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Abstract

Strongly Rayleigh (SR) measures are discrete probability distributions over the
subsets of a ground set. They enjoy strong negative dependence properties, as a
result of which they assign higher probability to subsets of diverse elements. We
introduce in this paper Exponentiated Strongly Rayleigh (ESR) measures, which
sharpen (or smoothen) the negative dependence property of SR measures via a
single parameter (the exponent) that can be intuitively understood as an inverse
temperature. We develop efficient MCMC procedures for approximate sampling
from ESRs, and obtain explicit mixing time bounds for two concrete instances:
exponentiated versions of Determinantal Point Processes and Dual Volume Sam-
pling. We illustrate some of the potential of ESRs, by applying them to a few
machine learning problems; empirical results confirm that beyond their theoreti-
cal appeal, ESR-based models hold significant promise for these tasks.

1 Introduction
The careful selection of a few items from a large ground set is a crucial component of many machine
learning problems. Typically, the selected set of items must fulfill a variety of application specific
requirements—e.g., when recommending items to a user, the quality of each selected item is impor-
tant. This quality must be, however, balanced by diversity of the selected items to avoid redundancy
within recommendations. Notable applications requiring careful consideration of subset diversity
include recommender systems, information retrieval, and automatic summarization; more broadly,
such concerns are also vital for model design such as model pruning and experimental design.

A flexible approach for such subset selection is to sample from subsets of the ground set using a
measure that balances quality with diversity. An effective way to capture diversity is to use nega-
tively dependent measures. While such measures have been long studied [41], remarkable recent
progress by Borcea et al. [11] has put forth a rich new theory with far-reaching impact. The key
concept in Borcea et al.’s theory is that of Strongly Rayleigh (SR) measures, which admit important
closure properties (specifically, closure under conditioning on a subset of variables, projection, im-
position of external fields, and symmetric homogenization [11, Theorems 4.2, 4.9]) and enjoy the
strongest form of negative association. These properties have been instrumental in the resolution of
long-standing conjectures in mathematics [9, 35]; in machine learning, their broader impact is only
beginning to emerge [5, 31, 33], while an important subclass of SR measures, Determinantal Point
Processes (DPPs) has already found numerous applications [22, 29].

A practical challenge in using SR measures is the tuning of diversity versus quality, a task that
is application dependent and may require significant effort. The modeling need motivates us to
consider a generalization of SR measures that allows for easy tuning of the relative importance
given to quality and diversity considerations. Specifically, we introduce the class of Exponentiated
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Strongly Rayleigh (ESR) measures, which are distributions of the form ν(S) ∝ µ(S)p, where S is
a set, p > 0 is a parameter and µ is an SR measure. A power p > 1 captures a sharper notion of
diversity than µ; conversely, a power p < 1 allows for weaker diversity preferences; at the p = 0
extreme, ν is uniform, while for p→∞, the ν concentrates at the mode of µ.

ESR measures present an attractive generalization to SR measures, where a single parameter allows
an intuitive regulation of desired strength of negative dependence. Interestingly, a few special cases
of ESRs have been briefly noted in the literature [22, 29, 49], although only the guise of generaliza-
tions to DPPs and without noting any connection to SR measures.

We analyze the negative association properties of ESR measures and derive general-purpose sam-
pling algorithms that we further specialize for important concrete cases. Subsequently, we evaluate
the proposed sampling procedures on outlier detection and kernel reconstruction, and show how a
class of machine learning problems can benefit from the modeling power of ESR measures.

Summary of contributions. The key contributions of this paper are the following:

– The introduction of Exponentiated SR measures as a flexible generalization of SR measures,
allowing for intuitive tuning of subset selection quality/diversity tradeoffs via an exponent p > 0.

– A discussion of cases when ESR measures remain SR. Specifically, we show that there exist
non-trivial determinantal measures whose ESR versions remain SR for p in a neighborhood of 1.

– The introduction of the notion of r-closeness, which quqntifies the suitability of a proposal distri-
bution for MCMC samplers.

– The analysis of MCMC sampling algorithms applied to ESR measures which take advantage of
fast-mixing chains for SR measures. We show that the mixing time of the ESR samplers is upper
bounded in terms of r-closeness; we provide concrete bounds for popular SR measures.

– An empirical evaluation of ESR measures on various machine learning tasks, showing that ESR
measures outperform standard SR models on several problems requiring a delicate balance of
subset quality and diversity.

