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Abstract

In this paper, we consider first-order methods for solving stochastic non-convex
optimization problems. The key building block of the proposed algorithms is first-
order procedures to extract negative curvature from the Hessian matrix through a
principled sequence starting from noise, which are referred to NEgative-curvature-
Originated-from-Noise or NEON and are of independent interest. Based on this
building block, we design purely first-order stochastic algorithms for escaping
from non-degenerate saddle points with a much better time complexity (almost
linear time in the problem’s dimensionality) under a bounded variance condition of
stochastic gradients than previous first-order stochastic algorithms. In particular,
we develop a general framework of first-order stochastic algorithms with a second-
order convergence guarantee based on our new technique and existing algorithms
that may only converge to a first-order stationary point. For finding a nearly
second-order stationary point x such that [|[VF(x)|| < € and V2F(x) > —/el
(in high probability), the best time complexity of the presented algorithms is
O(d/e3%), where F(-) denotes the objective function and d is the dimensionality
of the problem. To the best of our knowledge, this is the first theoretical result of
first-order stochastic algorithms with an almost linear time in terms of problem’s
dimensionality for finding second-order stationary points, which is even competitive
with existing stochastic algorithms hinging on the second-order information.

1 Introduction

The problem of interest in this paper is Stochastic Non-Convex Optimization given by
min F(x) = Ee[f(x; )], (D
xERY

where £ is a random variable and f(x; ) is a random smooth non-convex function of x. The only
information available of F'(x) to us is sampled stochastic functions f(x;¢) and their gradients.

A popular choice of algorithms for solving (I)) is (mini-batch) stochastic gradient descent (SGD)
method and its variants [6]. However, these algorithms do not necessarily guarantee to escape from a
saddle point (more precisely a non-degenerate saddle point) x satisfying that: VF (x) = 0 and the
minimum eigen-value of V2F(x)) is less than 0. Recently, new variants of SGD by adding isotropic
noise into the stochastic gradient were proposed (noisy SGD [3]], stochastic gradient Langevin
dynamics (SGLD) [24]). These two works provide rigorous analyses of the noise-injected update for
escaping from a saddle point. Unfortunately, both variants suffer from a polynomial time complexity
with a super-linear dependence on the dimensionality d (at least a power of 4), which renders them
not practical for optimizing problems of high dimension.

On the other hand, second-order information carried by the Hessian has been utilized to escape from
a saddle point, which usually yields an almost linear time complexity in terms of the dimensionality
d under the assumption that the Hessian-vector product (HVP) can be performed in a linear time. In
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Table 1: Comparison with existing Stochastic Algorithms for achieving an (e, ~)-SSP to (1), where
p is a number at least 4, IFO (incremental first-order oracle) and ISO (incremental second-order
oracle) are terminologies borrowed from [20], representing V f(x; &) and V2 f(x; &) v respectively,

T}, denotes the runtime of ISO and T, denotes the runtime of IFO. O(-) hides a poly-logarithmic

factor. SM refers to stochastic momentum methods. For v, we only consider as lower as el/2,
Algorithm | Oracle | Target | Time Complexity
Noisy SGD [55] IFO (¢, €1/2)-SSP, high probability 5( T,dPc™P)
SGLD [24] IFO (¢, €1/2)-SSP, high probability | O (T dPe*)
Natasha2 [ IFO +1SO | (e, € 1/2) SSP, expectation O (Tye ™5 + Tje 29)
Natasha2 [1] IFO +ISO | (e, ¢'/4)-SSP, expectation 10} (T €32 4 Tpe179)
SNCG [17] IFO +ISO | (e, €1/2)-SSP, high probability O (Tye™* + Th —25)
SVRG-Hessian [20] (finite-sum objectives) | IFO +ISO | (e, ¢!/2)-SSP, high probability | O (T, (n?*3e~2 + ne~1)
(n is number of components) +Th(ne 15 4 p3/4e —4)
NEON-SGD, NEON-SM (this work) IFO (¢, €'/2)-SSP, high probability | O (Tye™*)
NEON-SCSG (this work) IFO (¢, €*/2)-SSP, high probability | O (T,c=%)
NEON-SCSG (this work) IFO (e, €%/9)-SSP, high probability | O (T,e=333)
NEON-Natasha (this work) IFO (e, €/2)-SSP, expectation O (T e=3%)
NEON-Natasha (this work) IFO (€, €'/4)-SSP, expectation O (Tye 3%
NEON-SVRG (this work) (finite sum) IFO (e, €!/2)-SSP, high probability | O (T, (n?/3¢™2 + ne~15 4 ¢~279))

practice, HVP can be estimated by a finite difference approximation using two gradient evaluations.
However, the rigorous analysis of algorithms using such noisy approximation for solving non-convex
optimization remains unsolved, and heuristic approaches may suffer from numerical issues. Although
for some problems with special structures (e.g., neural networks), HVP can be efficiently computed
using gradients, a HVP-free method that can escape saddle points for a broader family of non-convex
problems is still desirable.

This paper aims to design HVP-free stochastic algorithms for solving (I)), which can converge
to second order stationary points with a time complexity that is almost linear in the problem’s
dimensionality. Our main contributions are:

e As a key building block of proposed algorithms, first-order procedures (NEON) are proposed
to extract negative curvature from the Hessian using a principled sequence starting from noise.
Interestingly, our perspective of NEON connects the existing two classes of methods (noise-
based and HVP-based) for escaping from saddle points. We provide a formal analysis of simple
procedures based on gradient descent and accelerated gradient method for exacting a negative
curvature direction from the Hessian.

e We develop a general framework of first-order algorithms for stochastic non-convex optimization
by combining the proposed first-order NEON procedures to extract negative curvature with existing
first-order stochastic algorithms that aim at a first-order critical point. We also establish the time
complexities of several interesting instances of our general framework for finding a nearly (e, y)-
second-order stationary point (SSP), i.e., ||V F (x)|| < ¢, and Apin(V2F(x)) > —~, where || - ||
represents Euclidean norm of a vector and Ay (-) denotes the minimum eigen-value. A summary
of our results and existing results for Stochastic Non-Convex Optimization is presented in Table [T}

2 Other Related Work

SGD and its many variants (e.g., mini-batch SGD and stochastic momentum (SM) methods) have
been analyzed for stochastic non-convex optimization [6} (7, [8, [23]]. The iteration complexities
of all these algorithms is O(1/€*) for finding a first-order stationary point (FSP) (in expectation
E[||[VF(x)|3] < €2 or in high probability). Recently, there are some improvements for stochastic
non-convex optimization. [[14] proposed a first-order stochastic algorithm (named SCSG) using the
variance-reduction technique, which enjoys an iteration complexity of O(1/e~1%/3) for finding an
FSP (in expectation), i.e., E[|| VF(x)||3] < €2. [1]] proposed a variant of SCSG (named Natashal.5)
with the same convergence and complexity. An important application of NEON is that previous
stochastic algorithms that have a first-order convergence guarantee can be strengthened to enjoy a
second-order convergence guarantee by leveraging the proposed first-order NEON procedures to
escape from saddle points. We will analyze several algorithms by combining the updates of SGD,
SM, and SCSG with the proposed NEON.



Several recent works [17, [1, 20] propose to strengthen existing first-order stochastic algorithms to
have second-order convergence guarantee by leveraging the second-order information. [17] used
mini-batch SGD, [20] used SVRG for a finite-sum problem, and [1]] used a similar algorithm to
SCSG for their first-order algorithms. The second-order methods used in these studies for computing
negative curvature can be replaced by the proposed NEON procedures. It is notable although a
generic approach for stochastic non-convex optimization was proposed in [20], its requirement on the
first-order stochastic algorithms precludes many interesting algorithms such as SGD, SM, and SCSG.
Stronger convergence guarantee (e.g., converging to a global minimum) of stochastic algorithms has
been studied in [9] for a certain family of problems, which is beyond the setting of the present work.

It is also worth mentioning that the field of non-convex optimization is moving so fast that similar
results have appeared online after the preliminary version of this work [2]. Allen-Zhu and Li [2]
proposed NEON2 for finding a negative curvature, which includes a stochastic version and a de-
terministic version. We notice several differences between the two works: (i) they used Gaussian
random noise with a variance proportional to d~¢, where C is a large unknown constant, in contrast
our NEON and NEON+ procedures use random noise sampled from the sphere of an Euclidean ball
with radius proportional to log™> (d); (ii) the update of their deterministic NEON2% is constructed
based on the Chebyshev polynomial, in contrast our NEON+ with a similar iteration complexity is
based on the well-known Nesterov’s accelerated gradient method; (iii) we provide a general frame-
work/analysis for promoting first-order algorithms to enjoy second-order convergence, which could
be useful for promoting new first-order stochastic algorithms; (iv) the reported iteration complexity
of their NEON2°m!ine jq hetter than our stochastic variants of NEON. However, in most cases the total
complexity for finding an (e, 1/€)-SSP is dominated by the complexity for finding a stationary point
not by the complexity of stochastic NEON for finding a negative curvature.

3 Preliminaries

Let || - || denote the Euclidean norm of a vector and || - || denote the spectral norm of a matrix.
Let S¢ denote the sphere of an Euclidean ball centered at zero with radius r, and [t] denote a
set {0,...,t}. A function f(x) has a L;-Lipschitz continuous gradient if it is differentiable and
there exists L; > 0 such that |[Vf(x) — Vf(y)|| < Li||x — y|| holds for any x,y € R A
function f(x) has a Lo-Lipschitz continuous Hessian if it is twice differentiable and there exists
Ly > 0 such that [|[V2f(x) — V2f(y)||2 < La|/x — y|| holds for any x,y € R<. It implies that

f(x) = f(y) = V) (x—y) = 5(x = y) TV f(y)(x —y)| < Zllx — vyl and
IVf(x +u) = Vf(x) = V2f(x)ull < Loflul®/2. 2)
We first make the following assumptions regarding the problem (T).

