .
The joint probability distribution of the data can then be written as

p(y,f ,a |X) = p(f |a)
D∏

d=1

p(yd |fd) p(ad |X),

ad | X ∼ N (X,Ka,d + σ2
a,dI),

f | a ∼ N (0,Kf + σ2
fI),

yd | fd ∼ N (fd,Kg,d + σ2
y,dI).

(9)

Here, we use K to refer to the Gram matrix corresponding to the kernel of the respective GP. All but
the CPs factorize over both the different levels of the model as well as the different outputs.

To approximate a single deep GP, Hensman and Lawrence [11] proposed nested variational compres-
sion in which every GP in the hierarchy is handled independently. While this forces a variational
approximation of all intermediate outputs of the stacked processes, it has the appealing property that
it allows optimization via stochastic gradient descent [10] and the variational approximation can after
training be used independently of the original training data.

A.1 Augmented Model

Nested variational compression focuses on augmenting a full GP model by introducing sets of
inducing variables u with their inducing inputs Z. Those variables are assumed to be latent
observations of the same functions and are thus jointly Gaussian with the observed data.

It can be written using its marginals [22] as

p(â,u) = N (â |µa,Σa)N (u |Z,Kuu), with

µa = X +KauK
−1

uu(u−Z),

Σa = Kaa −KauK
−1

uuKua,

(10)

where, after dropping some indices and explicit conditioning on X and Z for clarity, â denotes the
function values ad(X) without noise and we write the Gram matrices as Kau = ka,d(X,Z).

While the original model in (9) can be recovered exactly by marginalizing the inducing variables,
considering a specific variational approximation of the joint p(â,u) gives rise to the desired lower
bound in the next subsection. A central assumption of this approximation [22] is that given enough
inducing variables at the correct location, they are a sufficient statistic for â, implying conditional
independence of the entries of â given X and u. We introduce such inducing variables for every
GP in the model, yielding the set {ua,d,uf,d,ug,d}Dd=1 of inducing variables. Note that for the CP
f , we introduce one set of inducing variables uf,d per output fd. These inducing variables play a
crucial role in sharing information between the different outputs.

A.2 Variational Lower Bound

To derive the desired variational lower bound for the log marginal likelihood of the complete model,
multiple steps are necessary. First, we will consider the innermost GPs ad describing the alignment
functions. We derive the Scalable Variational GP (SVGP), a lower bound for this model part which
can be calculated efficiently and can be used for stochastic optimization, first introduced by Hensman,
Fusi, and Lawrence [10]. In order to apply this bound recursively, we will both show how to
propagate the uncertainty through the subsequent layers fd and gd and how to avoid the inter-layer
cross-dependencies using another variational approximation as presented by Hensman and Lawrence
[11]. While Hensman and Lawrence considered standard deep GP models, we will show how to
apply their results to CPs.
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The First Layer Since the inputs X are fully known, we do not need to propagate uncertainty
through the GPs ad. Instead, the uncertainty about the ad comes from the uncertainty about the
correct functions ad and is introduced by the processes themselves. To derive a lower bound on
the marginal log likelihood of ad, we assume a variational distribution q(ua,d) ∼ N (ma,d,Sa,d)
approximating p(ua,d) and additionally assume that q(âd,ua,d) = p(âd |ua,d) q(ua,d). After
dropping the indices again, using Jensen’s inequality we get

log p(a |X) = log

∫
p(a |u) p(u) du

= log

∫
q(u)

p(a |u) p(u)
q(u)

du

≥
∫

q(u) log
p(a |u) p(u)

q(u)
du

=

∫
log p(a |u) q(u) du−

∫
q(u) log

q(u)

p(u)
du

= Eq(u)[log p(a |u)]−KL(q(u) ‖ p(u)),

(11)

where Eq(u)[ · ] denotes the expected value with respect to the distribution q(u) and KL( · ‖ · )
denotes the KL divergence, which can be evaluated analytically.

To bound the required expectation, we use Jensen’s inequality again together with (10) which gives

log p(a |u) = log

∫
p(a | â) p(â |u) dâ

= log

∫
N (a | â, σ2

aI)N (â |µa,Σa) dâ

≥
∫

logN (a | â, σ2
aI)N (â |µa,Σa) dâ

= logN (a |µa, σ
2
aI)−

1

2σ2
a

tr(Σa).