1.1 Related work

An early work that formally motivates various negative dependence conjectures is [41]. The seminal
work [11] provides a response, and outlines a powerful theory of negative dependence via the class
of SR measures. The mathematical theory of SR measures, as well as the intimately related theory
of multivariate stable polynomials has been the subject of significant interest [9, 10, 42]; recently,
SR measures were central in the proof of the Kadison-Singer conjecture [35].

Within machine learning, DPPs, which are a subclass of SR measures, have been recognized as a
powerful theoretical and practical tool. DPPs assign probability proportional to det(L[S]) to a set
S ∈ 2[n], where L is the so-called DPP-kernel. Their elegance and tractability has helped DPPs
find numerous applications, including document and video summarization [15, 34], sensor place-
ment [27], recommender systems [21, 48], object retrieval [1], neural networks [36] and Nyström
approximations [32]. More recently, an SR probability measure known as volume sampling [8, 16]
or dual volume sampling (DVS) [33, 37] has found some interest. A DVS measure is parametrized
by an m×n matrix A with columns ai; it assigns to a set S ⊆ [n] of size m a probability proportional
to det(

∑
i∈S a⊤i ai).

Independent of application-specific motivations, two recent results [5, 31] showed that SR measures
admit efficient sampling via fast-mixing Markov chains, suggesting SR measures can be tractably ap-
plicable to many machine learning problems. Nevertheless, the need to tune the measure to modulate
diversity persists. We address this need by passing to the broader class of Exponentiated Strongly
Rayleigh measures, whose diversity/quality preference is parametrized by a single exponent.

To our knowledge, there has been no previous discussion of ESR measures as a class. Nonetheless,
they can benefit from the abundant existing theory for log-submodular models [19, 20, 25, 43], and
isolated special cases have also been discussed in the literature. In particular, Exponentiated DPPs
(or E-DPPs) are mentioned in [29, 49], as well as in [22] and [4].
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Figure 1: Anomaly detection by sampling with an Exponentiated-DPP. 200 samples of size k = 20 were
drawn from a E-DPP with Gaussian kernel; darker colors indicate higher sampling frequencies. As p increases,
the points furthest from the mean accumulate all of the sampling probability mass.

2 Exponentiated Strongly Rayleigh measures
In this section, we formally introduce Exponentiated SR measures and analyze their properties
within the framework of negative dependence. We use Pn to denote n × n Hermitian positive
definite matrices, and use A ≻ B to denote the usual Löwner order on Pn matrices1. For a matrix
L, we write L[S, T ] the submatrix [Lij ]i∈S,j∈T , as well as L[:, S] ≜ L[[n], S] and L[S, :] similarly.
We alleviate the notation L[S, S] as L[S].

Recall that for a measure µ over all subsets of a ground set Y ≜ [n], µ’s generating polynomial is
the multi-affine function over Cn defined by

Pµ(z1, . . . , zn) =
∑

S⊆Y
µ(S)

∏
i∈S

zi

Definition 1 (Strongly Rayleigh [11]). A measure µ over the subsets of [n] := {1, . . . , n} is SR
if its generating polynomial Pµ ∈ C[z1, . . . , zn] is real stable, i.e. Pµ(z1, . . . , zn) ̸= 0 whenever
Im(zj) > 0 for 1 ≤ j ≤ n.

In order to calibrate the relative influence of the diversity and quality of a set S on the probability an
SR measure assigns to S, we introduce the family of Exponentiated Strongly Rayleigh measures.

Definition 2 (Exponentiated SR measure). A measure µ over 2[n] is Exponentiated Strongly
Rayleigh (ESR) if there exists an SR measure ν over 2[n] and a power p ≥ 0 such that µ(S) ∝ ν(S)p.

The parameter p serves to control the quality/diversity tradeoff by sharpening (p > 1) or smoothing
out (p < 1) the variations of the ground SR measure (see Figure 1). A natural question is then to
understand how this additional parameter impacts the negatively associated properties of the ESR.
Recall that a fundamental property of SR measures lies in the fact that they are negatively associated:
for two increasing functions F,G over 2[n] that depend on a disjoint set of coordinates, an SR
measure µ verifies the following inequality [11, Theorem 4.9]:

Eµ[F ] Eµ[G] ≥ Eµ[FG]. (2.1)

Our first result states that the additional modularity enabled by the exponent parameter can break
Strong Rayleighness; as a consequence, we have no immediate guarantee that ESRs verify Eq. (2.1).
Proposition 1. There exist ESR measures that are not SR.