Assumption 1. For the problem (), we assume that

(i). every random function f(x;&) is twice differentiable, and it has Li-Lipschitz continuous
gradient and Lo-Lipschitz continuous Hessian.
(ii). given an initial point X, there exists A < oo such that F(xg) — F(x.) < A, where x,. denotes
the global minimum of ().
(iii). there exists G > 0 such that Elexp(||V f(x;£) — VF(x)||?/G?)] < exp(1) holds.

Remark. (1) the analysis of NEON or NEON™ or their stochastic versions for extracting the negative
curvature only requires Assumption [I](i). Indeed, the Lipschitz continuous Hessian can be relaxed
to locally Lipchitz continuous Hessian condition according to our analysis. (2) Assumptions|1|(ii)
(iii) are used in the analysis of Section [5] which are standard assumptions made in the literature
of stochastic non-convex optimization [6} [7, [8]. Assumption |1| (iii) implies that E[||V f(x;&) —
VF(x)||?] €V £ G? holds. For stating our time complexities, we assume G is independent of d for
finding an approximate local minimum in Section[5] Nevertheless, our comparison of the proposed
algorithms with previous algorithms (e.g., SGLD [24]], SNCG [17], Natasha2 [[1]) in the stochastic
setting are fair because similar assumptions are also made. We also note that [S]] makes a stronger
assumption about the stochastic gradients, i.e., |V f(x;§) — VF(x)|| < O(d), which leads to a
worse dependence of time complexity on d, i.e., O(dP) with p > 4.

Next, we discuss a second-order method based on HVPs to escape from a non-degenerate saddle
point x of a function f(x) that satisfies Apmin(V?f(x)) < —7, which can be found in many previous
studies [21}16]4]. The method is based on a negative curvature (NC for short is used in the sequel)



direction v € R? that satisfies || v| = 1 and

vIVA(x)v < —e7, 3)
where ¢ > 0 is a constant. Given such a vector v, we can update the solution according to
Xy =X— ﬁsign(vTVf(x))v7 or x| =x-— ﬂgv, 4)
L2 L2

where £ € {1,—1} is a Rademacher random variable used when V f(x) is not available. The
following lemma establishes that the objective value of x or x/, is less than that of x by a sufficient
amount, which makes it possible to escape from the saddle point x.

Lemma 1. For x satisfying Ain(V2f(x)) < —v and v satisfying , let x, X!, be given in (EI)
then we have f(x) — f(x1) > S and E[f(x) — f(x})] > S2-
2 2

To compute a NC direction v that satisfies (3), we can employ the Lanczos method or the Power
method for computing the maximum eigen-vector of the matrix (I —nV?2f(x)), where nL; < 1 such
that I — nV2f (x) = 0. The Power method starts with a random vector vi € R4 (e.g., drawn from a
uniform distribution over the unit sphere) and iteratively compute v, 1 = (I — nV2f(x))v,, T =
1,...,t. Following the results in [13], it can be shown that if \,in (V2 f(x)) < —7, then with at most

% HVPs, the Power method finds a vector v = v,/||v;|| such that v V2 f(x)v, < —%

holds with high probability 1 — 4. Similarly, the Lanczos method (e.g., Lemma 11 in [21]) can find

A . : log(d/6%)v/L
such a vector v; with a lower number of HVPs, i.e., min(d, %)

4 Key Building Block: Extracting NC From Noise

Our HVP-free stochastic algorithms with provable guarantees for solving (I)) presented in next section
are based on a key building block, i.e., extracting NC from noise using only first-order information.
To tackle the stochastic objective in (I)), our method is to compute a NC based on a mini-batch of
functions >, f(x;&;)/m for a sufficiently large number of samples. Thus, a key building block of

the proposed method is a first-order procedure to extract NC for a non-convex function f(x) [1_1

Below, we first propose a gradient descent based method for extracting NC, which achieves a similar
iteration complexity to the Power method. Second, we present an accelerated gradient method to
extract the NC to match the iteration complexity of the Lanczos method. Finally, we discuss the
application of these procedures for stochastic non-convex optimization using mini-batch.

4.1 Extracting NC by NEON

The NEON is inspired by the perturbed gradient descent (PGD) method (a method for solving
deterministic non-convex problems) proposed in the seminal work [[11] and its connection with the
Power method as discussed shortly. Around a saddle point x, the PGD method first generates a
random noise vector € from the sphere of an Euclidean ball with a proper radius, then starts with a
noise perturbed solution xy = x + €, the PGD generates the following sequence of solutions:

Xr = Xr—1 — NV f(Xr_1). )

To establish a connection with the Power method and motivate the proposed NEON, let us define
another sequence of X, = x, — x. Then we have the recurrence for X, = X,_1 — NV f(X,—1 +
x), 7=1,...,t. ItisclearthatforT = 1,... ¢,

§7' = )?771 - ﬁvf(x) - W(Vf(ﬁrfl + X) - Vf(X))
To understand the above update, we adopt the following approximation: V f(x) ~ 0 for an ap-
proximate saddle point, and from the Lipschitz continuous Hessian condition (2), we can see that
Vf(Xr—1+x)— Vf(x)~ V2f(x)X,_1 as long as [|X,_1|| is small. Then for 7 = 1,...,¢,

Ry X1 — V(X)X = (I — V2 f(x))Xr_1.
It is obvious that the above approximated recurrence is close to the the sequence generated by the

Power method with the same starting random vector € = v;. This intuitively explains that why the
updated solution x; = x + X; can decrease the objective value due to that X; is close to a NC of the

'We abuse the same notation f here.



Algorithm 1 NEON( f,x, t, F,r) Algorithm 2 NEON*(f, x, ¢, F,U,(,r)

1: Input: f,x,t, F,r Imput: f,x,t, F,U,(,r

2: Generate ug randomly from S¢ Generate yy = ug randomly from S,
3: forr=0,...,tdo fort=0,...,tdo

4 urp=u, —n(Vfix+u,) - Vf(x)) if Ax(yru;) < =2y, — u?
5: end for then
6 .
7
8

bl

. if miniE[t-‘rl],HmHSU fx(ui) < —-2.5F 5: return v =NCFind(yq.-, up.;)
return u,/, 7= arg minie[t+1]"|ui“<(] fx(ui) 6: end if
: else return 0 B 7: compute (yr41,Ur41) by
8: end for

9: if mini,\lyiHSU fx(yi) S —2]: then
10:  let 7' = argmin, ||y, <v fx(¥i)
1: if minj—o,. -+ |ly; — u;l| > (Vo6nF 11:  returny,
2: returny;,j = min{j : |ly;; —uy| > {6nF} 12: else

13:  return (O
3: elsereturny, — u, 14: end if

Algorithm 3 NCFind (yq.,, ug.)

Hessian V2 f(x). To provide a formal analysis, we will first analyze the following recurrence:

urler—l—U(Vf(X‘FUT—l)_Vf(x))>T:17--~ (6)
starting with a random noise vector ug, which is drawn from the sphere of an Euclidean ball with a
proper radius 7 denoted by S?. It is notable that the recurrence in (@) is slightly different from that
in (5). We emphasize that this simple change is useful for extracting the NC at any points whose
Hessian has a negative eigen-value not just at non-degenerate saddle points, which can be used in
some stochastic or deterministic algorithms [[1} 14, [21} [16]]. The proposed procedure NEON based on
the above sequence for finding a NC direction of V2 f(x) is presented in Algorithm where fy (u)
is defined in (7). The following theorem states our result of NEON for extracting the NC.

Theorem 1. Under Assumption[l|(i), let v € (0,1) and & € (0,1) be a sufficiently small. For any
constant ¢ > 18, there exists a constant cmax that depends on ¢, such that if NEON is called with
t = RGO o L og (AL /(99)), 1 = ALy 2Ly og T2 (AL /(79)),
U= 46(\/1]L1.7-"/L2)1/3 and a constant ) < ciayx/ L1, then at a point x satisfying Amin (V2 f(x)) <
T ~
—y with high probability 1 — § it returns u such that * ﬁilj‘ch)u < —gz= log(d’YLl/(vé)) < -Q). If
NEON returns u # 0, then the above inequality must hold; if NEON returns 0, we can conclude that
Amin (V2 f(x)) > —v with high probability 1 — O(6).

Remark: The above theorem shows that at any point x whose Hessian has a negative eigen-value
(including non-degenerate saddle points), NEON can find a NC of V2 f(x) with high probability.

4.2 Finding NC by Accelerated Gradient Method

Although NEON provides a similar guarantee for extracting a NC as that provided by the Power
method, but its iteration complexity O(1/+) is worse than that of the Lanczos method, i.e., O(1/,/7).
In this subsection, we present a first-order method that matches O(1/,/7) of the Lanczos method.

Let us recall the sequence (6), which is essentially an application of gradient descent (GD) method to
the following objective function:

fx(w) = f(x+u) — f(x) — Vf(x) u (N

In the sequel, we write fx(u) = f(u), where the dependent x should be clear from the context. By
the Lipschitz continuous Hessian condition, we have that

1 L A
§uTV2f(X)u - gQHUH3 < f(u).

It implies that if f(u) is sufficiently less than zero and ||u| is not too large, then % will be

sufficiently less than zero. Hence, NEON can be explained as using GD updates to decrease f (u).



