
Supplementary material for
CatBoost: unbiased boosting with categorical features

Liudmila Prokhorenkova1,2, Gleb Gusev1,2, Aleksandr Vorobev1,
Anna Veronika Dorogush1, Andrey Gulin1

1Yandex, Moscow, Russia
2Moscow Institute of Physics and Technology, Dolgoprudny, Russia

{ostroumova-la, gleb57, alvor88, annaveronika, gulin}@yandex-team.ru

A Proof of Theorem 1

A.1 Proof for the case D1 = D2

Let us denote by A the event that each leaf in both stumps h1 and h2 contains at least one example,
i.e., there exists at least one x ∈ D with xi = s for all i ∈ {1, 2}, s ∈ {0, 1}. All further reasonings
are given conditioning on A. Note that the probability of A is 1−O (2−n), therefore we can assign
an arbitrary value to any empty leaf during the learning process, and the choice of the value will
affect all expectations we calculate below by O (2−n).

Denote by ξst, s, t ∈ {0, 1}, the number of examples xk ∈ D with xk = (s, t). The value of the first
stump h1 in the region {x1 = s} is the average value of yk over examples from D belonging to this
region. That is,

h1(0, t) =

∑n
j=1 c21{xj=(0,1)}∑n

j=1 1{x1
j=0}

=
c2ξ01

ξ00 + ξ01
,

h1(1, t) =

∑n
j=1 c11{x1

j=1} + c21{xj=(1,1)}∑n
j=1 1{x1

j=1}
= c1 +

c2ξ11
ξ10 + ξ11

.

Summarizing, we obtain

h1(s, t) = c1s+
c2ξs1

ξs0 + ξs1
. (1)

Note that, by conditioning on A, we guarantee that the denominator ξs0 + ξs1 is not equal to zero.

Now we derive the expectation E(h1(x)) of prediction h1 for a test example x = (s, t).

It is easy to show that E
(

ξs1
ξs0+ξs1

| A
)

= 1
2 . Indeed, due to the symmetry we have

E
(

ξs1
ξs0+ξs1

| A
)

= E
(

ξs0
ξs0+ξs1

| A
)

and the sum of these expectations is E
(
ξs0+ξs1
ξs0+ξs1

| A
)

= 1.
So, by taking the expectation of (1), we obtain the following proposition.

Proposition 1 We have E(h1(s, t) | A) = c1s+ c2
2 .

It means that the conditional expectation E(h1(x) | x = (s, t), A) on a test example x equals
c1s+ c2

2 , since x and h1 are independent.

Prediction shift of h1 In this paragraph, we show that the conditional expectation E(h1(xl) | xl =
(s, t), A) on a training example xl is shifted for any l = 1, . . . , n, because the model h1 is fitted to
xl. This is an auxiliary result, which is not used directly for proving the theorem, but helps to track
the chain of obtained shifts.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

Proposition 2 The conditional expectation is

E(h1(xl) | xl = (s, t), A) = c1s+
c2
2
− c2

(
2t− 1

n

)
+O(2−n) .

Proof . Let us introduce the following notation

αsk =
1{xk=(s,1)}

ξs0 + ξs1
.

Then, we can rewrite the conditional expectation as

c1s+ c2

n∑
k=1

E(αsk | xl = (s, t), A) .

Lemma 1 below implies that E(αsl | xl = (s, t), A) = 2t
n . For k 6= l, we have

E(αsk | xl = (s, t), A) =
1

4
E
(

1

ξs0 + ξs1
| xl = (s, t),xk = (s, 1), A

)
=

1

2n

(
1− 1

n− 1
+

n− 2

(2n−1 − 2) (n− 1)

)
due to Lemma 2 below. Finally, we obtain

E(h1(xl) | xl = (s, t)) = c1s+ c2

(
2t

n
+ (n− 1)

1

2n

(
1− 1

n− 1

))
+O

(
2−n

)
= c1s+

c2
2
− c2

(
2t− 1

n

)
+O(2−n).

�

Lemma 1 E
(

1
ξs0+ξs1

| x1 = (s, t), A
)

= 2
n .

Proof . Note that given x1 = (s, t), A corresponds to the event that there is an example with
x1 = 1− s and (possibly another) example with x2 = 1− t among x2, . . . ,xn.