Conversely, some ESR measures remain SR for any p: if µ is a DPP parametrized by a block-
diagonal kernel with 2× 2 blocks, ν = αµp is also a DPP, and so SR and ESR by construction. The
next theorem guarantees the existence of non-trivial ESR measures which are also SR.
Theorem 1. There exists ϵ > 0 such that ∀p ∈ [1 − ϵ, 1 + ϵ], ∀n ∈ N, there exists a non-trivial
matrix L ∈ Pn such that the E-DPP distribution defined by ν(S) ∝ det(L[S, S])p is SR.

Hence, ESRs are not guaranteed to be SR but may remain so. Due to their log-submodularity, they
nonetheless will verify the so-called negative latice condition µ(S ∩ T )µ(S ∪ T ) ≤ µ(S)µ(T ), and
so retain negative dependence properties.

We now show that ESRs nonetheless have a fundamental advantage over standard log-submodular
functions: although the intractability of their partition function precludes exact sampling algorithms,
their closed form as the exponentiation of an SR measure can be leveraged to take advantage of the
recent result [31] on fast-mixing Markov chains for SR measures.

1i.e. A ≻ B ⇐⇒ (A−B) ∈ Pn.
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3 Sampling from ESR measures
In the general case, the normalization term of an ESR is NP-hard to compute, precluding exact
sampling algorithms. In this section, we propose instead two MCMC sampling algorithms whose
key idea lies in exploiting the explicit relation ESR measures have to SR measures.

We begin by introducing the notion of r-closeness, which serves as a measure of the proximity
between to distributions µ and ν over subsets. In practice, r-closeness will allow us to quantify how
close an ESR measure is to being SR, and inform our bounds on mixing time.

Definition 3 (r-closeness). Let µ, ν be measures over 2[n] and let p ≥ 0. We say that ν is r-close to
µ if we have for all S ⊆ [n],

ν(S) ̸= 0 and µ(S) ̸= 0 =⇒ r−1 ≤ ν(S)/µ(S) ≤ r

where we allow r =∞. We additionally write r(µ, ν) = min{r ∈ R ∪ {∞} : ν is r-close to µ}.
Remark 1. If r(µ, ν) <∞, ν is absolutely continuous wrt. µ: µ(S) = 0 =⇒ νp(S) = 0.

The following result establishes that for any ESR measure ν, there exists an SR measure µ which is
r-close to ν with r <∞. This result is the cornerstone of the sampling algorithms we derive, as we
show that we can use an r-close SR measure as proposal to efficiently sample from an ESR measure.

Proposition 2. Let µ be an SR measure over 2[n], and define ν to be the ESR measure such that
ν(S) ∝ µ(S)p. Then

r(µ, ν) ≤ max
S∈supp(ν)

[
µ(S)−|p−1|

]
<∞.

In order to sample from an ESR distribution ν, we now generalize existing MCMC algorithms for
SR measures; we bound the distance to stationarity of the the chain’s current state by comparing it
to the distance to stationarity of a similar chain sampling from an SR measure µ, and leveraging the
r-closeness r(µ, ν).

3.1 Approximate samplers for ESR measures

Before investigating MCMC samplers, one may first wonder if rejection sampling might be suffi-
cient: sample a set S from a proposal distribution µ, and accept with probability νp(S)/Mµ(S),
where M ≥ maxS µ(S)/νp(S). Unfortunately, the rejection sampling scaling factor M cannot be
computed — although it can be bounded by r(µ, νp) — leading us to prefer MCMC samplers [6].

We begin by analyzing the standard independent Metropolis–Hastings sampler [26, 38], using an SR
measure µ as a proposal: we sample an initial set S from µ via a fast-mixing Markov chain, then
iteratively swap from S to a new set S′ with probability

Pr(S → S′) = min

{
1,

ν(S′)µ(S)

ν(S)µ(S′)

}

Algorithm 1 Proposal-based sampling

Input: SR proposal µ, ESR measure ν and SR measure ρ s.t. ν = αρp

Draw S ∼ µ
while not mixed do

S′ ∼ µ

S ← S′ w.p. min
{
1, ν(S′)µ(S)

ν(S)µ(S′)

}
= min

{
1, µ(S)

µ(S′)

(
ρ(S′)
ρ(S)

)p}
return S

Algorithm 1 relies on the fact that we can compute ν(S′)/ν(S) as (ρ(S′)/ρ(S))p: we do not re-
quire knowledge of ν’s partition function. This sampling method is valid as soon as ν is absolutely
continuous with regards to the proposal µ; Proposition 2 guaranteed the existence of such measures.

