
A Proof of biased SGD

The proof is similar to the SGD proof of [16], however we account for bias in gradient estimates.
Define the random variable �t , g̃t(wt)�rF (wt�1). By the definitions of L and �,
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where the last inequality uses the fact that �L  1. Rearranging the above inequality and summing
over all t we get that
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B Binomial Mechanism - Proof of Theorem 1

To remind the reader, the binomial mechanism for releasing discrete valued queries on a database is
defined as follows. Given a set of databases D and an integer valued query f : D ! Zd, the binomial
mechanism samples a vector Z 2 Zd such that all its coordinates are distributed as the binomial
distribution with parameters N, p, i.e.

Z(j) ⇠ Bin(N, p)

The Binomial mechanism releases the vector s(Z �Np) + f(D) as the output to the query. For the
analysis the reader is referred to the definition of `q norm sensitivity �q for any q > 0 defined in (4).
The q of interest to us for the Binomial mechanism will be q = {1, 2,1}. Since our requirement
from the Binomial mechanism will be symmetric w.r.t. p and 1� p, throughout this proof, we assume
that p  1/2.

To prove Theorem 1, we need few auxiliary lemmas. We first state two inequalities which we use
through-out the proof.
Lemma 2 (Bernstein’s inequality). Let X1, X2 . . . Xn be independent random variables such that
E[Xi] = 0 and |Xi|  M w.p. 1. Let �2
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Lemma 3 (Efron-Stein inequality). Let f be a symmetric function of n independent random variables
X1, X2, . . . Xn. Let X 0

1 be an i.i.d. copy of X1, then
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We use the above two results in the next two lemmas.
Lemma 4. Let T ⇠ Bin(N, p), i 2 [0, N ], t 2 Z, i� t 2 [0, N ]. Then
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where the inequality follows from considering the two cases when t can be positive or negative.

Lemma 5. Let t1, t2, . . . td be d real numbers. Let vi ⇠ Bin(N, p) independently such that Np(1�
p) � 39. Let A be the event that kvi �Npk1  � for some �, such that �  N min(p, 1� p)/3.
Then for any �, with probability � 1� � conditioned on A,
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where cp is given by

cp ,
p
2(3p3 + 3(1� p)3 + 2p2 + 2(1� p)2). (11)
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Hence we can bound the expectation as
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Where (a) uses the fact that for any positive random variable X and any event A, E[X] �

Pr(A)E[X|A]. (b) uses the fact that Np(1 � p) � 39. Note that the function we are consider-
ing is a sum of functions of d independent binomial random variables and hence we can apply
Bernstein’ inequality. To this end, we bound �2

i and M . Since kvi �Npk1 is bounded,
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where the first inequality follows from the fact that �  N min(p, 1� p)/3 and for any z � �1/3,
| log(1+ z)� z|  2z2/3. Hence we can set M = 2
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N2p2(1�p)2 . We now bound the variance:
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We now bound �2
i . Observe that the term corresponding to i, is a function of n independent Bernoulli

p random variables Xi(j), for 1  j  d. We bound the expected square change in the function
for any of these variables Xi(j) and then use Efron-Stein inequality. Let EA denote the expectation
conditioned on the event A. Without loss of generality we first consider the contribution of the term
Xi(j). Let w =

Pn
j0 6=j Xi(j0), then
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where (a) uses the fact that the term is non-zero only if Xi(j) = 1, X 0
i(j) = 0 or Xi(j) = 0, X 0

i(j) =
1 and the probability of this event is 2p(1� p). (b) uses the fact that for any positive random variable
X and any event A, E[X] � Pr(A)E[X|A]. We first upper bound the term inside the expectation:
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where the inequality uses the fact that for any positive x, x � x2/2  log x  x. Observe that
w ⇠ Bin(n�1, p) and N�1�w ⇠ Bin(n�1, 1�p). We use the following three inequalities, to bound
the expectation of the term above. Similar results apply for N �w as N �1�w ⇠ Bin(n�1, 1�p).
Since 1/w and 1/(N � w) are negatively correlated,
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and if Np(1� p) � 2,
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Combining the above results and simplifying the terms, we get that the expectation of the required
quantity is bounded by

=
1
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and the lemma follows by Bernstein’s inequality.