Note that ξs0 + ξs1 =
∑n
j=1 1{x1

j=s}. For k = 1, . . . , n− 1, we have

P(ξs0 + ξs1 = k | x1 = (s, t), A) =
P(ξs0 + ξs1 = k,A | x1 = (s, t))

P(A | x1 = (s, t))
=

(
n−1
k−1
)

2n−1
(
1− 2−(n−1)

) ,
since 1{x1

1=s} = 1 when x1 = (s, t) with probability 1,
∑n
j=2 1{x1

j=s} is a binomial variable
independent of x1, and an example with x1 = 1 − s exists whenever ξs0 + ξs1 = k < n and
x1 = (s, t) (while the existence of one with x2 = 1− t is an independent event). Therefore, we have

E
(

1

ξs0 + ξs1
| x1 = (s, t), A

)
=

n−1∑
k=1

1

k

(
n−1
k−1
)

2n−1 − 1
=

1

n (2n−1 − 1)

n−1∑
k=1

(
n

k

)
=

2

n
.

�

Lemma 2 We have

E
(

1

ξs0 + ξs1
| x1 = (s, t1),x2 = (s, t2), A

)
=

2

n

(
1− 1

n− 1
+

n− 2

(2n−1 − 2) (n− 1)

)
.

Proof . Similarly to the previous proof, for k = 2, . . . , n− 1, we have

P (ξs0 + ξs1 = k | x1 = (s, t1),x2 = (s, t2), A) =

(
n−2
k−2
)

2n−2
(
1− 2−(n−2)

) .
2

Therefore,

E
(

1

ξs0 + ξs1
| x1 = (s, t1),x2 = (s, t2), A

)
=

1

2n−2
(
1− 2−(n−1)

) n−1∑
k=2

(
n−2
k−2
)

k

=
1

2n−2 − 1

n−1∑
k=2

(
n− 2

k − 2

)(
1

k − 1
− 1

(k − 1)k

)

=
1

2n−2 − 1

n−1∑
k=2

(
1

n− 1

(
n− 1

k − 1

)
− 1

n(n− 1)

(
n

k

))
=

=
1

2n−2 − 1

(
1

n− 1
(2n−1 − 2)− 1

n(n− 1)
(2n − n− 2)

)
=

=
2

n

(
1− 1

n− 1
+

n− 2

(2n−1 − 2) (n− 1)

)
.

�

Bias of the model h1+h2 Proposition 2 shows that the values of the model h1 on training examples
are shifted with respect to the ones on test examples. The next step is to show how this can lead to a
bias of the trained model, if we use the same dataset for building both h1 and h2. Namely, we derive
the expected value of h1(s, t) + h2(s, t) and obtain a bias according to the following result.

Proposition 3 If both h1 and h2 are built using the same dataset D, then

E
(
h1(s, t) + h2(s, t) | A

)
= f∗(s, t)− 1

n− 1
c2

(
t− 1

2

)
+O(1/2n) .

Proof . The residual after the first step is

f∗(s, t)− h1(s, t) = c2

(
t− ξs1

ξs0 + ξs1

)
.

Therefore, we get

h2(s, t) =
c2

ξ0t + ξ1t

((
t− ξ01

ξ00 + ξ01

)
ξ0t +

(
t− ξ11

ξ10 + ξ11

)
ξ1t

)
,

which is equal to

−c2
(

ξ00ξ01
(ξ00 + ξ01)(ξ00 + ξ10)

+
ξ10ξ11

(ξ10 + ξ11)(ξ00 + ξ10)

)
for t = 0 and to

c2

(
ξ00ξ01

(ξ00 + ξ01)(ξ01 + ξ11)
+

ξ10ξ11
(ξ10 + ξ11)(ξ01 + ξ11)

)
for t = 1. The expected values of all four ratios are equal due to symmetries, and they are equal to
1
4

(
1− 1

n−1

)
+O(2−n) according to Lemma 3 below. So, we obtain

E(h2(s, t) | A) = (2t− 1)
c2
2

(
1− 1

n− 1

)
+O(2−n)

and

E(h1(s, t) + h2(s, t) | A) = f∗(s, t)− c2
1

n− 1

(
t− 1

2

)
+O(2−n) .