(12)

We apply this bound to the expectation to get

Eq(u)[log p(a |u)] ≥ Eq(u)[logN (a |µa, σ
2
aI)]−

1

2σ2
a

tr(Σa), with (13)

Eq(u)[logN (a |µa, σ
2
aI)] = logN (a |KauK

−1

uum, σ2
aI)

+
1

2σ2
a

tr
(
KauK

−1

uuSK
−1

uuKua

)
.

(14)

Resubstituting this result into (11) yields the final bound

log p(a |X) ≥ logN (a |KauK
−1

uum, σ2
aI)− KL(q(u) ‖ p(u))

− 1

2σ2
a

tr(Σa)−
1

2σ2
a

tr
(
KauK

−1

uuSK
−1

uuKua

)
.

(15)

This bound, which depends on the hyper parameters of the kernel and likelihood {θ, σa} and the
variational parameters {Z,m,S}, can be calculated in O(NM2) time. It factorizes along the data
points which enables stochastic optimization.

In order to obtain a bound on the full model, we apply the same techniques to the other processes.
Since the alignment processes ad are assumed to be independent, we have log p(a1, . . . ,aD |
X) =

∑D
d=1 log p(ad |X), where every term can be approximated using the bound in (15). However,

for all subsequent layers, the bound is not directly applicable, since the inputs are no longer known
but instead are given by the outputs of the previous process. It is therefore necessary to propagate
their uncertainty and also handle the interdependencies between the layers introduced by the latent
function values a, f and g.
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The Second and Third Layer Our next goal is to derive a bound on the outputs of the second
layer

log p(f |uf ) = log

∫
p(f ,a,ua |uf ) dadua, (16)

that is, an expression in which the uncertainty about the different ad and the cross-layer dependencies
on the ua,d are both marginalized. While on the first layer, the different ad are conditionally
independent, the second layer explicitly models the cross-covariances between the different outputs
via convolutions over the shared latent processes wr. We will therefore need to handle all of the
different fd, together denoted as f , at the same time.

We start by considering the relevant terms from (9) and apply (12) to marginalize a in

log p(f |uf ,ua) = log

∫
p(f ,a |uf ,ua) da

≥ log

∫
p̃(f |uf ,a)p̃(a |ua) · exp

(
− 1

2σ2
a

tr(Σa)−
1

2σ2
f

tr(Σf )

)
da

≥ Ep̃(a|ua)[log p̃(f |uf ,a)]− Ep̃(a|ua)

[
1

2σ2
f

tr(Σf )

]
− 1

2σ2
a

tr(Σa),

(17)

where we write p̃(a |ua) = N
(
a
∣∣µa, σ

2
aI
)

to incorporate the Gaussian noise in the latent space.
Due to our assumption that ua is a sufficient statistic for a we choose

q(a |ua) = p̃(a |ua), and

q(a) =

∫
p̃(a |ua) q(ua) dua,

(18)

and use another variational approximation to marginalize ua. This yields

log p(f |uf ) = log

∫
p(f ,ua |uf ) dua

= log

∫
p(f |uf ,ua) p(ua) dua

≥
∫

q(ua) log
p(f |uf ,ua) p(ua)

q(ua)
dua

= Eq(ua)[log p(f |ua,uf )]−KL(q(ua) ‖ p(ua))

≥ Eq(ua)

[
Ep̃(a|ua)[log p̃(f |uf ,a)]

]
−KL(q(ua) ‖ p(ua))

− 1

2σ2
a

tr(Σa)− Eq(ua)

[
Ep̃(a|ua)

[
1

2σ2
f

tr(Σf )

]]
≥ Eq(a)[log p̃(f |uf ,a)],−KL(q(ua) ‖ p(ua))

− 1

2σ2
a

tr(Σa)−
1

2σ2
f

Eq(a)[tr(Σf )],

(19)

where we apply Fubini’s theorem to exchange the order of integration in the expected values. The
expectations with respect to q(a) involve expectations of kernel matrices, also called Ψ-statistics, in
the same way as in [8] and are given by

ψf = Eq(a)[tr(Kff )],

Ψf = Eq(a)[Kfu],

Φf = Eq(a)[KufKfu].