Proof of Theorem 1. Firstly note that it is sufficient to consider the differential privacy of the quantity
f(D)
s + Z where Z is a Binomial random variable. Note that since s is defined to be 1/j for some

integer j the output f(D)/s remains integral. Further note that in this setting the lq norm sensitivity
scales �q/s. The above reduction shows that the scale s can be considered to be 1 in the rest of the
proof.

Consider any two neighboring data sets D1, D2 and let � , f(D2)� f(D1). Note that showing the
(", �) differential privacy of the Binomial mechanism is equivalent to showing the following. Let T
be a vector such that T (j) ⇠ Bin(N, p) then for any vector v 2 [N ]d we have that
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To show the above we will first define a set V such that
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We will first show that the probability of this event is large.

The first condition follows from Bernstein’s inequality with probability � 1� �/10. For the second
condition, observe that � · (s �Np) is a function of Nd independent random variables. A direct
application of Bernstein’s inequality yields that Equation (13) holds with probability � 1� �/1.25.
The third condition follows from the first condition as k�k1  Np � � and Np(1 � p)/3 � �.
Applying Lemma 5 with A being event that kv �Npk1  � and � = �/10, yields that the fourth
equation holds with probability at least 1� �/10. Hence, by the union bound,

Pr(T /2 V )  �.
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We now prove the ratio of probabilities. For any v,

Pr(T = v ��)

Pr(T = v)

=
dY

i=1

Pr(T (j) = v(j)��(j))

Pr(T (j) = v(j))

 exp

 
dX

i=1

�(j) · log
(v(j) + 1)(1� p)

p(N � v(j) + 1)

!

= exp

 
dX

i=1

�(j)(v(j)�Np)

Np(1� p)
+

dX

i=1

�(j) ·

✓
log

(v(j) + 1)(1� p)

p(N � v(j) + 1)
�

v(j) + 1

Np
+

N � v(j) + 1

N(1� p)

◆

+

Pd
j=1 �(j)(1� 2p)

Np(1� p))

!

where the inequality follows from Lemma 4. Since v 2 V , applying Equations (12), (13), (14),
together with the fact that � 
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yields the following bound on the exponent.
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where cp is defined in Equation (11) and
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· (p2 + (1� p)2) (15)

and

bp , 2(p2 + (1� p)2)

3
+ (1� 2p). (16)

C High probability sensitivity

To describe our main lemma formally we need the following definition. Let Q , {qi 2 N} represent
a set of natural numbers and �Q , {�qi} represent a subset of real numbers. For two random
vectors v1, v2, the event kv1 � v2kQ  �Q is defined as

(kv1 � v2kQ  �Q) ,
[

i

(kv1 � v2kqi  �qi)

Definition 1 ((�Q, �) sensitivity). Given a set of integers Q and values �Q, �, we call a randomized
function f : D ! X , (�Q, �) sensitive, if for any two neighboring data sets D1, D2 2 ND, there
exist coupled random variables X1, X2 2 X such that the marginal distributions of X1, X2 are
identical to that of f(D1) and f(D2) and

Pr
X1,X2

(kX1 �X2kQ  �Q) � 1� �. (17)

We show the following result for high-probability sensitivity and the proof is provided in Appendix C.
Lemma 6. Let M : X ! O be an (", �) differentially private mechanism for sensitivity �Q and let
f : D ! X be a (�Q, �0) sensitive function. Then the composed mechanism M(f(D)) is (", � + �0)
differentially private.
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Proof. To show (", � + �0) differential privacy we need to show that for any two neighboring data
sets D1, D2 and O ✓ O,

Pr(M(f(D1)) 2 O)  e" Pr(M(f(D2)) 2 O) + � + �0.