�

Lemma 3 We have

E
(

ξ00ξ01
(ξ00 + ξ01)(ξ01 + ξ11)

| A
)

=
1

4

(
1− 1

n− 1

)
+O(2−n) .

3

Proof . First, linearity implies

E
(

ξ00ξ01
(ξ00 + ξ01)(ξ01 + ξ11)

| A
)

=
∑
i,j

E
(

1xi=(0,0),xj=(0,1)

(ξ00 + ξ01)(ξ01 + ξ11)
| A
)
.

Taking into account that all terms are equal, the expectation can be written as n(n−1)
42 a, where

a = E
(

1

(ξ00 + ξ01)(ξ01 + ξ11)
| x1 = (0, 0),x2 = (0, 1), A

)
.

A key observation is that ξ00 + ξ01 and ξ01 + ξ11 are two independent binomial variables: the
former one is the number of k such that x1k = 0 and the latter one is the number of k such that
x2k = 1. Moreover, they (and also their inverses) are also conditionally independent given that first
two observations of the Bernoulli scheme are known (x1 = (0, 0),x2 = (0, 1)) and given A. This
conditional independence implies that a is the product of E

(
1

ξ00+ξ01
| x1 = (0, 0),x2 = (0, 1), A

)
and E

(
1

ξ01+ξ11
| x1 = (0, 0),x2 = (0, 1), A

)
. The first factor equals 2

n

(
1− 1

n−1 +O(2−n)
)

ac-

cording to Lemma 2. The second one is equal to E
(

1
ξ01+ξ11

| x1 = (0, 0),x2 = (0, 1)
)

sinceA does

not bring any new information about the number of k with x2k = 1 given x1 = (0, 0),x2 = (0, 1).
So, according to Lemma 4 below, the second factor equals 2

n−1 (1 +O(2−n)). Finally, we obtain

E
(

ξ00ξ01
(ξ00 + ξ01)(ξ01 + ξ11)

)
=
n(n− 1)

42
4

n(n− 1)

(
1− 1

n− 1

)
+O(2−n) =

1

4

(
1− 1

n− 1

)
+O(2−n).

�

Lemma 4 E
(

1
ξ01+ξ11

| x1 = (0, 0),x2 = (0, 1)
)

= 2
n−1 −

1
2n−2(n−1) .

Proof . Similarly to the proof of Lemma 2, we have

P(ξ01 + ξ11 = k | x1 = (0, 0),x2 = (0, 1)) =

(
n− 2

k − 1

)
2−(n−2) .

Therefore, we get

E
(

1

ξ01 + ξ11
| x1 = (0, 0),x2 = (0, 1)

)
=

n−1∑
k=1

1

k

(
n− 2

k − 1

)
2−(n−2)

=
2−(n−2)

n− 1

n−1∑
k=1

(
n− 1

k

)
=

2

n− 1
− 1

2n−2(n− 1)
.

�

A.2 Proof for independently sampled D1 and D2

Assume that we have an additional sample D2 = {xn+k}k=1..n for building h2. Now A denotes the
event that each leaf in h1 contains at least one example from D1 and each leaf in h2 contains at least
one example from D2.

Proposition 4 If h2 is built using dataset D2, then

E(h1(s, t) + h2(s, t) | A) = f∗(s, t) .

Proof .

Let us denote by ξ′st the number of examples xn+k that are equal to (s, t), k = 1, . . . , n.

4

First, we need to derive the expectation E(h2(s, t)) of h2 on a test example x = (s, t). Similarly to
the proof of Proposition 3, we get

h2(s, 0) = −c2
(

ξ′00ξ01
(ξ00 + ξ01)(ξ′00 + ξ′10)

+
ξ′10ξ11

(ξ10 + ξ11)(ξ′00 + ξ′10)

)
,

h2(s, 1) = c2

(
ξ00ξ

′
01

(ξ00 + ξ01)(ξ′01 + ξ′11)
+

ξ10ξ
′
11

(ξ10 + ξ11)(ξ′01 + ξ′11)

)
.

Due to the symmetries, the expected values of all four fractions above are equal. Also, due to the
independence of ξij and ξ′kl, we have

E
(

ξ′00ξ01
(ξ00 + ξ01)(ξ′00 + ξ′10)

| A
)

= E
(

ξ01
ξ00 + ξ01

| A
)
E
(

ξ′00
ξ′00 + ξ′10

| A
)

=
1

4
.

