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1 Proof of Theorem 1

Let us first label the results of the theorem:

∇xL(x∗, λ∗, µ∗) = 0, (1)

and

µ∗j ≥ 0, j = 1, . . . , r, (2)

µ∗j = 0, ∀ j /∈ A(x∗). (3)

If x∗ is a local minimum of (4), it is also a local minimum of the following problem

min
x

f(x)

subject to for almost all z ∼ px(z),
h1(x, z) = 0, . . . , hm(x, z) = 0,

gj(x, z) = 0, j ∈ A(x∗),

which is equivalent to

min
x

f(x)

subject to h̃1(x) = 0, . . . , h̃m(x) = 0,

g̃j(x) = 0, j ∈ A(x∗),

by the definition of h̃i and g̃j . Then, based on a standard result of Lagrange multipliers, there exist
λ∗ = (λ∗1, . . . , λ

∗
m) and µ∗j , j ∈ A(x∗), such that

∇f(x∗) +
m∑
i=1

λ∗i∇h̃i(x∗) +
∑

j∈A(x∗)

µ∗j∇g̃j(x∗) = 0.

For j /∈ A(x∗), adding the gradient terms with respect to µ∗j = 0 we obtain

∇f(x∗) +
m∑
i=1

λ∗i∇h̃i(x∗) +
r∑

j=1

µ∗j∇g̃j(x∗) = 0, (4)

which proves (1) and (3).
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It remains to prove (2). We introduce the functions
g̃+j (x) = max{0, g̃j(x)}, j = 1, . . . , r,

and for each k = 1, 2, . . ., the penalized problem

min
x

F k(x) ≡ f(x) + k

2
‖h̃(x)‖2 + k

2
‖g̃+(x)‖2 + α

2
‖x− x∗‖2

subject to x ∈ S,
where α is a fixed positive scalar, S = {x | ‖x− x∗‖ ≤ ε}, and ε > 0 is such that f(x∗) < f(x) for
all feasible x with x ∈ S. Note that the function g̃+j (x) is continuously differentiable with gradient
2g̃+j (x)∇g̃j(x). If xk minimizes F k(x) over S, we have for all k,

F k(xk) = f(xk) +
k

2
‖h̃(xk)‖2 + k

2
‖g̃+(xk)‖2 + α

2
‖xk − x∗‖2 ≤ F k(x∗) = f(x∗), (5)

and since f(xk) is bounded over S, we obtain

lim
k→∞

‖h̃(xk)‖ = 0 and lim
k→∞

‖g̃+(xk)‖ = 0;

otherwise the left-hand side of (5) would become unbounded above as k →∞. Therefore, every limit
point x of {xk} satisfies h̃(x) = 0 and g̃+(x) = 0. Furthermore, (5) yields f(xk) + (α/2)‖xk −
x∗‖2 ≤ f(x∗) for all k, so by taking the limit as k →∞, we obtain

f(x) +
α

2
‖x− x∗‖2 ≤ f(x∗).

Since x ∈ S and x is feasible, we have f(x∗) ≤ f(x), which when combined with the preceding
inequality yields ‖x − x∗‖ = 0 so that x = x∗. Thus, the sequence {xk} converges to x∗, and it
follows that xk is an interior point of the closed sphere S for sufficiently large k. Therefore, xk is an
unconstrained local minimum of F k(x) for sufficiently large k.

For the first order necessary condition, we have for sufficiently large k,

0 = ∇F k(xk) = ∇f(xk) + k∇h̃(xk)h̃(xk) + k∇g̃(xk)g̃+(xk) + α(xk − x∗). (6)
Define

E(x) =
[
∇h̃(x) ∇g̃(x)

]
and e(x) =

[
h̃(x)
g̃+(x)

]
.

Since x∗ is regular, E(x∗) has full column rank and the same is true for E(xk) if k is sufficiently
large. For such k, premultiplying (6) with (E(xk)TE(xk))−1E(xk)T , we obtain

ke(xk) = −(E(xk)TE(xk))−1E(xk)T (∇f(xk) + α(xk − x∗)).
By taking the limit as k →∞ and xk → x∗, we see that {ke(xk)} converges to the vector

τ∗ = −(E(x∗)TE(x∗))−1E(x∗)T∇f(x∗).
By taking the limit as k →∞ in (6), we obtain

∇f(x∗) + E(x∗)τ∗ = 0.

Comparing against (4), we see that

τ∗ =

[
λ∗

µ∗

]
;

in other words, kg̃+(x∗) = µ∗. By the nonnegativity of g̃+, we obtain µ∗j ≥ 0 for all j.

2 Additional Experiment Details

Training. All models were trained with mini-batch stochastic gradient descent (SGD) using a
mini-batch size of 200. All weights were initialized from a zero-centered normal distribution with
standard deviation 0.02. The dimension of the latent space is

• QM9: 128.
• ZINC: 256.
• Node-compatible: 128.
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Constraints. Validity constraints for molecular graphs are ghost nodes, valence, and connectivity
(i.e., (9) and (10)); whereas those for node-compatible graphs are ghost nodes and node compatibility
(i.e., (9) and (11)). Regularization weights µ after tuning are

• QM9: ghost nodes/valence 1.0, connectivity 1.0.
• ZINC: ghost nodes/valence 0.05, connectivity 0.05.
• Node-compatible: ghost nodes 5.0, node compatibility 5.0.

Metrics. The experiment protocol generally follows that of Kusner et al. [1]. For “% Valid” and
“% Novel”, sample 1000 latent vectors from the prior and for each one, decode 500 times. For “%
Recon.”, set up a holdout set of 5000 graphs that do not participate training. For each graph in this set,
encode 10 times and then decode 100 times. These steps done for the two baselines. For our proposed
method, a slight difference is that in decoding, we perform maximum-likelihood decoding (which is
equivalent to argmax). Since the decoding is deterministic, it is done only once for each latent vector.
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