A natural question to ask is whether the convergence of GD updates of NEON can be accelerated by
accelerated gradient (AG) methods. It is well-known from convex optimization literature that AG
methods can accelerate the convergence of GD method for smooth problems. Recently, several studies
have explored AG methods for non-convex optimization [[15, 19,13, [12]]. Notably, [[19] analyzed the
behavior of AG methods near strict saddle points and investigated the rate of divergence from a strict
saddle point for toy quadratic problems. [12]] analyzed a single-loop algorithm based on Nesterov’s
AG method for deterministic non-convex optimization. However, none of these studies provide an
explicit complexity guarantee on extracting NC from the Hessian matrix for a general non-convex
problem. Inspired by these studies, we will show that Nesterov’s AG (NAG) method [18] when

applied the function f(u) can find a NC with a complexity of O(1/ V)

The updates of NAG method applied to the function A(u) at a given point x is given by

yrt1 =u; =V f(ur),
Uri1 =yYrp1 +((Yrt1 — ¥r)s
where ((y,+1 — ¥-) is the momentum term, and { € (0,1) is the momentum parameter. The

proposed algorithm based on the NAG method (referred to as NEON™) for extracting NC of a
Hessian matrix V2 f(x) is presented in Algorithm 2| where

Ax(yr,ur) = fX(yT) - fX(uT) - va(uT)T(YT —u,),

and NCFind is a procedure that returns a NC by searching over the history yg.,, ug. shown in
Algorithm 3] The condition check in Step 4 is to detect easy cases such that NCFind can easily find
a NC in historical solutions without continuing the update, which is designed following a similar
procedure called Negative Curvature Exploitation (NCE) proposed in [12]]. However, the difference
is that NCFind is tailored to finding a negative curvature satisfying (3), while NCE in [12] is for
ensuring a decrease on a modified objective. The theoretical result of NEON™ is presented below.

(®)

Theorem 2. Under Assumption(i), lety € (0,1) and 6 € (0, 1) be a sufficiently small. For any
constant ¢ > 43, there exists a constant cyay that depends on ¢, such that if NEONT is called with
t = [ARLION | F a3 12 log (AL /(79)). 1 = Ly 2Ly log ™ (dLy/(79)),
U = 12¢(v/nL1F/L2)'3, a small constant ) < cumax/ L1, and a momentum parameter { = 1—. /17,

then at any point x satisfying Amin (V2 f(x)) < —v with high probability 1 — § it returns u such that

u' V2f(x)u Pas . .
HU‘JTZ( Ju < — 557 log(ng/(’yé)) < —Q(v). If NEON T returns u # 0, then the above inequality

must hold; if NEON™ returns 0, we can conclude that Myin (V2 f(x)) > —v with high probability
1—0(9).

4.3 Stochastic Approach for Extracting NC

In this subsection, we present a stochastic approach for extracting NC for F'(x) in . For simplicity,
we refer to both NEON and NEON* as NEON. The challenge in employing NEON for finding a
NC for the original function F'(x) in (1) is that we cannot evaluate the gradient of F'(x) exactly. To
address this issue, we resort to the mini-batching technique.

Let S = {&1,...,&n} denote a set of random samples and define a sub-sampled function Fs(x) =
ﬁ > ¢es f(x;€). Then we apply NEON to Fis(x) for finding an approximate NC us of V2Fs(x).
Below, we show that as long as m is sufficiently large, us is also an approximate NC of V2 F(x).

Theorem 3. Under Assumption |l| (i), for a sufficiently small 6 € (0,1) and ¢ > 43, let m >

%ﬁi&“‘” bgil&?ﬁ% is a proper small constant. If Apmin(V2F(x)) < —7,

there exists ¢ > 0 such that with probability 1 — §, NEON(Fs,x,t, F,r) returns a vector us such
T2
that 2sY s —cy, where ¢ = (12¢)~2log™ *(3dL1 /(270)). If NEON(Fs,x,t, F,r) returns

lus?

0, then with high probability 1 — O(8) we have Amin(V?F(x)) > —27. In either case, NEON

terminates with an IFO complexity of 5(1/73) or 6(1/72'5) corresponding to Algorithm|l|and
Algorithm 2] respectively.

, where s =



Algorithm 4 NEON-A Algorithm 6 SCSG-epoch: (x,S1,b)

1: Input: x5, other parameters of algorithm .4 1: Input: x, an independent set of samples S; and
2: forj=1,2,...,do b < |8

3 Compute (y;, z;) = A(x;) 2: Setmy = |Si],n = ¢ (my1/b)"2/3, ¢ <1/6

4:  if first-order condition of y; not met then 3. Compute VFs(x;_1) and let xg = x

5 letx;1 = z; 4: Generate N ~ Geom(my/(m1 + b))

6:  else 5:fork=1,2,...,Ndo

T: u; = NEON(Fs,,y;,t, F,r) 6:  Sample samples Sy, of size b

8 ifu; = Oreturny; ) 7 vy = VFs, (Xp_1) — VFs, (x0) + VFs(x0)
9 else let Xj+1 =Y; — %f HEJH 8: X = Xgp—1 — NV

100 endif ! 9: end for

11: end for 10: return x)

5 First-order Algorithms for Stochastic Non-Convex Optimization

In this section, we will first describe a general framework for promoting existing first-order stochastic
algorithms denoted by A to enjoy a second-order convergence, which is shown in Algorithm
Here, we require .A(x;) to return two points (y;, ;) that satisfy (9) and the mini-batch sample size
m = |S,] satisfies the condition in Lemma The proposed NEON is used for escaping from a saddle
point. It should be noted that Algorithm [A]is abstract depending on how to implement Step 3, how to
check the first-order condition, and how to set the step size parameter £ in Step 9.

For theoretical interest, we will analyze Algorithm E] with a Rademacher random variable £ € {1, —1}
and its three main components satisfying the following properties.

Property 1. (1) Step 7 - Step 9 guarantees that if)\min(VQF(yj)) < —~, there exists C' > 0 such
that E[F(x4+1) — F(y;)] < —C~3. Let the total IFO complexity of Step 7 - Step 9 be T,,. (2) There
exists a first-order stochastic algorithm (y;,z;) = A(x;) that satisfies:

ifIIVE(y;)ll = € then E[F(z;) — F(x;)] < —¢(e,a)

if [VF(y;)ll < e then B[F (y;) — F(x;)] < C~*/2

where (e, @) is a function of € and a parameter o > 0. Let the total IFO complexity of A(x) be
Ty (3) the check of first-order condition can be implemented by using a mini-batch of samples S,
ie, ||VFs(y;)|| <€ whereS is independent of y ; such that ||[VF (y;) — VFs(y;)|| < €/2. Let the
IFO complexity of checking the first-order condition be T..

©))

Property (1) can be guaranteed by Theorem and Lemma When using NEON, T,, = 5(1 /7%

and when using NEON*, T}, = 6(1 /~v*?). For Property (2), we will analyze several interesting
algorithms. Property (3) can be guaranteed by Lemma 2 in the supplement under Assumption (I (iii)

with T, = O(E%) Based on the above properties, we have the following convergence of Algorithm

Theorem 4. Assume Prgpertieshold. Then with high probability 1 — 6, NEON-A terminates with a
total IFO complexity ofO(maX(E(—la)7 %)(Tn +To +T¢)). Upon termination, with high probability

€

IVF(y;)|l < O(€) and Anin (V2 F(y;)) > —2, where O(-) hides logarithmic factors of d and 1/5,

and problem’s other constant parameters.

Next, we present corollaries of Theorem [ for several instances of A, including stochastic gradient
descent (SGD) method, stochastic momentum (SM) methods, mini-batch SGD (MSGD), and SCSG.
SGD and its momentum variants (including stochastic heavy-ball (SHB) method and stochastic
Nesterov’s accelerated gradient (SNAG) method) are popular stochastic algorithms for solving a
stochastic non-convex optimization problem. We will consider them in a unified framework as
established in [23]. The updates of SM starting from x are

§7'+1 =Xr — va(xr;fr)7
ﬁ78-—i-1 =Xr - Snvf(XT;f‘r)a (10)

Xrp1 = Xrp1 + 5(§i+1 —-X3),



Algorithm 5 SM: (xq,7, 3, s,1) e - _E;’E%%os
I: forr=0,1,2,...,tdo 0 §\~,::NEON*
2:  Compute X, 1 according to (T0) z, NEONst
T ! = 02 —NEON"st
3:  Compute x;, ; according to (11) > - -min-eigval| .
: AT Figure 1: NEON vs
4 endfor I\ NRIZoo------oo
5. return (XJF xT ) where 7/ ¢ {0 t} e Second-order Meth-
. isa randorgl, t;ﬁeéated s 08 ods for Extracting
ye : ' dro@rmso) oot NC
forT = 0,...,t and Xj = %o, where 8 € (0, 1) is a momentum constant, 7 is a step size, s =
0,1,1/(1 — B) corresponds to SHB, SNAG and SGD. Let sequence x;~ with xj = X be defined as
B
Xi_ =X +p-721, pr= 1,B(XT_XT*1 _Snvf(x‘rfl;&'*l))' Y

We can implement A by Algorithm [5]and have the following result.

Corollary 5. Let A(x;) be implemented by Algorithmwith t = O(1/€?) iterations, n = O(e?), 8 €

(0,1),s € (0, 1/(1 — B)). Then T, = O(1/€?) and (e, o) = O(e?). Suppose that v > €*/* and
E[|Vf(x;9)||?] is bounded for s # 1/(1 = B). Then with high probability, NEON-SM finds an

(€,7)-SPP with a total IFO complexity of O(max(Z, %) (T, + %)), where T,, = O(1/~3) (NEON)

orT,, = O(1/4%%) (NEON*).,
Remark: When 7 = ¢'/2, NEON-SM has an IFO complexity of 5(5%)
MSGD computes (y;,z;) by

z; =x; — L{'VFs (x;), y;=x; (12)
where S is a set of samples independent of x;.
Corollary 6 Let A(x;) be implemented by ([2) with |S1| = O(1/€2). Then T, = O(1/€?) and
ele, ) = 4L1 With high probability, NEON-MSGD finds an (e,~)-SPP with a total IFO complexity
of O(max(%, % )(Tn + 1/€2)).

Remark: Compared to Corollary there is no requirement on y > €2/, which is due to that MSGD
can guarantee that E[F'(y;) — F(x;)] < 0.

