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1 Complete derivation of heterogeneous multi-output lower bounds
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2 Variational Expectations
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we make use of Gaussian-Hermite quadratures. So, considering an univariate case for simplicity,
expectations can be approximated as
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where md,1 and vd,1 are the mean and variance of the variational distribution q(fd,1). In addition, the
pair of values ws, fs is obtained by taking a chosen number S of points from the Hermite polynomial
Hn(x) = (−1)nex2 dn

dxn e
−x2

. Note that this process must be done sequentially for multivariate
expectations, which results in a multidimensional sum with an storage cost of O(SDt) where Dt is
the number of output functions involved in the integral.
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4 Gradients w.r.t. q(u)
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where m̃d and ṽd are the corresponding mean and variance of the variational distribution q(f̃d). Each
one of the variational expectations on the functional derivatives is different for a given heterogeneous
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likelihood (see below). The gradients identities in (16) and (19) are similar to the ones used in Opper
and Archambeau (2009); Hensman et al. (2013); Saul et al. (2016). This means to use
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5 Gradients w.r.t hyperparameters

Applying the chain-rule and assuming the matrix derivatives ∂A
∂θ and ∂A

∂Z given for any arbitrary
matrix A dependent on the hyperparameters, we must compute the following gradients:
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In this section, we denote Kdq = Kfd,juq
and Kdiag = diag(Kfd,jfd,j ) for simplicity in the following

expressions. Then,
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6 Likelihoods and link functions

To include any new distribution, we must derive the following expressions for each heterogeneous
likelihood p(yd |̃fd):

1. Log-Likelihood function log p(yd |̃fd) for VE and the predictive distribution.

2. First order derivatives ∂
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log p(yd |̃fd) for VE in gradients.

3. Second order derivatives ∂2
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log p(yd |̃fd) for VE in gradients.

4. Mean E
[
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]
and variance var

[
yd |̃fd

]
for predictive point-estimates.
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Table 1: Used link transformations between latent parameter functions (LPFs) f and heterogeneous
likelihoods. Note that many other valid mappings between parameters and LPFs are allowed.

Likelihood Linked Parameters Number of LPFs f

Gaussian µ(x) = f , σ(x) 1

Heteroscedastic Gaussian µ(x) = f1, σ(x) = exp(f2) 2

Bernoulli ρ(x) = exp(f)
1+exp(f) 1

Categorical ρk(x) =
exp(fk)

1+
∑K−1

k′=1
exp(fk′ )

K-1

Exponential β(x) = exp(−f) 1

Poisson λ(x) = exp(f) 1

Gamma a(x) = exp(f1), b(x) = exp(f2) 2

Beta a(x) = exp(f1), b(x) = exp(f2) 2

7 Experiments and hyperparameter setup

The code for experiments is written in Python and publicly available. It can be found in the repository
https://github.com/pmorenoz/HetMOGP/, where we have made use of the GPy software library,
specially indicated for Gaussian processes simulations. When the method was implemented on its
non-scaled version (order of magnitude in the observation set around 102-103 samples), we used the
LBFGS-B algorithm implemented in the paramz module. For higher dimensions (number of input
samples(> 103)), we loaded the stochastic version of the model. The general SVI setting was a batch
size of 500 samples in every output and the step rate was set to 0.05. The optimization algorithm for
SVI is ADADELTA included in the climin library and we set the momentum parameter to 0.9.

We compared our MOGP method with an independent output fitting for every likelihood. During the
experiments, we refer to the Chained GP model from Saul et al. (2016). We adapted this model to
work with a greater number of likelihoods than the original ones presented in its original version.

Initialization of hyperparameters: We initialize hyperparameters Z, {Bq}Qq=1 as follows: For
the inducing points Z we start by taking equally separated points per each input dimension in
X. Secondly, linear operators of the MOGP prior were initialized randomly using a Gaussian
N (µ = 1, σ = 1). Hyperparameters of all function covariances kq(·, ·) with an RBF kernel were
initialized with lengthscales set to 0.05 in order to begin with sufficient flexibility. On the other hand,
amplitude variances were set to initial values of 0.5.

Initialization of variational parameters: We use a general initialization for all variational distribu-
tions q(u). Mean parameters µuq

are sampled from a Gaussian distribution N (µ, σ = 2) where µ is
similarly obtained from N (1, 1). For the covariance matrices Suq

we set it to the identity matrix I.

Stochastic variational EM algorithm: In the non-stochastic scenario, the variational EM algorithm
(VEM) was programmed to switch between fixed and unfixed variational parameters or hyperparame-
ters sequentially. For SVI, we adapted the code to load or unload gradients depending of the VEM
step. When modeling was too sensitive to hyperparameters changes, we runned three VE steps of the
stochastic noisy gradient for every one of the VM. This was the case for the London dataset.

Heterogeneous likelihood syntaxes: In our code, we implemented a simple manner to define the
heterogeneous likelihood for combinations of an arbitrary number of likelihood functions. The
assignment of LPFs to parameters is done automatically. Some examples are given below:

> likelihood_list = [Gaussian(), Gaussian(sigma=0.5), Exponential()]

> likelihood_list = [HetGaussian(), Bernoulli(), Categorical(K=3)]

> likelihood_list = [Gamma(), Categorical(K=5)]
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Additional experiments: We have also evaluated our heterogeneous model on new experiments
and different versions of the previously presented ones. These additional results are: [Behavior]
Heteroscedastic Gaussian (distance from Home) and Poisson (number of active apps) outputs. We
removed the Bernoulli output (presence/absence), [London] We replaced property type by type of
contract (freehold or leasehold) as the new binary output. [Arrhythmia] High-dimensional input,
Categorical output with K = 3: normal, arrhythmia or other. [Synthetic] Arbitrary combination of
10 outputs (Gaussian, Bernoulli and Exponential). The Table below shows test-NLPD results for
every dataset. Notice that the proposed model outperforms the Chained GP for all the suggested
experiments.

Table 2: Test-NLPD (×10−2) results for all additional experiments.

Experiment HetMOGP ChainedGP
Behavior 0.1883± 0.0027 0.3281± 0.0122
London 0.1646± 0.0153 0.2144± 0.0402

Arrhythmia 0.0987± 0.0004 NA
Synthetic? 1.7371± 0.4128 4.3182± 2.4402
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Figure 1: Results for spatial modeling of heterogeneous data. (Top row) 10% of training samples
for the Greater London County. Binary outputs are the type of contract (freehold or leasehold) in
2017 and real ones are the prices included in sale contracts. (Bottom row) Test prediction curves for
Ntest = 2, 500 inputs.
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