Given any two neighboring data sets D1, D2 let Pr�Q,�(X1, X2) represent the joint distribution of
the coupled random variables X1, X2 guaranteed by Definition 1. Now for any O 2 O we have that
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In the above (a), (d) follow from the fact that Pr�q,� is a coupling, (b) follows from the condition
(17) guaranteed by the coupling and (c) follows from the (", �) differential privacy guarantee of the
mechanism M.

D Application of Binomial Mechanism to Distributed Mean Estimation -

Proof of Theorem 3

Proof of Theorem 3. We refer the readers to the definition of the protocol (Section 4.2) and in
particular the definitions of the random variables Ui, Ti, and the estimator ˆ̄X⇡sk(Bin(m,p)) given in
equations (8) and (9) respectively.

The communication complexity follows immediately by noting that the protocol only transmits
integers in the range [0, k +m) and therefore only needs log(k +m) bits. We now prove the bound
on the Mean Square Error of the protocol and then prove the sensitivity guarantee.
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where the equality follows from the fact that ˆ̄Xi(j) are independent of each other and ˆ̄X is an
unbiased estimator of ˆ̄X . Setting m, p, k as defined in the theorem proves the bound on MSE.

Differential Privacy

Given two neighboring data sets X , {X1 . . . Xn} and X⌦n , {X 0
1 . . . X

0
n} (where X 0

i = Xi
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for i 2 [1, n � 1]) we will first provide a high probability bound on the `1, `2, `1 sensitivity of
quantization protocol ⇡sk. In particular the following lemma provides the high probability sensitivity
bounds.

Lemma 7. For every �, given two neighboring data sets X , {X1 . . . Xn} and X⌦n , {X 0
1 . . . X

0
n}

(where X 0
i = Xi for i 2 [1, n � 1]) we have that the protocol ⇡sk is ({�1,�2,�1}, �)-sensitive

(c.f. Definition 1) where �1,�2,�1 satisfy the following equations.
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Further we note that the protocol ⇡sk(Bin(m, p)) is a composition of the binomial mechanism and
the protocol ⇡sk. A direct application of Theorem 1 and Lemma 6 gives us that the mechanism
⇡sk(Bin(m, p)) is (", 2�) differentially private for any � 2 (0, 1) and " satisfying the below conditions.
7 Note that the conditions required by Theorem 1 can be verified from the given conditions in Theorem
3.

We now provide a proof of Lemma 7.

Proof of Lemma 7. To this end we recall the definition of the random variables Ui(j). Given Xmax

and Xmin we associate to every integer r in [0, k) a bin B(r) defined as
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at random and define the random variables

Yi(j) =

(
r(Xi(j)) + 1 if ↵ij 

Xi(j)�B(r(Xi(j)))
B(r(Xi(j))+1)�B(r(Xi(j)))

r(Xi(j)) otherwise.

Y ⌦n
i (j) =

(
r(X 0

i(j)) + 1 if ↵ij 
X0

i(j)�B(r(X0
i(j)))

B(r(X0
i(j))+1)�B(r(X0

i(j)))

r(X 0
i(j)) otherwise,

7we choose �, �0 as � in the application of Lemma 6
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Additionally wlog consider Xi > X 0
i (the roles of i and i0 can be reversed in the following definitions

otherwise) and define the auxiliary variables

ai(j) ,
B(r(Xi(j)) + 1)�Xi(j)

2Xmax/(k � 1)
and bi(j) ,

X 0
i(j)�B(r(X 0

i(j)))

2Xmax/(k � 1)

Zi(j) =

⇢
0 w.p. ai(j) + bi(j)
1 otherwise,

Further define
Lij , |Yi(j)� Y ⌦n

i (j)| = Zi(j) if (i, j) 2 S (21)

Otherwise if (i, j) /2 S or equivalently r(Xi(j)) 6= r(X 0
i(j)), we sample the bins independently and

the random variables are defined as

Yi(j) =

(
r(Xi(j)) + 1 w.p. Xi(j)�B(r(Xi(j)))

B(r(Xi(j))+1)�B(r(Xi(j)))

r(Xi(j)) otherwise.