If the ESR measure ν is k-homogeneous (i.e. ν assigns a non-zero probability only to sets of size k),
we can instead sample from ν via Algorithm 2: we randomly sample S ⊆ [n] and switch an element
u ∈ S for v ̸∈ S if this improves the probability of S.
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Algorithm 2 Swap-chain sampling

Input: k-homogeneous ESR measure ν s.t. ν = αρp with ρ SR
Sample S ∼ Unif(N) such that |S| = k
while not mixed do

Sample u, v ∈ (S × [N ] \ S) uniformly at random

S ← S ∪ {u} \ {v} w.p. min
{
1, ν(S∪{u}\{v})

ν(S)

}
= min

{
1,
(

ρ(S∪{u}\{v})
ρ(S)

)p}
return S

The key to extending Algorithm 2 to non-homogeneous ESR measures is similar to the approach
taken by Li et al. [31] for SR measures, and relies on leveraging the symmetric homogenization νsh
of ν over 2[2n] defined by

νsh : S ∈ 2[2n] →

{
ν(S ∩ [n])

(
n

|S∩[n]|
)−1

if |S| = n

0 if |S| ̸= n

If ν ∝ µp, νsh is absolutely continuous with regards to µsh. A simple calculation further shows that
r(µsh, µsh) = r(µ, ν), and so to sample S from ν, it suffices to sample T of size n from νsh using
Algorithm 2, and then output S = T ∩ [n].

Hence, although we cannot in the general case sample from an ESR measure exactly (unlike many
SR measures), being able to evaluate an ESR measure’s unnormalized density function allows us
to leverage MCMC algorithms for approximate sampling. We now focus on bounding the mixing
times of these algorithms.

3.2 Bounds on mixing time for the proposal and swapchain algorithms

Writing ν′t,S the distribution generated by a Markov chain sampler after t iterations and initialization
set S, the mixing time τS(ϵ) measures the number of required iterations of the Markov chain so that
ν′t,S is close enough (in total variational distance) to the true ESR measure ν:

τS(ϵ) ≜ min{t : ∥ν′t,S − ν∥TV ≤ ϵ}
It is easy to see from the above equation that the mixing time of a chain depends on how close
the distribution generating the initialization set S is to the target distribution µ. We now show this
explicitly for the two algorithms derived above, obtaining bounds on τS that directly depend on the
r-closeness of the target ESR measure ν and an SR measure µ.

For Algorithm 1, the mixing time explicitly depends on the quality of the proposal distribution.
Theorem 2 (Alg. 1 mixing time). Let µ, ν be measures over 2[n] such that µ is SR and ν is ESR.
Sampling from ν via Alg. 1 with µ as a proposal distribution has a mixing time τ(ϵ) such that

τS(ϵ) ≤ 2r(µ, νp) log
1

ϵ
.

For the swapchain algorithm (Alg. 2), we derive a bound on the mixing time by comparing to a
result by [5] which shows fast sampling for SR distributions over subsets of a fixed size.
Theorem 3 ( Alg. 2 mixing time). Let ν be a k-homogeneous ESR measure over 2[n]. The mixing
time for Alg. 2 with initialization S is bounded in expectation by

τS(ϵ) ≤ inf
µ∈SR

2nk r(µ, ν)2 log 1
ϵν(S)

The above bound depends on the closest SR distribution to the target measure ν. Combined with
Prop. 2, Thm. 3 provides a simple upper bound to the mixing time of the swapchain algorithm.
Corollary 1 (Non-homogeneous swapchain mixing time). Let ν be a non-homogeneous ESR mea-
sure over 2[n]. The mixing time for the generalized swapchain sampler to sample from ν with
initialization S ⊆ [2n] is bounded in expectation by

τS(ϵ) ≤ inf
µ∈SR

4n2 r(µ, ν)2 log 1
ϵνsh(S)

As a Markov chain’s applicability closely depends on its mixing time, a crucial task in sampling
from ESR measures lies in finding an r-close SR distribution with small r.
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3.3 Specific bounds for r-closeness