€273

SCSG was proposed in [[14], which only provides a first-order convergence guarantee. SCSG runs
with multiple epochs, and each epoch uses similar updates as SVRG with three distinct features:
(i) it was applied to a sub-sampled function Fs, ; (ii) it allows for using a mini-batch samples of
size b independent of S; to compute stochastic gradients; (ii) the number of updates of each epoch
is a random number following a geometric distribution dependent on b and |S;|. These features
make each SGCG epoch denoted by SCSG-epoch(x, Si,b) have an expected [FO complexity of
T, = O(|S1|). We present SCSG-epoch(x, S1,b) in Algorithm@ For using SCSG, y; and z; are

i = SCSG-epoch(x;, S1,b), i =Y (13)

Corollary 7. Let A(x;) be lmplemented by (.) wtth |S1] = (max(l/e 1/(7%/2b1/2))). Then
e(e, ) = Q"3 /b1/3) and B[T,] = O (max(1/€2,1/(v%/?b'/2))). With high probability, NEON-

SCSG finds an (e,~)-SSP with an expected total IFO complexity ofO(maX(i’MP,, 7 W Ty + 1/ +

1/(7%/26Y/2))), where T,, = O(1/+3) (NEON) or T,, = O(1/~2%) (NEON™).
Remark: When v = ¢'/2,b = 1/\/e, NEON-SCSG has an expected IFO complexity of O(=1).
When v > ¢*/9,b = 1, NEON-SCSG has an expected IFO complexity of O(1/¢3-33).

Finally, we mention that the proposed NEON or NEON™ can be used in existing second-order
stochastic algorithms that require a NC direction as a substitute of second-order methods [} 20]].
[L] developed Natasha2, which uses second-order online Oja’s algorithm for finding the NC. [20]
developed a stochastic algorithm for solving a finite-sum problem by using SVRG and a second-order
stochastic algorithm for computing the NC. We can replace the second-order methods for computing
a NC in these algorithms by the proposed NEON or NEONT, with the resulting algorithms referred
to as NEON-Natasha and NEON-SVRG. It is a simple exercise to derive the convergence results in
Table |1} which is left to interested readers.
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Figure 2: NEON-SGD vs Noisy SGD. (All algorithms converge to local minimum)

6 Experiments

Extracting NC. First, we present some simulations to verify the proposed NEON procedures for
extracting NC. To this end, we consider minimizing non-linear least square loss with a non-convex

regularizer for classification, i.e., F(x) = 3%, liig + 23 (b —o(xa;))? where b; € {0,1}

denotes the label and a; € R? denotes the feature vector of the i-th data, A\ > 0 is a trade-off
parameter, and o (-) is a sigmoid function. We generate a random vector x ~ N (0, I) as the target
point to construct F(u) and compute a NC of V2F(x). We use a binary classification data named
gisette from the libsvm data website that has n = 6000 examples and d = 5000 features, and set
A = 3 in our simulation to ensure there is significant NC from the non-linear least-square loss. The
step size 1 and initial radius in NEON procedures are set to be 0.01 and the momentum parameter in
NEONT is set to be 0.9. These values are tuned in a certain range.

We compare the two NEON procedures and their stochastic variants (denoted by NEON-st and
NEON-st in the figure) with second-order methods that use HVPs, namely the Power method
and the Lanczos method, where the HVPs are calculated exactly. The result is shown in Figure I]
whose y-axis denotes the value of 4" H1, where U represents the found normalized NC vector and
H = V?F(x) is the Hessian matrix. For NEON-st and NEON*-st, we use a sample size of 100.
Please note that the solid red curve corresponding to NEON™-st terminates earlier due to that NCFind
is executed. Several observations follow: (i) NEON performs similarly to the Power method (the two
curves overlap in the figure); (ii) NEON™ has a faster convergence than NEON; (iv) the stochastic
versions of NEON and NEON™ can quickly find a good NC directions than their full versions in
terms of IFO complexity and are even competitive with the Lanczos method. We include several
more results in the supplement.

Escaping Saddles. Second, we present some simulations to verify the proposed NEON and NEON*
based algorithms for minimizing a stochastic objective. We consider a non-convex optimization

problem with f(x;¢&) = Z?Zl &i(z} — 42?) where ¢; are a normal random variables with mean of
1 so that the saddle points of the expected function are known [[10]. Assuming the noise ¢ is only
accessed through a sampler, then we compare NEON-SGD with a state-of-the-art algorithm Noisy
SGD (5] for different values of d € {102, 10*,105}. The step size of Noisy SGD is tuned in a wide
range and the best one is used. The step size in NEON procedures are set to be the same value as
Noisy SGD. The radius in NEON procedures is set to be 0.01 and the momentum paramenter in
NEON™ is set to be 0.9. The mini-batch size is tuned from {50, 100, 200, 500}. All algorithms are
started with a same saddle point as the initial solution. The results are presented in Figure 2] showing
that two variants of NEON-SGD methods can escape saddles faster than Noisy SGD. NEON*-SGD
escapes saddle points the fastest among all algorithms for different values of d. In addition, the
increasing of dimensionality d has much larger effect on the IFO complexity of Noisy-SGD than that
of NEON-SGD methods, which is consistent with theoretical results.

7 Conclusions

We have proposed novel first-order procedures to extract negative curvature from a Hessian matrix
by using a noise-initiated sequence, which are of independent interest. A general framework for
promoting a first-order stochastic algorithm to enjoy a second-order convergence is also proposed.
Based on the proposed general framework, we designed several first-order stochastic algorithms with
state-of-the-art second-order convergence guarantee.
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Supplementary Material

A Proof of Lemma/[]

Proof. Letn = %sign(vTV f(x)) be the step size, so that x; = x — nv. By the Ly-Lipschitz
continuous Hessian of f(x), we have

[f(xt) = f(x) + vV f(x) -
By noting that v " V f(x) > 0, we have
1 Lo
£~ FOee) 2V V) = SV 0w -
B3 By (33
—2L2  6L%  3L%’
where the last inequality uses that v V2 f(x)v < —c¢v, ||v|| = 1, and the definition of 7.

1 Lo
SV VGV < 2 vl

For the case of x/_, we have x/, = x — v, where ) = £ % Similarly, we can prove the expectation

result of x/, . Then
1 L
E[f(x) — f(x4)] 2E[pv V f(x) — §n2VTV2f(X)V - %HWVHS]
BB BB (B3
=212 612 3L%’
(.2 2

P (,‘3 3
- EllnP’] = g and |[v]| = L. D

= 2 s 3
L3 L3

where we use E[] = 0, E[n?]

B Concentration inequalities

We first present some concentration inequalities of random vectors and random matrices. Below, we
let S1 and Ss to denote a set of random samples that are generated independently of x.

Lemma 2 ([8]], Lemma 4). Suppose Assumption iii) holds. Let VFs, (x) = ﬁ Y omes, VI(x;2).

Forany ¢,6 € (0,1), x € R? when |S;| > —QGQ(Hi;Og(I/é)), we have Pr(||VFs, (x) — VF(x)]]
€)>1-—0.

Lemma 3 ([22], Lemma 4). Suppose Assumption [Ifi) holds. Let V?Fs,(x) =
|5—12‘2m652 V2f(x;zi). Forany ¢,6 € (0,1),x € RY when |Sy| > w, we have
Pr(||V2Fs,(x) — V2F(x)|l2 <€) >1—46.

IN

Claim. In the following analysis, when we say high probability, it means there is a probability
1 — 6 with a small enough § < 0. In many cases, we prove an inequality for one iteration with
high probability, which implies the final result with high probability using union bound with a finite
number of iterations. Instead of repeating this argument, we will simply assume this is done. We
can always set the § in the involved parameters (in the logarithmic part) small enough to make our
argument fly.

C Proof of Theorem

Due to that the proof of Theorem[I]and Theorem 2]is lengthy, we postpone them into the end of the
supplement.

2
1621 08(34/9) with probability

Proof. By using a matrix concentration inequality in Lemma ifm >
1 —6/3 we have

IV2F(x) - V2Fs(x)]l2 < 5.

12



Since || L1 ] — V2F(x)|l2 = L1 — Amin(V2F(x)) and | L1 — V2 Fs(x)|l2 = L1 — Amin (V2 Fs(x)),

if Amin (V2F(x)) < —7, with probability 1 — §/3,

(L1 = Amin(VF (%)) = (L1 = Amin(V?F5(x))) <[[(L1] = V2F(x)) = (L] = V2Fs(x))]2 < s7.
As a result, with probability 1 — §/3, Apin(V2Fs(x)) < —v + sy < —3y/4 with s =

log~*(3dL1/(2v6
g ((12632/( v9)) g 1/4_

A

(i) The NEON applied to Fs can generate us with probability 1 — 25/3 (over randomness in S and
NEON) such that
Ty72 _ ! _ _ .
ug V*Fs(x)us < A2]-' _ 0% < v < _0(y),
[lus]|? (4¢P")2  8¢%log(3dLy/(2vd)) — 72¢2log(3dL1/(2v0))
where 7/ = L7 Ly % log *(3dL, /(276)) and P’ = \/nLivL; ' log ™ (3dL, /(276)).
(ii) Similarly, the NEON™ applied to F's can generate us with probability 1 — 24 /3 (over randomness
in S and NEON) such that
ugszs (X)US -
lusl|> 7 72¢%log(3dL1/(279))

< -Q(y).

