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1 Introduction

We first summarize the key equations and algorithms of Propagation and Optimization based Deep
Model (PODM) in Section 2. Next, the practical calculable form of optimality error which appeared
in optimality module is deduced in Section 3. Finally, necessary definitions and the proofs of PODM
are provided in Section 4.

2 PODM for Nonconvex Optimization

We consider the following task-related variational model

min
x

Φ(x) := f(x) + g(x), (1)

where f denotes the loss term and g is related to the regularization term. Then the following quadratic
penalized energy is proposed:

min
x

Φ(x) + d(x,xA)− 〈x, ε〉 = min
x

Knowledge︷ ︸︸ ︷
f(x)︸︷︷︸

Fidelity

+ g(x)︸︷︷︸
Designed prior

+

Data︷ ︸︸ ︷
d(x,xA)︸ ︷︷ ︸

Learned prior

−〈x, ε〉︸ ︷︷ ︸
Error

. (2)

where xA = A(x,θA) denotes the output of deep networks A, d(x,xA) is the distance function
which intents to introduce the output of network into the propagation module, and ε denotes the error
corresponding to Eq. (1).

We design propagation module by optimizing the following energy:

xF = F(xA;θH) := arg min
x
{f(x) + d(x,xA)} . (3)

Thus, we formally formulate our propagation module P in the l-th stage with learnable parameters
ϑl = {θlA,θlH} as

x̃l = P(xl−1;ϑl) := F
(
A
(
xl−1;θlA

)
;θlH

)
. (4)

We also introduce the optimality module with proximal feedback to guarantee the theoretic conver-
gence. We provide a practical calculable form of xlG at the l-th stage as following:

xlG ∈ G(x̃l; γl) := proxγlg(x̃
l − γl(∇f(x̃l) + µl(x̃l − xl−1))), (5)
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Algorithm 1 Optimizing Eq. (1) via PODM.

Require: The input x0, the parameters ϑl = {θlA,θlH}, cl < µl/2, and γl < 1/Lf with Lipschitz
modulus Lf .

1: while not converged do
2: // Propagation Module
3: xlA = A(xl−1;θlA),
4: x̃l = F(xlA;θlH),
5: // Optimality Module
6: xlG ∈ proxγlg(x̃

l − γl(∇f(x̃l) + µl(x̃l − xl−1))),
7: if ‖ψ(εl)‖ ≤ cl‖xlG − xl−1‖ then
8: xl = xlG ,
9: else

10: xl ∈ proxγlg(x
l−1 − γl(∇f(xl−1))).

11: end if
12: end while

Algorithm 2 Relaxed PODM.

Require: The input x0, the learnable parameters ϑl = {θlA,θlH}, and γl < 1/Lf with Lipschitz
modulus Lf .

1: while not converged do
2: // Propagation Module
3: xlA = A(xl−1;θlA),
4: x̃l = F(xlA;θlH),
5: // Optimality Module
6: xl ∈ G(x̃l; γl).
7: end while

where γl is the step size. In our assumption, xlG is one of the optimal solutions of Eq. (2), we can
deduce that

εl = ∇f(xlG) +∇d(xlG ,x
l
A) + uxl

G
, where uxl

G
∈ ∂g(xlG), (6)

by calculating the first-order optimality condition. Then, we build the following optimality error:

‖ψ(εl)‖ ≤ cl‖xlG − xl−1‖, (7)

where ψ(εl) = εl+µl(xlG−xl−1)/2−H(xl−1 +xlG−2xlA) is the error function and cl is a positive
constant to reveal our tolerance of the inexactness at the l-th stage. Finally, we define our optimality
module by the judging mechanism with proximal feedback as following:

O(x̃l,xl−1; γl) :=

{
G(x̃l) if Eq. (7) is satisfied,
proxγlg(x

l−1 − γl(∇f(xl−1))) otherwise. (8)

Finally, we present the complete PODM based nonconvex optimization in Alg. 1. Relaxing the
theoretical constraint, we develop a plug-and-play, collaborative, interpretable, and end-to-end deep
learning framework RPODM as shown in Alg. 2.