We now derive explicit mixing time bounds for ESR measures ν generated by two popular classes
of SR measures: DPPs, in their usual form as well as their k-homogeneous form (k-DPPs), and Dual
Volume Sampling (DVS). As Theorem 2 and Theorem 3 provide mixing time bounds that depend
explicitly on r(µ, ν), this section focuses on upper bounding r(µ, ν). To the extent of our knowledge,
the results below are the first for either of these two classes of ESR distributions.
Theorem 4 (E-DVS closeness bounds). Let n ≥ k ≥ m and let X ∈ Rm×n be a maximal-rank
matrix. Let µ be the Dual-Volume Sampling distribution over 2[n] for sets of size k:

µ : S ⊆ [n]→
{
0 if |S| ̸= k

µ(S) ∝ det(X[:, S]X[:, S]⊤) if |S| = k

Let p > 0 and ν be the ESR measure induced by µ and p; let MinVol(X,S) be the smallest non-zero
minor of degree m of X[:, S]. Then

r(µ, ν) ≤
(
n−m

k −m

)|1−p|(
k

m

)−|1−p|

det(XX⊤)|1−p|MinVol(X,S)
−2|1−p|

Theorem 5 (E-DPP closeness bound). Let µ be the distribution induced by a DPP with kernel L ⪰ 0
and ν be the E-DPP such that ν(S) ∝ det(L[S])p. Let λ1 ≤ · · · ≤ λn be the ordered eigenvalues
of L. Then,

r(µ, νp) ≤
∏n

i=1
(1 + λi)

|1−p|
∏

λi<1
λ
−|1−p|
i .

Theorem 6 (E-k-DPP closeness bound). Let µ be the distribution over 2[n] induced by a k-DPP
(k ≤ n) with kernel L, and let ν be the induced ESR measure with power p > 0. Then

r(µ, ν) ≤ ek(λ1, . . . , λn)
|1−p|

∏k

i=1
λ
−|1−p|
i .

where ek the k-th elementary symmetric polynomial.

One easily shows that the values r(µ, ν) we derive above for (k-) DPPs are loosely lower-bounded
by κ|1−p|, where κ is the condition number of the kernel matrix L. However, it is possible to obtain
a closer SR distribution to ν ∝ det(L)p than the baseline choice of the DPP with kernel L: indeed,
as L is positive semi-definite, we can also consider a DPP parametrized by kernel Lp.

For the rest of this section, we define µ as the SR measure corresponding to the DPP with kernel
Lp: µ(S) = det(Lp[S])/ det(I + Lp), and ν as the ESR measure such that µ(S) ∝ det(L[S])p.
Note that ν remains absolutely continuous with regard to µ. In this setting, upper bounding r(µ, ν)
proves to be significantly more difficult, and is the focus of the remainder of this section. We first
recall a useful expansion of the determinant of principal submatrices, fundamental to deriving the
bounds below and potentially of more general interest.
Lemma 1 (Shirai and Takahashi [44, Lemma 2.9]). Let H be an n × n Hermitian matrix with
eigenvalues λ1, . . . , λn. There exists a 2n × 2n symmetric doubly stochastic matrix Q = [QSJ ]
indexed by subsets S, J of [n] such that

det(H[S]) =
∑

J⊆[n],|J|=|S|
QSJ

∏
i∈J

λi.

Q can be chosen to depend only on the eigenvectors of H and to satisfy QSJ = 0 for |S| ̸= |J |.

The above lemma allows us to bound det(Lp[S])
det(L[S]p) in terms of the generalized condition number of L.

Definition 4 (Generalized condition number). Given a matrix L ∈ Pn with eigenvalues λ1, . . . , λn,
we define its generalized condition number of order k as

κk = (λ1 · · ·λk)(λn · · ·λn−k)
−1.

Note that κk is the usual condition number of the k-th exterior power L∧k (in particular κk ≥ κk).

Given the generalized conditioned number, Lemma 1 combined with the power-mean inequality [45]
(see App. D) suffices to bound the gap between volumes generated by E-DPPs and DPPs:
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Theorem 7. Let µ be the distribution induced by a DPP with kernel Lp, and ν be the corresponding
E-DPP such that ν ∝ det(L[S])p. Then r(µ, ν) ≤ r(κ⌊n/2⌋, p) where r(κ, p) is defined by

r(κ, p) =


(

p(κ−1)
κp−1

)p(
(1−p)(κ−1)

κ−κp

)1−p

for 0 < p < 1(
κp−1
p(κ−1)

)p(
(p−1)(κ−1)

κp−κ

)p−1

for p > 1

Corollary 2. Let µ be the distribution induced by a k-DPP with kernel Lp, and ν be the correspond-
ing ESR measure such that ν(S) ∝ det(L[S])p. Then r(µ, ν) ≤ r(κk, p).