As a result, both for NEON and NEON™, with probability 1 — § (over randomness in S and NEON
or NEON1),

ulV2F(x)us B ul V2Fs(x)u

S < V2F(x) - V2Fs(x)[2 < 57,

[us] [us]
Hence,
Tv2
uc VeF (x)u
S (2) S < - — gl +8’7:_C’Y,
[us|| 72¢2log(3d Ly /(270))
where s = M. If NEON or NEONT returns 0, we then terminate the algorithm,

(12¢)2
which guarantees that A, (Fis(x)) > —+ with high probability and therefore — i, (VZF(x)) <
v + sy < 27 with high probability. O

D Proof of Theorem[d

Proof. To prove the convergence of the generic algorithm, we need to prove the total number of
iterations NEON-A before termination. Upon termination, it then holds that |V Fs, (y;)| < e,
Amin(V?Fs,(x;)) > —v. By concentration inequalities, we have Amin(V2F(y;)) > —27 and
IVE(y;)ll < O(e) hold with high probability. Before termination, let us consider two cases based
on the first-order condition at point y;: (1) ||[VF(y;)|| > eand (2) |[VF(y;)| < e.
For the first case, by (9) we have
E[F(zj) — F(x;)] < —e(e, ).

Since the the first-oder condition of y; not met in this case, then x;; = z;, so that

E[F(xj41) — F(x;)] < —€(e,a). (14)
For the second case, by @I) we have

E[F(y;) = F(x)] < ——

2
TV2F(y;
|

Before termination, NEON returns u; # 0, then it satisfies % v < —cy with high probability

[EME

T2 i)y . . .
according to Lemmaand Lemma ie., Pr (ujVF(y])] < —c*y) > 1—4. Similar to the analysis

in Lemmal[I} we have

_ L
BIF(y; + 60/La) = Flyy) < B | 3o V*F (a2 fnal?].
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where @ = u;/|lu;|| and 5 = €/ Lo.
Bla" V2 F(y;)a] =E[ VAF(y;)afi VAP (y;)i < —er) - Pr(a V2F(y;)i < —e)
+E[ATV2F(YJ)H|ATV2F(YJ)U > —c] - Pr(a TVQF( )ﬁ —cy)
< —cyPr(a' V?F(y;)a < —cy) + Li6
< —cy(1=6)+ L16 = —cy + (ey + Lq)d.
L

With § < ¢y/2(cy + L1), we have E[aT V2F (y;)a] < —cy/2. As aresult,

[T . Loy g ciy?
E[F(xj41) = F(y;)| <E|gn 0 VPF(y;)a+ —=|na|*| < ——=
2 6 12L5

By selecting C' such that C' < we will have

6L2’
E[F(xj41) — F(x;)] £ =C7°/2. (15)
By (14) and (T3) we get
E[F(x;4+1) — F(x;)] < —min(e(e, o), C~y3/2). (16)
6

Next, we will show within O (max (E (ela) , %) g(1/¢ )) outer iterations of NEON-A4, there exists

at least on y; such that Apin(V2F(y;)) > —v and |[VF(y;)| < e with high probability. This
analysis is similar to that of Theorem 14 in [5]]. As a result, at such a y; NEON-.A terminates with a
high probability. Let us consider three cases:

C1 = {y;|lIVF(y;)|| > e for some j > 0}
Co = {y;IVF(y;)|l < €and Ain(V?F(y;)) < — for some j > 0}
C3 = {yj'|||VF(Yj)|| < eand )‘min(v2F(Yj)) > — for some j > 0}

Clearly, Case 3 is our favorable case, thus we need to carefully study the occurrences of Cases 1 and

2. Let us define an event £; = {3i < j,y; € C3}, and then &; = {Vi < j,y; ¢ C3}. Itis easy to
show that Pr(&;) < Pr(€;_1). Then we have

E[F(x;+1)I¢,] — E[F(x;)Ig, ] = E[F(x;11) — F(x,)|E;1Pr(&)) + E[F(x;)Ig,] — E[F(x;)Is, ]
It is easy to bound the first term in R.H.S by E[F(x11) — F(x;)|&;]Pr(&;) < —0Pr(E;). To bound
the second term, we need following two results.

(a) Let consider different situations of Iz and ¢ _

o If Igj =1, then Igj_l =1, so that
E[F(x;)Ig] — E[F(x;)Ig,_,] = B[F(x;)] — E[F(x;)] = 0.

o If Iz, = 0, then Iz, | could be either 1 or 0. When Iz, | = 0, then
E[F(x;)I¢,] — E[F(x;)I¢,_,] = 0.
When Igji1 =1, then
E[F(x;)Ig,] — BIF(x,)Ig, ] = —E[F(x,)|Pr(€;_1 — &)).
Please note that here Pr(€;_1 — &;) means the probability of £;_; happens (i.e., I g, =1
) and Ej doesn’t happen (i.e., Igj = 0).

(b) According to we can see that under the event &;
E[F(x;)] < F(xo) — j6.
As aresult, F(x,) < E[F(x;)] < F(xq), and
[E[EGx)I| < B = max{[F(x.)], [F(x0)l}- (7)
Thus,
E[F(xj41)Ig,] — E[F(x))Ig, ] < —0Pt(&;) + BPr(Ej—1 — &)).
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By summing up over k = 0, ..., 7 we have

E[F(x;41)Ig,] — E[F(x0)] < =0 Pr(&) + B> Pr(Ex_1 — &)
k=0 k=0

J
— 0 Pr(&) + BPr(—&;) < —0(j + 1)Pr(&;) + BPr(—&;),

k=0
which implies

0(j + VPr(&;) <BPr(~&;) — E[F(x;41)Ig,] + E[F(xo)]

<B+[F(x0) — F(x.)] < B+A.

As (j + 1) grows to as large as %, we will have Pr(&;) < 1. Therefore, after 5(%)
steps, y; € Cs must occur at least once with probability at least % If we repeat this log(1/¢)

times, then after O(log(1/¢ )§) steps, with probability at least 1 — (/2, y; € C3 must occur at
least once. Therefore, with high probability, NEON-.4 terminates with a total IFO complexity of

Omax gy 35 ) (T + T + ). O

E Proof of Corollary

Proof. Let us first consider SM(xq, 7, 3, s, t). According to the analysis of Theorem 3 in [23]], when
n < (1-75)/(2L;), we have

L 2E[F(x0) — F(x/1)]
TP E[||VF( A% < (t+1)/(1—ﬁ+)

where D = [Ll’@ ((1_’6)8_1)2 SR AY & ] and o is the upper bound of E[[|V f(x; €)||?]. On the

+ Dn,

(1-p)* 1-8 ]’
other hand, by Lemma 3 of [23]], we know for any 7 > 0,

L Lio?

+ 17 i
BIIVF(et) - VFee)| < 20 [p- P7] < Ip < O,
where the last inequality is due ton < (1 — ﬁ)/(QLl). Since E[|VF (x1)||?] < 2E[|VF(x]) —
VE(x)[? + [[VF(x;)]|], then

1 4E[F (x0) ~ F(x{,)]
— OE[||VF( DI < (t+1)/(1—6+>

Next, consider (y;,z;) = SM(x;,7, 8, s,t), we have y; = x7,

E[F () - F(z,)
i+ /(- 5)

< Lin Dn

+ 3Dn, (18)
z; =x,,, and

B VF(y;)IIP] <

+ 3Dn.
When [|[VF (y;)|| > € we have
n(t+1) e
E[F(z;) - F(x;)]| < ————%(e"—-3Dn) < ——rn——
[F(2) = FOx)] < ~ (¢ = 3Dn) < —jep—a,
where the last inequality holds by choosing n = < and t + 1 > C , where C’ is a constant.

6D
485(715) Similarly, from we have

3n?(t + 1)D Ce?
E[F(y;) — F(x;)] < AV TDZ o €
[ (y]) (X])] — 4(1 _ﬂ) = 9 ’
where the last inequality holds with £ + 1 < %ﬁl_ﬂ). Therefore, when |VF (y;)|| < e, we have
E[F(y;) — F(x;)] < ¢%. By assuming that y > ¢*/3, the two inequalities in (9) hold. O

Therefore, we have (e, ) =
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F Proof of Corollary 6]

Proof. Based on Theorem] we only need to show (9) holds for NEON-MSGD. By the updates in
, we know y; = x;. It implies that the second inequality of (9) holds, i.e. E[F(y;) — F(x;)] <

C%. Next, we will show the first inequalty holds when | VF (y;)|| > €, ie. | VF(x;)|| > €. Recall
that the update of MSGD is z; = x; — L%VFS1 (x;), then by the smoothness of F'(-) we have

BIF(25) ~ F ()] <E (2 — %) VF() + 512 -]
1 1
lemwMQHﬁﬂﬂwmu@mﬂ

1 1
=- 27-[/1||VF(X_7)||2 +E [2L1||VF(XJ') - VI, (Xj)||2]
1V
2L S|’
v

where the last inequality uses Assumption (iv). By choosing |S;1| > 2? and using the condition of
IVF(x;)]| > €, we have

1
<— 5 IVFG)I +

2
€
E[F(z;) — F(x;)] < T —&(e, ).
Additionally, we have y; = x; indicating that the second inequality in (9) holds. O

G Proof of Corollary

Proof. Based on Theorem[d] we only need to show (9) holds for NEON-SCSG. By the updates in
(13), we know z; = y;. Each epoch of SCGS guarantees [14] that

5L bY/3 6V

EBlIVF(y)I*] < EIF(x;) = Fyi)] + g7

— C"81|1/3
As aresult, when [|[VF(y;)| > €, we have

/ 1/3
E[F(y;) - Flx;) <~ 2 BV

BTG
By setting |S1| > 12V/€2, we have
E[F(y;) — F(x;)] < —

On the other hand, when ||VF'(y;)|| < €, we have

5L.b1/3 6V
————  _E[F(x;) — F(v. -
C/‘Slll/g [ (XJ) (YJ)]+ |Sl‘7

d(12V)1/3 4/3
10L, b'/3

0 <E[|VF(y;)I’] <
i.e.,

6c'V
BlF(y;) = Fx)l < sros iz

3/2
- 12ve! 1
By choosing |S1| > (5CL1 ) piI/25077 5

BIF(y,) — F(x,)) < S

In summary, the sample sizes must satisfy |S;| > O(max(1/e2,1/(y%/2b/2)). The total iterations
(i.e., the number of calls of SCSG-Epoch and NEON) is 9] (max(%, ,Y%)) The expected IFO
complexity of each SCSG-Epoch is 2|S;| > O(max(1/€2,1/(v%/2b'/2)) regardless the value of b
due to the geometric distribution of N in SCSG-Epoch. O
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H Proof of Theorem [1]

We first prove the following lemma.