3 Practical Calculable Form of Optimality Error

In this section, we offer practical calculable form of ψ(εl) appeared in the optimality error Eq. (7). In
fact, the sub-differential uxl

G
included in εl and ψ(εl) is challenging to calculate, thus a calculable

form of uxl
G

or ψ(εl) is necessary for executing our algorithm. To obtain the calculable form, we
first consider the practical calculation of xlG at the l-th stage, i.e.,

xlG ∈ proxγlg(x̃
l − γl(∇f(x̃l) + µl(x̃l − xl−1))). (9)

On the other hand, from the definition of εl in Eq. (6), we have

uxl
G

= εl −∇f(xlG)−∇d(xlG ,x
l
A) = εl −∇f(xlG)− 2H(xlG − xlA) ∈ ∂g(xlG).
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By the property of proximal operation, we have

0 ∈ γl
(
∂g(xlG)− uxl

G

)
= γl∂g(xlG) + xlG −

(
xlG + γluxl

G

)
⇔ xlG ∈ arg minx g(x) + 1

2γl ‖x−
(
xlG + γluxl

G

)
‖2

⇔ xlG ∈ proxγlg

(
xlG + γluxl

G

)
⇔ xlG ∈ proxγlg

(
xlG − γl(∇f(xlG) + 2H(xlG − xlA)) + γlεl

)
.

(10)

Combing Eqs. (9) with (10), we easily obtain the calculable form of ψ(εl) as

ψ(εl) =
1

γl
(x̃l − xlG)− µl

2
(2x̃l − xlG − xl−1) + H(xlG − xl−1) +∇f(xlG)−∇f(x̃l).

4 Proofs of PODM

Before proving our main theory, we first give some mathematical definitions, which will be necessary
in our analysis.

Definition 1. The following definitions are standard in variational analysis and optimization. Please
also refer to [1, 2] for more detailed introductions.

1. A function f : Rn → (−∞,+∞] is L-Lipschitz smooth if f is differentiable and there exists
L > 0 such that

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖, ∀ x,y ∈ Rn.

2. f is said to be proper and lower semi-continuous if its domain dom(f) 6= ∅, where
dom(f) := {x ∈ Rn : f(x) < +∞} and lim infx→y f(x) ≥ f(y) at any point
y ∈ dom(f).

3. f is said to be coercive if f is bounded from below and f →∞ if ‖x‖ → ∞, where ‖ · ‖ is
the `2-norm.

4. f is called semi-algebraic2 if its graph {(x, z) ∈ Rn+1 : f(x) = z} is a semi-
algebraic set. Here we define the set S ⊆ Rn as a semi-algebraic set if it satisfies
S =

⋃p
j=1

⋂q
i=1 {x ∈ Rn : rij(x) = 0 and hij(x) < 0}, where rij , hij : Rn → R are

real polynomial functions.

5. A point x∗ whose subdifferential ∂f(x∗) contains 0 are called the critical point of f .

Proposition 1. Suppose that the optimality error in Eq.(7) (i.e., ‖ψ(εl)‖ ≤ cl‖xlG−xl−1‖) is satisfied,
then we have Φ(xlG) ≤ Φ(xl−1)−

(
µl/4− cl2/µl

)
‖xlG − xl−1‖2. In contrast, if the inequality in

Eq. (7) is not satisfied and thus the variable is updated by xl = proxγlg(x
l−1 − γl(∇f(xl−1))).

Then we have Φ(xl) ≤ Φ(xl−1) −
(
1/(2γl)− Lf/2

)
‖xl − xl−1‖2, where Lf is the Lipschitz

modulus of∇f(x).

Proof. To illustrate the importance of our optimality error, we first prove the unequal relationship of
Φ(xlG) and Φ(xl−1). Considering the definition of distant function d(x,xlA), we have

d(x,xlA) = h(x)− h(xlA)− 〈∇h(xlA),x− xlA〉 =
〈
x− xlA,H(x− xlA)

〉
.

Thus, the quadratic penalized energy Eq. (2) in l-th stage can be rewrite as

xlG ∈ arg min
x
g(x) + f(x) + d(x,xlA)− 〈x, εl〉

= arg min
x
g(x) + f(x) + 〈x− xlA,H(x− xlA)〉 − 〈x, εl〉

= arg min
x
g(x) + f(x) + 〈x− xlA,H(x− xlA)〉 − 〈x− xl−1, εl〉,

(11)

2Actually, a variety of functions in application areas, including `0-norm, rational `p-norms (e.g., 0 < p ≤ 1
and p is rational) and their finite sums or products are all semi-algebraic functions.
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when xlG is an exact solution of Eq. (2). Based on the above deduction, we easily obtain

g(xlG) + f(xlG) + 〈xlG − xlA,H(xlG − xlA)〉+ µl

2 ‖x
l
G − xl−1‖2

−〈xlG − xl−1, εl + µl

2 (xlG − xl−1)〉
≤ g(xl−1) + f(xl−1) + 〈xl−1 − xlA,H(xl−1 − xlA)〉
⇒ Φ(xlG) ≤ Φ(xl−1)− µl