Y ⌦n
i (j) =

(
r(X 0

i(j)) + 1 w.p. X0
i(j)�B(r(X0

i(j)))
B(r(X0

i(j))+1)�B(r(X0
i(j)))

r(X 0
i(j)) otherwise,

Additionally wlog consider Xi > X 0
i (the roles of i and i0 can be reversed in the following definitions

otherwise) and define the auxiliary variables

ai(j) ,
Xi(j)�B(r(Xi(j)))

2Xmax/(k � 1)
and bi(j) ,

B(r(X 0
i(j)) + 1)�X 0

i(j)

2Xmax/(k � 1)

Zi(j) =

8
<

:

0 w.p. 1� ai(j)� bi(j) + ai(j)bi(j)
1 w.p. ai(j) + bi(j)� 2ai(j)bi(j)
2 otherwise,

In this case define Li,j , r(Xi(j))� r(X 0
i(j)) + 1 + Zi(j) and note that

|Yi(j)� Y ⌦n
i (j)|  Lij (22)

With these definitions, it can be seen that the marginal distributions of Yi(j), Y
⌦n
i (j) are equal to

the marginal distributions of UX
i (j), UX⌦n

i (j) respectively. Further note that since X 0
i = Xi for all

i 2 [1, n� 1] we have that Yi = Y ⌦n
i w.p. 1 for all i 2 [1, n� 1]. Therefore

k

X

i

Yi �

X

i

Y ⌦n
i k

q
q = kYn � Y ⌦n

n k
q
q 

X

j

Lq
nj ,

where the inequality follows from (21) and (22). We wish to bound the RHS above. To that end
consider the following claim which follows from the definitions.

Claim 1.

Zi(j)  2 w.p. 1

E[Zi(j)] =

⇢
ai(j) + bi(j) if (i, j) /2 S
1� (ai(j) + bi(j)) otherwise

E[Zi(j)� E[Zi(j)]
2] 

⇢
ai(j) + bi(j) if (i, j) /2 S
1� (ai(j) + bi(j)) otherwise

= E[Zi(j)]

E[Zi(j)� E[Zi(j)]
4]  4E[Zi(j)� E[Zi(j)]

2]  4E[Zi(j)].
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Further note that
X

j

E[Zn(j)] =
X

(n,j)/2S

(ai(j) + bi(j)) +
X

(n,j)2S

1� (ai(j) + bi(j)) 
kXn �X 0

nk1

2Xmax/(k � 1)
. (23)

A direct application of Bernstein’s Inequality gives us that with probability at least 1� �/2

X

j

Zn(j)  E[
X

j

Zn(j)] +

s
2E[
X

j

Zn(j)] log(2/�) +
4

3
log(2/�). (24)

This gives us that
X

j

|Yn(j)� Y ⌦
n (j)|

a


X

j

Lnj

b


X

(i,j)2S

Zi(j) +
X

(i,j)/2S

(r(Xi(j))� r(X 0
i(j)) + 1 + Zi(j))

c


kXn �X 0
nk1

2Xmax/(k � 1)
+

s

2
kXn �X 0

nk1

2Xmax/(k � 1)
log(2/�) +

4

3
log(2/�)

where a, b follow from (21) and (22) and c follows from Claim 1 and (23). This proves the `1 norm
bound.

We now focus on the `2 norm case. For this we note that

8(i, j) Lij =

(
Xi(j)�X0

i(j)
2Xmax/(k�1) + Zi(j)� E[Zi(j)] if Xi(j) � X 0

i(j)
X0

i(j)�Xi(j)
2Xmax/(k�1) + Zi(j)� E[Zi(j)] if Xi(j) < X 0

i(j).