Lemma 4. Under the same conditions and settings as in Theorem|l| If NEON is called at a point x
such that M\pin (V2 f(x)) < —, then with high probability 1 — § there exists T < t such that

Fx+u) = [(x) = V/(x) u, < =27,

lur|| < U = 4é(y/nLaF/Ls)'*
For simplicity, we recall and define some notations. Let H = V2 f(x) be the Hessian matrix and e;
be the unit minimum eigenvector of H. We also use the following notations in the proofs:

3
F = nLl’y—2 log™3(dk/9),
Ly

P = \/nLlLl log~1(dk/5),
2

log(dk /6
7 .= loaldr/d)
ny
where k = Li/y > 1 is the condition number. From above notations, we know r =
Plog™!(dk/5) = PyLi " log™"(dr/5) < P. Let us define
fe(u) = f(x+u) - f(x) —uTV[(x) (19)

Also, we need the following two lemmas for our proof. It is notable that the following two lemmas
are similar to Lemma 16 and Lemma 17 in [11]. The analysis of Lemma@is similar to that of Lemma
17 in [[L1]]. However, we provide a much simpler analysis for LemmaE]than that of Lemma 16 in [[11].

Lemma 5. For any constant ¢ > 8, there exists cmax: for X satisfies the condition that
Amin(V2f(x)) < —v and any initial point ug with ||ug|| < 2r, define

T = min{inf{r|fx(u,) — fx(uo) < —3F},e7}.
Then for any 1 < Cmax /L1, we have for all T < T that ||u.|| < 2¢P.

Lemma 6. There exist constant ¢y, ¢ such that: for x satisfies the condition that A, (V2 f(x)) <

— define a sequence wy similar to u; except wo = ug + prey, where i € [6/2v/d, 1] and ey is a
unit eigen-vector corresponding to the minimum eigen-value of V? f(x), and let vy = w; — wy

T = min{inf{7|fx(wW,) — fx(Wo) < —=3F},&T}.
Then for any 1 < Cmax/ L1, if ||| < 2¢P forall T < T, then T < &J.

Proof. (of Lemma@) We define T, = &7 and T = inf {7]fx(u,) — fx(ug) < —3F}. Let’s
consider following two scenarios:

@ 17 < T,: Since upr = up_1 — n(Vf(x + up_q1) — Vf(x)), we can see that
n
lluz|| < |lugp—1|| + nLi||ug—1|| < 4¢P £ U by employing Lemma Then we have

foetur) = f(x) —up VF(x) <f(x+up) = f(x) —ug Vf(x) = 3F
§%Hu0||2 —3F < F—3F =-2F.

Therefore we have
minf(x+up) - f(x) — uLVF(x) < f(x+up) - f(x) — uf V() < —2F.

1< < T, || <U

)T’ > T,: By Lemma we have ||u,|| < 2éP forall 7 < Ti. Let define 7" = infT{T|fx(W7—) —
fx(wo) < —=3F}. By Lemma@ we konw T < T,. From the proof of Lemma@ we also know that
[lwr—1]] < 2éP. Hence ||wpr || < ||[wr—1|| + nL1||wr—1]] < 4¢EP. Similar to case (1), we have

min fx+wp) — f(x) —w]Vf(x) < —2F.

1< <T | w,/ || <U

17



Therefore,

. . - .
mm{1§T,§%Ilhllr‘{lT/I|SUf(X+uT,) f(x) —u.Vf(x),

min f(x—l—wT/)—f(x)—W:,Vf(X)} < —2F.

<7/ < T W, | <U
We know uyg follows an uniform distribution over Bq(r) with radius r = P/(x - log(dk/d)). Let
denote by X C Bo(r) the set of bad initial points such that min; < <7, jju |<v f(X+ur) = f(x) -
ul,Vf(x) > —2F whenug € X,; otherwise min; <. <7, | |<v f(x+u)—f(x)—ul Vf(x) <
—2F when ug € By(r) — X.

By above analysis, for any ug € X, we have (ug £ pre;) ¢ Xs where p € [ﬁ, 1]. Let denote by

Ix_(+) the indicator function of being inside set X,. We set u(Y) as the component along e; direction

and u(~") as the remaining d — 1 dimensional vector, then the vector u = (u("), u(=1). It is easy to
have an upper bound of X;’s volumn:

Vr2=|u=Dj?2
Vol(X,) = / du- Iy (u) = / du~1 / duV - Iy, ()
B (r) B (r) —/r2— a2

_ _ d d—1 or
< dul=P .2 r</ du= .22 —VoI(B V() "=
< / . s s = VolB V)
Then,
Vol(BY Y (r)) 22 d
Vol(Xy) olBy (M) 8 L(g+1) _ 6 d 1 _,
VoI(BY?(r)) ~  Vol(B{™ (r)) VrdT(@+ 1) = Vmd V2 27
where the second inequality is due to F?iit};) <\/x+ % for all x > 0. Thus, we have uy & Xs
with at least probability 1 — §. Therefore,
fx4upy) - f(x) —ul, Vf(x) < —2F. (20)

min
1</ ST flu [|SU
To finish the proof of Theorem[I} by the Lipschitz continuity of Hessian, we have

Foct ) 00 = V6 T — Jul V2 f(0u| < 2,

Then by inequality (20), we get

1 L

S VA ()ur < fx+ur) = f(x) = V() Tur 4 Llur|P < 22F + F < - F.
That is,

T2 _
u, V2 f(x)u, < A2.7-' _ ¥ . 21
[ur[]? (4¢P)? 8¢*log(dL1/(v9))

If NEON returns 0 following Bayes theorem, it is not difficult to show that Apin (V2 f(x)) > —v
with high probability 1 — O(9) for a sufficiently small ¢. O

H.1 Proof of Lemmal[3

Proof. By using the smoothness of fx(u), we have

R . L
flurr) <f(ur) + Vf(u.,.)T(uT_H —u,)+ ?1”117’-&-1 - UTH2
A 1 Ly
=f(u;) — EHU-‘MLI - u7-||2 + 7||u7'+1 - u7-||2

A 1
Sf(uT) - %||u7'+1 - 1].-,—”2,

18



where the first equality uses the update of u,; in Algorithm I} the last inequality uses the fact of
nL; < 1. By summing up 7 from 0 to ¢ — 1 where ¢ < T, we have
t—1

f(ut) < f(UO) 5 Z [uy — a1,
=0
which inplies

t—1
1 . .
% Z Jur —ur | <f(uo) — f(uy).
7=0
Hence, if ¢ < T then f(u;) — f(ug) > —3F, ie., f(ug) — f(u;) < 3F. Then we have

=1 =1 A dr
3clog (e L.~3
S < £ g -2 < [2E0BG)nl?
ny L3log (%)

7=0 7=0
—\F\/nlelog (dk/8) = V6&P.

Then forall 7 <t — 1, lu || < >7_; lux — we—1]] + [Juol| < V6P + P < &P, where the last
inequality is due to ¢ > 18. Additionally, by the update of u. in Algorithm[I} we have

Iyl O+ L) fur | < 26P.

H.2 Proof of Lemmal6

The proof is almost the same as the proof of Lemma 17 in [11]. For completeness, we include it in
this subsection. By the way uy is constructed, we have ||ug|| < r < ¢P. Letus define v, = w, —u,

then vo = pre; (e, r = Zlog™'(dr/d)), u € [§/(2V/d), 1]. By the update equation of w4
(similar to u,41), we have
Urgl +Vrp] = Wrp] = Wr — ﬁ(vf(x + W‘r) - Vf(X))
=u, + v, —n(Vf(x+u, +v;) - Vf(x))
=u,+v, —n(Vf(x+u,+v,) - Vfx+u,)+Vfx+u,) - Vf(x)

1
=u, —n(Vf(x+ur) = Vf(x) +v: —nHv; =1 UO V2 f(x +ur +0vy)do — H | v,

=u, —n(Vf(x+u:) = Vf(x))+ [I —nH —nAl]v-
where A/ := f V2f(x+u, +0v,)dd — H. We know ||A”|| < L2(||uT|| + |lv+]|/2) according
to the Llpschltz continuity of Hessian. Then we know the update of v is
Vesr = (I =nH —nA7)v, (22)
We first show that v,,7 < T is upper bounded. Due to ||wo| < |[uol| + |[vol < r+r = 2r,

following the result in Lemmal[5] we have ||w.|| < 2¢P for all 7 < T'. According to the condition in
Lemma 6] we have |lu.|| < 2¢P forall 7 < T'. Thus

-1l < | + [[w- | < 4¢P forall 7 < T (23)
Then we have for 7 < T'

IAZ] < La([ur|| + [v-||/2) < L - 2¢P
Next, we show that v.., 7 < T is lower bounded. To proceed the proof, denote by /.- the norm of v,

projected onto e; direction and denote by (o, the norm of v projected onto the remaining subspace.
The update equation of v 1 [22) implies

,(/)T-i-l >(1 + n w‘r C\/ ¢2 + ()OT?
Ori1 <(L+0)pr + (VY2 + 92,

where ¢ = nLoP(4¢). We then prove the following inequality holds for all 7 < T by induction,
or < ACT -4, (24)
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According to the definition of v, we have ¢y = 0, indicating that the inequality (24) holds for 7 = 0.
Assume the inequality (24) holds for all 7 < ¢. We need to show that the inequality (24) holds for
t+ 1 < T. Itis easy to have the following inequalities