2 ‖x
l
G − xl−1‖2 + 〈xl−1 − xlG ,H(xl−1 + xlG − 2xlA)〉

+〈xlG − xl−1, εl + µl

2 (xlG − xl−1)〉
≤ Φ(xl−1)− µl

2 ‖x
l
G − xl−1‖2 + 〈xlG − xl−1, εl + µl

2 (xlG − xl−1)−H(xlG + xl−1 − 2xlA)〉
= Φ(xl−1)− µl

2 ‖x
l
G − xl−1‖2 + 〈xlG − xl−1, ψ(εl)〉

≤ Φ(xl−1)− µl

2 ‖x
l
G − xl−1‖2 + cl‖xlG − xl−1‖2

≤ Φ(xl−1)−
(
µl

2 − c
l
)
‖xlG − xl−1‖2,

(12)
in which the penultimate inequality holds under the designed optimality error in Eq. (7) is satisfied.
Thus we prove that

Φ(xlG) ≤ Φ(xl−1)−
(
µl

2
− cl

)
‖xlG − xl−1‖2,

and can deduce that Φ(xlG) ≤ Φ(xl−1) when µl > 2cl.

Then we derive the relationship of Φ(xl) and Φ(xl−1) under Eq. (7) is fail. From the optimization
module in Eq. (8), we have

xl ∈ proxγlg(x
l−1 − γl(∇f(xl−1)))

= arg min
x
g(x) + 〈∇f(xl−1),x− xl−1〉+ 1

2γl ‖x− xl−1‖2, (13)

which means that

g(xl) + 〈∇f(xl−1),xl − xl−1〉+ 1
2γl ‖xl − xl−1‖2 ≤ g(xl−1). (14)

Moreover, we also have

f(xl) ≤ f(xl−1) + 〈∇f(xl−1),xl − xl−1〉+
Lf

2 ‖x
l − xl−1‖2, (15)

since of f is Lipschitz smooth and Lf is the Lipschitz moduli of∇f . Combining Eqs. (14) and (15),
we can obviously obtain

Φ(xl) ≤ Φ(xl−1)−
(

1
2γl − Lf

2

)
‖xl − xl−1‖2. (16)

When γl < 1/Lf is established, we have Φ(xl) ≤ Φ(xl−1).

By now, we deduce all conclusions in this Proposition.

Proposition 2. Suppose x∗ is any accumulation point of sequence {xl}l∈N generalized by PODM,
then there exists a subsequence {xlj}j∈N such that lim

j→∞
xlj = x∗, and lim

j→∞
Φ(xlj ) = Φ(x∗).

Proof. From Proposition 1, we have Φ(xl) = Φ(xlG) ≤ Φ(xl−1) when both optimality error and
µl > 2cl are satisfied. Otherwise, we directly have the relationship of the variational energy
Φ(xl) ≤ Φ(xl−1) while γl < 1/Lf . Thus we find that {Φ(xl)}l∈N is a non-increasing sequence,
i.e., for any l ∈ N,

Φ(xl) ≤ Φ(xl−1) ≤ . . .Φ(x0).

Since both f and g are proper, we have Φ(xl) ≥ inf Φ > −∞ and deduce {Φ(xl)}l∈N is bounded.
Thus {Φ(xl)}l∈N is a convergent sequence, i.e.,

lim
l→∞

Φ(xl) = Φ∗, (17)

which Φ∗ is the limit value. Furthermore, we also deduce that the variable sequence {xl}l∈N is
bounded and have accumulation points since Φ is coercive. Assuming Ω is the set of accumulation
points, there exists a subsequence {lj} ⊂ N such that lim

j→∞
xlj = x∗ for any x∗ ∈ Ω.
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Next, we will prove lim
l→∞

Φ(xlj ) = Φ(x∗). Following the calculation of xlG in Eq. (11), we have

g(xl) + f(xl) + 〈xl − xlA,H(xl − xlA)〉 − 〈xl, εl〉
≤ g(x∗) + f(x∗) + 〈x∗ − xlA,H(x∗ − xlA)〉 − 〈x∗, εl〉
⇒ g(xl) ≤ g(x∗) + f(x∗)− f(xl)− 〈x∗ − xl, εl −H(x∗ + xl − 2xlA)〉,

(18)

when the optimality error is satisfied. Otherwise, following Eq. (13), we have

g(xl) + 〈∇f(xl−1),xl − xl−1〉+ 1
2γl ‖xl − xl−1‖2

≤ g(x∗) + 〈∇f(xl−1),x∗ − xl−1〉+ 1
2γl ‖x∗ − xl−1‖2. (19)