Therefore

sX

j

L2
nj =

vuut
X

j

✓
Xi(j)�X 0

i(j)

2Xmax/(k � 1)

◆2

+

sX

j

(Zn(j)� EZn(j))2. (25)

We now bound
qP

j(Zn(j)� EZn(j))2. We can now apply Bernstein’s inequality on the random

variable (Zn(j)� EZn(j))2 to get that with probability at least 1� �/2

X

j

(Zn(j)� EZn(j))
2


X

j

E[Znj ] +

s
8
X

j

E[Znj ] log(2/�) +
4

3
log(2/�), (26)

where the RHS uses Claim 1 for bounding expectation and variance.

Therefore combining (25) and (26), we get that

kYn � Y 0
nk2 

sX

j

L2
nj


kXn �X 0

nk2

2Xmax/(k � 1)
+

vuut kXn �X 0
nk1

2Xmax/(k � 1)
+

s

8

✓
kXn �X 0

nk1

2Xmax/(k � 1)

◆
log(2/�) +

4

3
log(2/�).

The proof is finished using a union bound.
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E Quantization with Rotation

We prove Theorem 4 here.

Differential Privacy

Given any two neighboring data sets X = {X1, . . . Xn}, X⌦n = {X1, . . . X 0
n} we define a set of

good rotations Ugood as follows

Ugood =

8
<

:R 2 U |8 i 2 [n] kRXik1 

2
q

log( 2nd� )D2
p
d

, kRX 0
nk1 

2
q
log( 2nd� )D2

p
d

9
=

;

where U is the set of d⇥ d orthonormal matrices. The following lemma follows from [3]. We note
that similar analysis holds for uniformly sampled R over real domain and we refer the reader to [10]
for details.
Lemma 8 ([3]).

P (HA 2 Ugood) � 1� �

Let Rot(⇡, HA)(X),Rot(⇡, HA)(X⌦n) represent the random output of the protocol Rot(⇡, HA)
on X,X⌦n respectively and let S be any subset of the output range of Rot(⇡, HA). Given � let " be
given by Theorem 1 with sensitivity parameters {�1(Xmax, D),�2(Xmax, D),�1(Xmax, D)}.
Given a set of vectors V and a rotation matrix R define R · V = {Rv|v 2 V }.

Pr(Rot(⇡, HA)(X) 2 S)



Z

R2Ugood

(Pr(Rot(⇡sk(Bin(m, p)), HA)(X) 2 S|R)) dR+ Pr(R /2 Ugood)

=

Z

R2Ugood

Pr(Rot(⇡sk(Bin(m, p)), HA)(R ·X) 2 R · S)dR+ Pr(R /2 Ugood)

a


Z

R2Ugood

(e"Pr(⇡sk(Bin(m, p))(R ·X⌦n) 2 R · S) + 2�) dR+ Pr(R /2 Ugood)

=

Z

R2Ugood

e" (Pr(Rot(⇡sk(Bin(m, p)), HA)(X⌦n) 2 S|R) + 2�) dR+ Pr(R /2 Ugood)

 e"Pr(Rot(⇡sk(Bin(m, p)), HA)(X⌦n) 2 S) + 3�

a follows from (", 2�) differential privacy guarantee for ⇡sk(Bin(m, p)) from Theorem 3 and noting
that R 2 Ugood in the integral. Hence Rot(⇡sk(Bin(m, p))) offers (", 3�) differential-privacy.

Mean Square Error

The bound on the MSE can be observed by noting that the total change the entire protocol can cause
on any individual client vector is bounded by 2D in `2 norm, therefore the total MSE can be at most
4D2 irrespective of the choice of rotation. Therefore

E(Rot(⇡sk(Bin(m, p))), HA) = E(Rot(⇡sk(Bin(m, p))), HA|R 2 Ugood)+

E(Rot(⇡sk(Bin(m, p))), HA|R /2 Ugood)
a
 E(Rot(⇡sk(Bin(m, p))), HA|R 2 Ugood) + 4D2�2

b


2 log 2nd
� ·D2

n(k � 1)2
+

8 log 2nd
�

n
·
mp(1� p)D2

(k � 1)2
+ 4D2�2

a follows from the argument above and b follows from the MSE guarantee in Theorem 3 and by
noting that the rotation is in Ugood.
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