AG(t + 1)they1 >4C(t 4 1) ((1 +yme — C\JYF + w?) ;

Prr1 SACH(L + )Y + QY7 + i
Then we only need to show
(1+4¢(t+ 1) (/97 + ¢ <AL+ yn)t.
If we choose /Cmax < @, and 1 < ¢pax/ L1, then

40(t + 1) <4CT < 4nLoP(4¢) - ¢T = 4v/nL1(4¢)é < 1.
This implies

A1+ )by >4ty > 20/ 207 > (1+4C(E + 1)) /97 + of.
We then finish the induction. According to @), we get ¢, < 4(¢T - 1, < ¥, so that
Gria 2 (L4 )y = V3 2 (1+ T, 25)
where the last inequality is due to ¢ = 7LaP(4¢) < /Cmax(4¢)y7 - log ™' (dK/5) < < % with
N < Cmax/L1,1og(dk/0) > 1,and é > 1.
By the inequalities (23)) and (23)), for all 7 < T, we get

AP -¢) >|ve|| > v > (1 + g)%/)o =(1+ %)T/JJ'
U -1 M. 6 F -1
= - — > ) — .
(1+ 5 ) e log™ (dr/d) > (1 + 5 ) i n log™ " (dr/9)

Then

log(85Y2 . ¢log(dk /5)) U5 log(85Y2 . &¢log(dk/5))
log(1 + 4t) T2 m

where the last inequality uses the facts that § € (0, %] and log(dx/5) > 1. By choosing a large

enough constant ¢é satisfying 3 (2 + log(8¢)) < ¢ (é > 18 works), we have T < ¢ and complete the
proof.

T <

< 2(2 +log(8¢))J,

I Proof of Theorem

We first consider the case when NCFind is executed, i.e., there exists 7 > 0
7 ¢ ¢ Y
f(y‘r) < f(u‘r) + Vf(uT)T(y‘r - u‘r) - §||Y'r - u'r||2a (26)

and NCfind returns a non-zero vector v. We will prove that v V2 f(x)v/|[v||2 < —(7). There are
two scenarios we need to consider.

Scenario (1) there exists j < 7 such that
j =arg min {|lyx —uxl| > (\/6nF}.
0<k<r
Since u; — yx = ((yx — Yk—1), then it is equivalent to
j=arg min {|lyx —yr-1ll > V6nF}.
0<k<r

According to the definition of j, we know forall 0 < k& < j — 1,
ly; = yj-1ll > V6nF. Thus,

Y — Ye—1| < +/61F and

Jj—1
Iyl <D vk = ye-1ll + llyoll < jv/6nF + 2P < é7\/6nF + 2P = (V6 + 2)P.
k=1
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Similarly, for all 0 < k < j — 1, we can show
lyrll < (V624 2)P.
By the update of NAG, we have ||u;_1 —y,—1|| = {|lyj—1 — ¥j—2||. Then
w1l <llwj—1 —yj—1ll + llyj—1ll = Cllyj—1 — yj—2ll + [[yj-1ll
<llyj-1 = yj-all + lyj-1ll < V/6nF + (V6¢ +2)P < (V6¢ + 3)P.
Similarly, forall 0 < k£ < 5 — 1, we can show
Jul| < (V6 + 3)P.
Next we bound ||y;|. Since [ly; — yj—1] = l[uj—1 — wj—z + (Vf(w;_2) — VF(;_1))|| <
(1+nL1)[luj—1 — uj—2|, then
[yl <A +nL)llwj—1 —wj—ofl + [ly;-1ll <5/4wj—1 —wj—af + [ly;-1l
<5/4l ;a4 5/4]aj 2|l + [ly;-1ll < (7V66/2 + 19/2)P,
where the first inequality uses nL; < i. By using the relationship ||[u; —y;|| = (|ly; — ;-1 in
NAG, we get
lujll <Clly; = yimall + vl < lly; = vieoll + lysll < llyi-all + 2lly;1 < (8V6e + 21)P.
Therefore, by choosing ¢ > 15, we have shown
Iyl < 10¢P and ||ug| < 21¢P, 0 < k < j. 27
Next, we will show that y; is a NC, i.e., y | V2 f(x)y; < —Q(73). We know that the inequality

doesn’t hold for all 0 < k < 7, then by the analysis of Lemmal 7] (in particular inequality (36) due to
that (26) does not hold any k£ = 0,...,7 — 1), we have

Forkan) + 5 e = vall < F) + 5 I = vial
By summing up over k from 0 to j — 1, we get
Fr)+ 5oy, = vl < fovo)
Combining with [|y; — y,_1] > v/61F, we have
Jx+y)) = f(x) =y VI(x) <f(x+yo) = [(x) = yg Vf(x) = 3F
<-3F+ %Hy0||2 < —3F +F < -2F,

By the Lipschitz continuity of Hessian, we have

Foctyi) = £60 = V) Ty = 23] VA )| < 2l

Then
1 L
Y] V) < fxty) = Fo) = VI Ty + Zllysl* < —2F + F < - F.
Therefore, combining with [27) we get
v VIIys  2F v <— 7 28)
ly;lIZ = (10¢P)? 50¢2log(dLy/(v0)) — T72¢%log(dL,/(~d))

Scenario (2) Forall 0 < k < 7, ||lyx — Y—1]| < v/6nF. Thus,

Iyl <37 Ny = yiill + lyoll < 5v/6nF +2P < e7/6nF + 2P = (V6 + 2)P < 3¢P.
k=1
Similarly, we can show
el <3¢P,0<k <, (29)
where ¢ > 15. By the update of NAG, we have ||u;_1 —y;_1|| = ¢||yj—1 — ¥;j—2|/- Then
lurl| <llar =yl + lly-ll = Clyr = yr—all + lly-ll

<lyr = yro1ll + ly-ll < V6nF + (V6 +2)P < (V6¢ + 3)P < 3¢P.
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Similarly, we can show
lugl] <3éP, 0< k<. (30)
In addition, we also have
[yr —upll <6¢P, 0 <k <. 31)

By expanding f(y.) in a Taylor series, we get

f(yr) :f(ur) + vf(uT)T(yT —u;)+ %(YT - uT)TV2f(7TT)(y.,_ —u,),

where 7, = 0'u, + (1 — ¢')y; and 0 < ¢’ < 1. By inequality (26), we then have

S ) T () (s — ) <~ Ly u

It is clear that y, — u, # 0. Then we have

(vr = ur) V) (yr —wr) € = llyr = url® + (yr —u) [V f(x) = V()] (yr —uy)
—llyr —ur |+ Lo|0'ur + (1= 0)y- || lyr — u-|?

(=7 + La([lur || + [ly- D]y~ — ur]?

Y 2
<-- - .
<= Ty, —u]

<
<

Therefore,
(yr — uT)TVQf(x)(YT —u,)
lyr —u|?

_ Y
728 log(dLy1/(79))

S_

IN

~
5 (32)

Next, we will prove Theorem 2] under the condition that NCFind is not excuted, i.e., (26) does not
happen.

Lemma 7. Define F = T,ng% og T (dk/6), P = Vi1 - log” (dr/0), T = |/ 'oldn/0)

o
Suppose the inequality (26) doesn’t hold. There exist a universal constant cuax, ¢: for X satisfies the
condition that Ain (V2 f(x)) < =, any ||uo|| < 2r, wherer = £ log™!(dr/$), and

T' = min {iI;f{T‘f(yT) - f(YO) < _3]:}76\7} )
If C satisfies 1 — 1_7%( > /7, then for any ) < c¢max/L1, we have for all 7 < T that
Ju. | < 66P.
Lemma 8. There exist constant cyax, ¢ and a vector e with ||e|| < 1 such that: for x satisfies the

condition that \min (V2 f(x)) < —v define a sequence wy similar to u; except wo = ug + ure,
where 11 € [0/2V/d, 1], and define a difference sequence vy = w; — u,. Let

T = min{inf{| fx(y-) — fx(v0) < -3F},eT}.
where y, is the sequence generated by (@) starting with wo. Then for any 1 < cmax/L1, if
lur|| < 6P forallT < T, thenT < é&J.

L1 Continuing the Proof of Theorem 2]

Proof. When NCFind doesn’t terminate the algorithm, then we use Lemma [7] and Lemma [§]
to prove that NEON™ finds NC with a high probability. Let us define 7, = ¢J and

T = inf {7]fx(y+) — fx(yo) < —3F}, and consider following two scenarios:
Scenario (1) 7 < T.: By the unified update in (8), we have

Yr+1 =u; —nV fx(ur)
Then
[y || < (1 +nLy)ur || <126P £ U
By employing Lemma[7] we have

fx+yr) = f(x) =y VI(x) <f(x+y0) — f(x) —yg Vf(x) — 3F
<—3F+ %||yo||2 < —3F + F < —2F, (33)
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Therefore we have
min  f(x+yy) = f(x) —yLVF(x) < f(x+yr) — f(x) -y V(x) < —2F.

1<7/<Ty
Iy 1 ISUyr~ug

where y, ~ ug means that the generated sequence is starting from ug.

Scenario (2) T > T,: By Lemma[7] we have |lu.|| < 6P¢ for all 7 < T. Let define 7" =
inf {7|fx(y+) — fx(yo) < —3F}. Here, we abuse the same notation y, to denote the generated
sequence starting from wo. By Lemmal8] we konw 7" < T.. From the proof of Lemmal8] we also
know that w71 || < 6P¢. Hence |yz|| < 12¢P. Similar to (33), we have

min - f(x+ym) - f(x )—nyVf( ) < —2F.