Define N1 = {l | ‖ψ
(
εl
)
‖ ≤ cl‖xlG − xl−1‖}, and N2 = {l | N− N1}, we have{

g(xl) ≤ g(x∗) + f(x∗)− f(xl)− 〈x∗ − xl, εl −H(x∗ + xl − 2xlA)〉 if l ∈ N1,
g(xl) ≤ g(x∗) + 〈∇f(xl−1),x∗ − xl〉+ 1

2γl 〈x∗ − xl,x∗ + xl − 2xl−1〉 otherwise.
(20)

By taking lim sup on the above inequality, we deduce lim sup
j→∞

g(xlj ) ≤ g(x∗) when l = lj . On the

other hand, since g is lower semi-continuous and xlj → x∗, it follows that lim inf
j→∞

g(xlj ) ≥ g(x∗).

Thus, we have lim
j→∞

g(xlj ) = g(x∗). Considering the continuity of f yields lim
j→∞

f(xlj ) = f(x∗),

thus we conclude
lim
j→∞

Φ(xlj ) = Φ(x∗). (21)

Theorem 1. (Converge to the Critical Point of Eq. (1)) Suppose f is proper and Lipschitz smooth, g
is proper and lower semi-continuous, and Φ is coercive. Then the output of PODM (i.e., {xl}l∈N)
satisfies: 1. The limit points of {xl}l∈N (denoted as Ω) is a compact set; 2. All elements of Ω are the
critical points of Φ; 3. If Φ is a semi-algebraic function, {xl}l∈N converges to a critical point of Φ.

Proof. It is obvious that Ω is a compact set since the limit points of {xl}l∈N is closed and bounded
from the proof of Proposition 2.

Next, we will prove that all elements of Ω are the critical points of Φ. Recalled the proof of
Propositions 1 and 2, we first find that limj→∞ Φ(x∗) = Φ∗ for any x∗ ∈ Ω from Eqs. (17) and (21).
We also find that

(
µl

2 − c
l
)
‖xl − xl−1‖2 ≤ Φ(xl−1)− Φ(xl) if l ∈ N1,(

1
2γl − Lf

2

)
‖xl − xl−1‖2 ≤ Φ(xl−1)− Φ(xl) otherwise.

(22)

Summing over l, we further have

min
l∈N
{µ

l

2 − c
l, 1

2γl − Lf

2 }
∞∑
l=1

‖xl − xl−1‖2

≤ min
l∈N1

{µ
l

2 − c
l}
∑
l∈N1

‖xl − xl−1‖2 + min
l∈N2

{ 1
2γl − Lf

2 }
∑
l∈N2

‖xl − xl−1‖2

≤
∑
l∈N1

(µ
l

2 − c
l)‖xl − xl−1‖2 +

∑
l∈N2

( 1
2γl − Lf

2 )‖xl − xl−1‖2

≤
∑
l∈N1

(
Φ(xl−1)− Φ(xl)

)
+
∑
l∈N2

(
Φ(xl−1)− Φ(xl)

)
=
∞∑
l=1

(
Φ(xl−1)− Φ(xl)

)
= Φ(x0)− Φ∗.

(23)

The above inequality implies ‖xl − xl−1‖ → 0 when l→∞. Considering the sub-differential ∂Φ,
we have

‖∂Φ(xl)‖ = ‖εl −∇d(xl,xlA)‖
= ‖ψ

(
εl
)
− µl

2 (xl − xl−1)−H(xl − xl−1)‖
≤ (cl + µl

2 + ρH)‖xl − xl−1‖.
(24)
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under the optimality error in Eq. (7) holds. Here, ρH is the spectral norm of H. Otherwise, from
Eq. (13), we deduce that

‖∂Φ(xl)‖ = ‖∇f(xl)−∇f(xl−1)− 1

γl
(xl − xl−1)‖. (25)

Eqs. (24) and (25) imply that{
‖∂Φ(xl)‖ ≤ (cl + µl

2 + ρH)‖xl − xl−1‖ if l ∈ N1,
‖∂Φ(xl)‖ ≤ (Lf + 1

γl )‖xl − xl−1‖ otherwise.
(26)

Let l = lj , we have limj→∞ ‖∂Φ(xlj )‖ = 0, i.e., 0 ∈ ∂Φ(x∗). Thus, x∗ is a critical point of Φ.

Finally, we should to prove that {xl}l∈N converges to a critical point of Φ, which means that {xl}l∈N
is a Cauchy sequence. Since Φ is a semi-algebraic function, it satisfies the KŁproperty. Thus we
have that

∑∞
l=1 ‖xl − xl−1‖ <∞ following [1] and Eq. (23). This implies that {xl}l∈N is a Cauchy

sequence and globally converges to the critical point of Φ.
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