(20)

These Ψ-statistics can be computed analytically for multiple kernels, including the squared exponen-
tial kernel. In Appendix A.3 we show closed-form solutions for these Ψ-statistics for the implicit
kernel defined in the CP layer. To obtain the final formulation of the desired bound for log p(f |uf )
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we substitute (20) into (19) and get the analytically tractable bound

log p(f |uf ) ≥ logN
(
f
∣∣∣ΨfK

−1

ufuf
mf , σ

2
fI
)
−KL(q(ua) ‖ p(ua))−

1

2σ2
a

tr(Σa)

− 1

2σ2
f

(
ψf − tr

(
ΨfK

−1

ufuf

))
− 1

2σ2
f

tr
((

Φf −Ψ
T

fΨf

)
K

−1

ufuf

(
mfm

T

f + Sf

)
K

−1

ufuf

) (21)

The uncertainties in the first layer have been propagated variationally to the second layer. Besides
the regularization terms, f | uf is a Gaussian distribution. Because of their cross dependencies,
the different outputs fd are considered in a common bound and do not factorize along dimensions.
The third layer warpings gd however are conditionally independent given f and can therefore be
considered separately. In order to derive a bound for log p(y |ug) we apply the same steps as
described above, resulting in the final bound, which factorizes along the data, allowing for stochastic
optimization methods:

log p(y |X) ≥
D∑

d=1

logN
(
yd

∣∣∣Ψg,dK
−1

ug,dug,d
mg,d, σ

2
y,dI
)
−

D∑
d=1

1

2σ2
a,d

tr(Σa,d)

− 1

2σ2
f

(
ψf − tr

(
ΦfK

−1

ufuf

))
−

D∑
d=1

1

2σ2
y,d

(
ψg,d − tr

(
Φg,dK

−1

ug,dug,d

))
−

D∑
d=1

KL(q(ua,d) ‖ p(ua,d))−KL(q(uf ) ‖ p(uf ))−
D∑

d=1

KL(q(uy,d) ‖ p(uy,d))

− 1

2σ2
f

tr
((

Φf −Ψ
T

fΨf

)
K

−1

ufuf

(
mfm

T

f + Sf

)
K

−1

ufuf

)
−

D∑
d=1

1

2σ2
y,d

tr
((

Φg,d −Ψ
T

g,dΨg,d

)
K

−1

ug,dug,d

(
mg,dm

T

g,d + Sg,d

)
K

−1

ug,dug,d

)

(22)

A.3 Convolution Kernel Expectations

In Section 2 we assumed the latent processes wr to be white noise processes and the smoothing
kernel functions Td,r to be squared exponential kernels, leading to an explicit closed form formulation
for the covariance between outputs shown in (3). In this section, we derive the Ψ-statistics for this
generalized squared exponential kernel needed to evaluate (22).

The uncertainty about the first layer is captured by the variational distribution of the latent alignments
a given by q(a) ∼ N (µa,Σa), with a = (a1, . . . ,ad). Every aligned point in a corresponds to
one output of f and ultimately to one of the yd. Since the closed form of the multi output kernel
depends on the choice of outputs, we will use the notation f̂(an) to denote fd(an) such that an is
associated with output d.

For notational simplicity, we only consider the case of one single latent process wr. Since the latent
processes are independent, the results can easily be generalized to multiple processes. Then, ψf is
given by

ψf = Eq(a)[tr(Kff )]

=

N∑
n=1

Eq(an)

[
cov
[
f̂(an), f̂(an)

]]
=

N∑
n=1

∫
cov
[
f̂(an), f̂(an)

]
q(an) dan

=

N∑
n=1

σ̂2
nn.