1<7/<T
Iy ./ II<US yT~W0

Therefore,

min{  min - fx+yr) - f(x) -y V),
Iy /1< UTyT*~UO

min - f(xtye) = f(x) - yi V() o < -2F,
Iy ./ [<Uyr~wq

Please recall that ug is random vector following an uniform distribution over By(r) with ra-
dius r = P/(k - log(dr/d)). Let X5 C IBSO( ) be the set of bad initial points such that
ming <<, |y <v (X + yr) — f(x) — yT TVf(x) > —2F when uy € X,; otherwise

min1<.r/<T*)Hy/T I<u f(X + yT') — f(X) Vf( ) S —2F when Ug € BO(T) — Xs.

From our analysis, for any ug € X,, we have (ug + ure) ¢ X, where y € [=~, 1]. Denote by

2vd’
Ix_(+) the indicator function of being inside set X;. We set 1) as the component along e direction
and u(~1) as the remaining d — 1 dimensional vector, then the vector u = (u(*), u(=1)). The volume

of X,’s can be upper bounded as:

P2 a2
Vol(Xs) = / du-Iy (u)= / du(*l)/ duV - Iy, ()
B (r) BG' ) (r) —/r2 =D

1 _ or
< dul=Y . 2 </ du=Y . 2—"_r = VoI(B{* ™V (r)) =
__/gylkr) "= B (1) 2Vd B ))\/&
Then,
Vol(BS' ™V (1)) 2L
Vol(Xy) olBy “(r)vG _ 4 F(§+1)< o Jd 1
VolBD (1))~ VoI(B (1)) VadT(§+3) ~ Vad V2 277

F%iﬁ}%) < y/x + 3 forall # > 0. Thus, we have uy ¢ X,

with at least probability 1 — §. Therefore, with probability at least 1 —
min — f(x+yr) - f(x) - yLVf(x) < -2F. (34)

1<7/<Tx
Iy s I<U,yr~ug

Let us complete the proof. By the Lipschitz continuity of Hessian, we have

Flc+ye) = F6) = VI Tys = 5y T VA )y,

where the second inequality is due to

Lo 3
< Zly- |15
< 2yl

Then by inequality (34), we get
L
*y,r VQf(X)YT S f(X + y‘r) - f(X) - vf(X)TY‘r + ?2“}’7'||£3 S _2]:"‘]: S -F.

Therefore,

YiVi®y. . 2F g
ly-II> = (12¢P)? 72¢2log(dL1/(79))’

If NEON*returns 0 it is not difficult to prove that Apin (V2 f(x)) > —~ holds with high probability
1 — O(9) for a sufficiently small § by Bayes theorem. O

(35)
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1.2 Proof of Lemmal7l

Proof. By using the smoothness of f(u), we have
. A A Ly
f(yr1) <f(ur) + vf(uT)T(Y‘rJrl —u,)+ 7||Y'r+1 - U-TH2

= () = IV F )|+ S|V ) P,

where the last equality uses the update (§). Since the NCFind never happens during ¢ iterations, then
the inequality (26) doesn’t hold for any 7, thus we have

~ o ~ ~ 1 ~
Flyri) + VI T (e~ ur) = Dlye —url? < fly) =l VFo)? + S LV )
By the update (8)), we have
Iyess —ell? =lhar —ye 19 f)|?

=lu; =y [* = 20V f(ur) " (ur = yr) + 0* ||V f ()|
and ||u7' - yTH = <||y'r - YT—lH' Thus,

Fyr) + 5 e = ol <02) = S fan P4 25 -y P
<Fyo) + 5 e =y P
e
=Fe)+ gl =y P = T
<fly-) + %IIyT —yrall’ - r\lyf yrl. (36)

where the second inequality uses nL; < 1; and the last inequality uses 1 — (1 +7vy)¢%2 > 1 — ( by
choosing ¢ =1 — /iy with /iy < 1/2.

By summing up 7 from O to ¢ — 1 where ¢t < T', we have

2 1
fo0) + 5l =ye P < £(3o ZuyT yr—1ll?,
which inplies
t—1
VY ; 2
ET D o llyr =yl <f(vo) = flye)-
T7=0

Hence, if t < T then f(y;) — f(yo) > —3F. i.e., f(yo) — f(y:) < 3F. Then we have

t—1 t—1 A 1/2/dk

3¢log'?(%)  nLiy® 2
S lye = yeal < [t Iy —yral2 < T T
- - VI Lilog® () VY

3¢ nLyivy3 \/7\/7 =
~ nLl— log™*(dk/8) = V6EP.
VT L3 log? (%) m

. —1 _ -
Since 0774 [luy — wroal| < X050 lyrsn — yrlls then [Jucl| < 57 [lus — we || + o]l <
V6EP 4+ P < ¢P, for all 7 < t — 1, where the last inequality is due to ¢ > 43. Additionally, by the
unified update in , we have

sl <0+ nLy)lar|l +C(1 +nLy))llur]] + C(1 4+ nL1))|[ur || < 6EP.
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1.3 Proof of Lemmal3l

Proof. The techniques for proving this lemma are largely borrowed from [12]]. In particular, the
proof is almost the same as the proof of Lemma 18 in [12]. For completeness, we include it in this
subsection. First, the update of NAG can be written as

Urg] +Vigl = Wrgg
=1+ Qwr —=n(Vfx+w:) = Vf(x)] = (wror = n(Vf(x+ wr_1) = Vf(x))]
=1+ Qur +v, —n(Vfx+u, +v,) = Vf(x))]
—Cur1 + v = n(Vi(x+ur—1 +ve) = VF(x))]
=1+ Q- =n(Vf(x+ur) = Vf(x))] = ([urmr = n(Vf(x+u—1) = Vf(x))]
+ (L + Qe —nHV: —=nAve] = (Ve —nHvV: 1 —nAr 1V, 4],
where A, = fol V2f(x+u, +0v,))dd — H. Then
Vopr =(14+Q)[ve —nHvV: =nAv, ] = ([Vve1 —nHV 1 — 1A 1V, 1]
and

[VT+1}:{(1+C)(II—77H) —cu—nH)H v, }_n[ammvf—

Vr 0 Vr—1 0

)

CAT—IVT—l :|

A

where A, = fol V2f(x+u, +60v,))dd — H. Itis easy to show that | A, || < La(|lu.|| + [|v.]) <
18LoPé. Let 6, = (1 + ()A;v, — (Ar_1v,_1, then

Vil _ Vr _ 57’ _ pAT+1 Vo _ . T—1 (S’L
Rl e R K A e e R o R
We can write v, by as follows :

T—1
— | Vo | _ r—1—i| 0
=1 O]A[VO] nl I O]ZOA {O]
where uses the fact that v_; = v(. Next we will show the following inequality by induction:

T—1
1 7| Vo r—1-i | O
i o]l oiZa (4]
It is easy to show that the above inequality (38) holds for 7 = 0. We assume the inequality (38) holds

for all 7. Then,
T—1
T A\ T—1—1 6i
Rt N Rt
i=0

o[ ]

On the other hand, we have [|0-| < (1 + Q)[|A-|[[v-ll + CIIA—1ll[vr=1ll < B4LoPE(||v-|| +
[[vr—1]|), then we get

17| <54LoPE([[ vl + [[vr—1l))

ot [ e oS ))

“OMMI

(38)

3

<81LyPé (

<162LyPc

)
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where the last inequality uses the monotonic property in terms of 7 in Lemma 33 in [12] . We then
need to prove the inequality (38)) holds for 7 + 1. We consider the following term for 7 + 1:

g O]gm—i[f;] o 14| § ]|
§162nL2Péi{‘[I O]AT—Z’[O}HH[I O]Ai[XE]H}. (39)

i=0
We know from the preconditions that Ay, (H) < —v and the coordinate e; is along the minimum
eigenvector direction of Hessian matrix H, then we let the corresponding 2 x 2 matrix as A; and

o b | =11 0]a4f,

Since vg = wg — ug = ureq, v(; is along the e; direction. By the analysis of Lemma 32 in [12],
the matrix [ I 0 JA™¢ é is diagonal, and thus the spectral norm is obtained along e; which

corresponding to Ay (H). Thus, inequality can be written as
- T—1 62 T—1 I i| Vo
v [l o Ll e |

1 1 1 2 1 1
sz (o b ol SXZ (H+<T+1>)< 0, — 80, vol

e (ereen) o)
n(strw) o o[z

Vo

7

where y = 162nLyPé. By choosing 2/(1 — ¢) < &7, ie. ¢ < 1 — 7T, then

162nLoyPé(é )(2/(1 — )+ ¢&J) < 312nLyPé(eT)? = 312¢°/nLy = § if we select ) = Smpax

1

&2 42 5. Therefore, we have shown that the inequality holds. Further, we have

||v7|zH[Io L]
iprmelz]l

Noting that Ay, (H) < —, by Lemmas 23, 30, 33 in [12], we have
||
. v f(l VY vl we < -(1- )],
S O]AT{VO} >
L0+ 8y Ivoll,  we [-(1-¢)2,0],
where |z| = [9Amin(H)| > ny. By choosmg 1—¢ = /17, we have

;‘[I O]AT[VO] Z\/T(lan)TW’

Combining ||v,|| < 12P¢, for all 7 < T, we have

12Pé >\/; (1 + @)TW _ Vi (1 + \/W)Tuilogl(dm/é)

Sl <1 + ﬁy o7 log ™~ (dr/6)

with ¢pax

T—1
ZAT11|:((5)Z':|

=0

2

:\/m<1+@>7 J BIOg—l(dn/é)
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Then

e og(96 L4 - log(dr/0))  log(96L4 - ¢log(dr/5))

log(1+ \/71/2)
<1.5(2.5 + 1log(96¢/+/Cmax)) T ,

2./71/3

where the last inequality holds because of § € (0, %] and log(dr/§) > 1. By choosing é > 43, we
O

have 1.5(2.5 +10g(96¢/1/Cmax)) < ¢é then T' < ¢J and complete the proof.

J Additional Simulation Results for Extracting NC
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Figure 3: Comparison between different NEON procedures and Second-order Methods
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