As shown in Figure 4 (App. D), the upper bound 7 grows slower than κ: this shows that the µ(S) ∝
det(Lp[S]) is a closer SR distribution to an E-DPP with kernel L than the E-DPP’s generating SR
distribution, and leads to finer mixing time bounds.

Note that the per-iteration complexity of both algorithms must also be taken into account when
choosing a sampling procedure: for E-DPPs, despite Alg. 1’s smaller mixing time, Alg. 2 is more
efficient in cases when n large due to the comparative costs of each sampling round.

4 Experiments
To evaluate the empirical applications of ESR measures, we evaluate E-DPPs (DPPs are by far the
most popular SR measure in machine learning) on a variety of machine learning task. In all cases
where we use the proposal MCMC sampler (Alg. 1), we use the DPP with kernel Lp as a proposal.

4.1 Evaluating mixing time
We begin our experiments by empirically evaluating the mixing time of both algorithms. We mea-
sure mixing using the classical Potential Scale Reduction Factor (PSRF) metric [13]. As the PSRF
converges to 1, the chain mixes. In the following experiments, we report the mixing time (number
of iterations) necessary to reach a PSRF of 1.05, as well as the runtime (in seconds) to convergence,
averaged over 5 iterations; we use matrices with a fixed κk across all mixing time experiments.
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Figure 2: Mixing and sampling time for E-k-DPPs as a function of the set size k. In both cases, the mixing time
grows linearly with k; although the mixing time for the proposal algorithm is an order of magnitude smaller
than for the swapchain algorithm, the latter samples faster due to the per-iteration cost of each transition step.

The mixing time for proposal-based sampling is an order of magnitude smaller than swap-chain
sampling; this is in line with the bounds we provide in Theorems 2 and 3. However, this does
not translate into faster runtimes: indeed, the per-iteration complexity of proposal-based sampling is
significantly higher than for the swapchain algorithm, as Alg. 1 samples from a DPP at each iteration.
The evolution of mixing and wall clock times as a function of N is provided in Appendix E.

4.2 Anomaly detection
We now focus on applications for E-DPPs; we begin by evaluating the use of E-DPPs for outlier
detection. As increasing p hightens the model’s sensitivity to diversity, we expect p > 1 to provide
better outlier detection. To our knowledge, this is the first application of DPPs to outlier detection,
and so our goal for this experiment is not to improve upon state-of-the-art results, but to compare
the performance of (E-)DPPs for various values of p to standard outlier detection algorithms.

Experimentally, we detect an outlier via the following approach: given a dataset of n points and an
E-DPP with an RBF kernel built from the data (bandwidth β = 100), we sample n

5 subsets of size 50
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and report as outliers points that appear at least nε times, where ε is a tunable parameter (hence, if
we were doing uniform sampling, each point in the dataset would be sampled on average 10 times).

We detect outliers on three public datasets: the UCI Breast Cancer Wisconsin dataset [46] modified
as in [24, 28] as well as the Letter and Speech datasets fom [39]. We also report the performance of a
selection of standard outlier detection algorithms whose reported performance in [24] is competitive
with other outlier detection algorithms: Local Outlier Factor (LOF) [12], k-Nearest Neighbor (k-
NN) [7], Histogram-based Outlier Score (HBOS) [23], Local Outlier Probability (LoOP) [28] and
unweighted Cluster-Based Local Outlier Factor (uCBLOF) [3, 24].

p 0.5 1 2 LOF∗ k-NN∗ HBOS∗ LoOP∗ uCBLOF∗

Cancer 0.952± 0.018 0.962± 0.004 0.965± 0.001 0.982 ± 0.002 0.979 ± 0.001 0.983 ± 0.002 0.973 ± 0.012 0.950 ± 0.039
Letter 0.780± 0.013 0.820± 0.003 0.847± 0.002 0.867 ± 0.027 0.872 ± 0.018 0.622 ± 0.007 0.907 ± 0.008 0.819 ± 0.023
Speech 0.455± 0.007 0.439± 0.011 0.445± 0.002 0.504 ± 0.022 0.497 ± 0.010 0.471 ± 0.003 0.535 ± 0.034 0.469 ± 0.003

Table 1: AUC (mean + standard deviation) for E-DPPs and standard outlier detection algorithms. As expected,
we see that a higher exponent leads to a stronger preference for diversity and hence a better outlier detection
scheme. Only LoOP and LOF consistently outperform E-DPPs.