(23)
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Similar to the notation f̂(·), we use the notation σ̂nn′ to mean the variance term associated with
the covariance function cov[f̂(an), f̂(an′)]. The expectation Ψf = Eq(a)[Kfu] connecting the
alignments and the pseudo inputs is given by

Ψf = Eq(a)[Kfu], with

(Ψf )ni =

∫
cov
[
f̂(an), f̂(Zi)

]
q(an) dan

= σ̂2
ni

√
(Σa)

−1

nn

ˆ̀
ni + (Σa)

−1

nn

· exp

(
−1

2

(Σa)
−1

nn
ˆ̀
ni

(Σa)
−1

nn + ˆ̀
ni

((µa)n −Zi)
2

) (24)

where ˆ̀
ni is the combined length scale corresponding to the same kernel as σ̂ni. Lastly, Φf =

Eq(a)[KufKfu] connects alignments and pairs of pseudo inputs with the closed form

Φf = Eq(a)[KufKfu], with

(Φf )ij =

N∑
n=1

∫
cov
[
f̂(an), f̂(Zi)

]
· cov

[
f̂(an), f̂(Zj)

]
q(an) dan

=

N∑
n=1

σ̂2
niσ̂

2
nj

√
(Σa)

−1

nn

ˆ̀
ni + ˆ̀

nj + (Σa)
−1

nn

· exp

(
−1

2

ˆ̀
ni
ˆ̀
nj

ˆ̀
ni + ˆ̀

nj

(Zi −Zj)
2

− 1

2

(Σa)
−1

nn(
ˆ̀
ni + ˆ̀

nj)

(Σa)
−1

nn + ˆ̀
ni + ˆ̀

nj

·

(
(µa)n −

ˆ̀
niZi + ˆ̀

njZj

ˆ̀
ni + ˆ̀

nj

)2
 .

(25)

Note that the Ψ-statistics factorize along the data and we only need to consider the diagonal entries
of Σa. If all the data belong to the same output, the Ψ-statistics of the standard squared exponential
kernel can be recovered as a special case. It is used to propagate the uncertainties through the output-
specific warpings g.

A.4 Approximative Predictions

Using the variational lower bound in (5), our model can be fitted to data, resulting in appropriate
choices of the kernel hyper parameters and variational parameters. Now assume we want to predict
approximate function values gd,? for previously unseen points Xd,? associated with output d, which
are given by gd,? = gd(fd(ad(Xd,?))).

Because of the conditional independence assumptions in the model, other outputs d′ 6= d only have to
be considered in the shared layer f . In this shared layer, the belief about the different outputs and the
shared information and is captured by the variational distribution q(uf ). Given q(uf ), the different
outputs are conditionally independent of one another and thus, predictions for a single dimension in
our model are equivalent to predictions in a single deep GP with nested variational compression as
presented by Hensman and Lawrence [11].

B Joint models for wind experiment

In the following, we show plots with joint predictions for the models discussed in Section 4.2. Similar
to Section 4.1, we trained a standard GP in Figure 6, a multi-output GP in Figure 7, a deep GP in
Figure 8 and our model in Figure 9. All models were trained until convergence and multiple runs
result in very similar models. For all models we used RBF kernels or dependent RBF kernels where
applicable.

Each plot shows the data in gray and two mean predictions and uncertainty bands. The first violet
uncertainty band is the result of the variational approximation of the respective model. The second
green or blue posterior is obtained via sampling. For both the GP and MO-GP, we used the SVGP
approximation [12] and since the models are shallow, the approximation is almost exact.

Figure 8 showcases the difficulty of training a deep GP model and the shortcomings of the nested
variational compression. The violet variational approximation is used for training and approximates
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the data comparatively well. As discussed above, the deep GP cannot share information, so the test
sets cannot be predicted. However, as discussed in more detail in [12], the approximation tends to
underestimate uncertainties when propagating them through the different layers and because of this,
uncertainties obtained via sampling tend to vary considerably more. Because during model selection
sample performance does not matter, the true posterior can be (and in this case is) considerably
different.

Our approach in principle has the same problem as the deep GP. However, because of the strong
interpretability of the different parts of the hierarchy, uncertainties within the model are never placed
arbitrarily and because of this, the variational posteriors and true posteriors look much more similar.
They tend to disagree in places when there is high uncertainty about the alignment.
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Figure 6: GP
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Figure 7: MO-GP

17



0.4

0.8

1.2

y
1
[M

W
]

0 15 30 45 60 75 90

0.4

0.8

1.2

X [min]

y
2
[M

W
]

Figure 8: DGP
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Figure 9: AMO-GP (Ours)
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