Results are reported in Table 1; as expected, we see that larger values of p (in this case, p = 2) are
more sensitive to outliers, and provide better models for outlier detection.

4.3 E-DPPs for the Nyström method
As a more standard application of DPPs, we now investigate the use of E-DPPs for kernel reconstruc-
tion via the Nyström method [40, 47]. Given a large kernel K, the Nyström method selects a subset
C of columns (“landmarks”) of K and approximates K as K[:, C]K†[C,C]K[C, :]. Unsurprisingly,
DPPs have successfully been applied to the landmark selection for the Nyström approach [2, 30].
We show here that E-DPPs further improve upon the recent results of [30] for kernel reconstruction.

We apply Kernel Ridge Regression to 3 regression datasets: Ailerons, Bank32NH, and Machine
CPU2. We subsample 4,000 points from each dataset (3,000 training and 1,000 test) and use an
RBF kernel and choose the bandwidth β and regularization parameter λ for each dataset by 10-fold
cross-validation. Results are averaged over 3 random subsets of data, using the swapchain sampler
initialized with k-means++ and run for 3000 iterations.
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(a) Ailerons dataset
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(b) Bank32NH dataset
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Figure 3: Prediction error on regression datasets; we compare various E-DPP models to uniform sampling
(“unif”) as well as leverage and regularized leveraged sampling (“lev” and “reglev”). On all datasets, the E-
DPPs achieve the lowest error, with the largest exponent p = 2 performing markedly better than other methods.

We evaluate the quality of the sampler via the prediction error on the held-out test set. Figure 3
reports the results. Consistently across all datasets, p = 2 outperforms all other samplers in terms
of the prediction error, in particular when only sampling a few landmarks. Interestingly, we also see
that the reconstruction error tends to be smaller when p = 1

2 (see Appendix F).

5 Conclusion and extensions
Many machine learning problems have been shown to benefit from the negative dependence proper-
ties of Strongly Rayleigh measures: measures based on elementary symmetric polynomials – includ-
ing (dual) volume sampling – have been applied to experimental design; DPPs have been applied

2http://www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html
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successfully to fields ranging from automatic summarization to minibatch selection and neural net-
work pruning. However, tuning the strength of the quality/diversity tradeoff of SR measures requires
significant effort.

We introduced Exponentiated Strongly Rayleigh measures, an extension of Strongly Rayleigh mea-
sures which augment standard SR measures with an exponent p, allowing for straightforward tuning
of the the quality-diversity trade-off of SR distributions. Intuitively, p controls how much priority
should be given to diversity requirements. We show that although ESR measures do not necessarily
remain SR, but certain distributions lie at the intersection of both classes.

Despite their intractable partition function, ESR measures can leverage existing fast-mixing Markov
chains for SR measures, enabling finer bounds than those obtained for the broader class of log-
submodular models. We derive general-purpose mixing bounds based on the distance from the target
distribution ν to an SR distribution µ; we then show that these bounds can be further improved by
specifying a carefully calibrated SR proposal distribution µ, as is the case for Exponentiated DPPs.

We verified empirically that ESR measures and the algorithms we derive are valuable modeling
tools for machine learning tasks, such as outlier detection and kernel reconstruction. Finally, let us
note that there remain several theoretical and practical open questions regarding ESR measures; in
particular, we believe that further specifying the class of ESR measures that also remain SR may
provide valuable insight into the study of negatively associated measures.

Finally, one easily verifies that given µ SR and a collection of i.i.d. subsets S = {S1, . . . , Sm}, the
MLE problem that finds the best p > 0 to model S as being sampled from an ESR ν ∝ µp is convex:

argmaxp>0

p

m

∑m

k=1
logµ(Si)− log

(∑
S⊆[n]

µ(S)p
)
. (5.1)

As such, standard convex optimization algorithms can be leveraged to select p, potentially after
leaning a parametrization of µ.
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