Therefore, E(h2(s, 0) | A) = − c22 and E(h2(s, 1) | A) = c2
2 .

Summing up, E(h2(s, t) | A) = c2t− c2
2 and E(h1(s, t) + h2(s, t) | A) = c1s+ c2t. �

B Formal description of CatBoost algorithm

In this section, we formally describe the CatBoost algorithm introduced in Section 5 of the main text.
In Algorithm 1, we provide more information on particular details including the speeding up trick
introduced in paragraph “Complexity” of the main text. The key step of the CatBoost algorithm is
the procedure of building a tree described in detail in Function BuildTree. To obtain the formal
description of the CatBoost algorithm without the speeding up trick, one should replace dlog2 ne by
n in line 6 of Algorithm 1 and use Algorithm 2 from the main text instead of Function BuildTree.

We use FunctionGetLeaf(x, T, σr) to describe how examples are matched to leaves leafr(i). Given
an example with features x, we calculate ordered TS on the basis of the permutation σr and then
choose the leaf of tree T corresponding to features x enriched by the obtained ordered TS. Using
ApplyMode instead of a permutation in function GetLeaf in line 15 of Algorithm 1 means that we
use TS calculated on the whole training data to apply the trained model on a new example.

Algorithm 1: CatBoost
input : {(xi, yi)}ni=1, I , α, L, s, Mode

1 σr ← random permutation of [1, n] for r = 0..s;
2 M0(i)← 0 for i = 1..n;
3 if Mode = Plain then
4 Mr(i)← 0 for r = 1..s, i : σr(i) ≤ 2j+1;
5 if Mode = Ordered then
6 for j ← 1 to dlog2 ne do
7 Mr,j(i)← 0 for r = 1..s, i = 1..2j+1;

8 for t← 1 to I do
9 Tt, {Mr}sr=1 ← BuildTree({Mr}sr=1, {(xi, yi)}ni=1, α, L, {σi}si=1,Mode);

10 leaf0(i)← GetLeaf(xi, Tt, σ0) for i = 1..n;
11 grad0 ← CalcGradient(L,M0, y);
12 foreach leaf j in Tt do
13 btj ← −avg(grad0(i) for i : leaf0(i) = j);

14 M0(i)←M0(i) + αbtleaf0(i) for i = 1..n;

15 return F (x) =
∑I
t=1

∑
j α b

t
j1{GetLeaf(x,Tt,ApplyMode)=j};

5

Function BuildTree
input : M ,{(xi, yi)}ni=1, α, L, {σi}si=1, Mode

1 grad← CalcGradient(L,M, y);
2 r ← random(1, s);
3 if Mode = Plain then
4 G← (gradr(i) for i = 1..n);
5 if Mode = Ordered then
6 G← (gradr,blog2(σr(i)−1)c(i) for i = 1..n);

7 T ← empty tree;
8 foreach step of top-down procedure do
9 foreach candidate split c do

10 Tc ← add split c to T ;
11 leafr(i)← GetLeaf(xi, Tc, σr) for i = 1..n;
12 if Mode = Plain then
13 ∆(i)← avg(gradr(p) for p : leafr(p) = leafr(i)) for i = 1..n;
14 if Mode = Ordered then
15 ∆(i)← avg(gradr,blog2(σr(i)−1)c(p) for p : leafr(p) = leafr(i), σr(p) < σr(i)) for

i = 1..n;
16 loss(Tc)← cos(∆, G)

17 T ← arg minTc
(loss(Tc))

18 leafr′(i)← GetLeaf(xi, T, σr′) for r′ = 1..s, i = 1..n;
19 if Mode = Plain then
20 Mr′(i)←Mr′(i)− α avg(gradr′(p) for p : leafr′(p) = leafr′(i)) for r′ = 1..s, i = 1..n;
21 if Mode = Ordered then
22 for j ← 1 to dlog2 ne do
23 Mr′,j(i)←Mr′,j(i)− α avg(gradr′,j(p) for p : leafr′(p) = leafr′(i), σr′(p) ≤ 2j) for

r′ = 1..s, i : σr′(i) ≤ 2j+1;

24 return T,M

C Time complexity analysis

C.1 Theoretical analysis

We present the computational complexity of different components of any of the two modes of
CatBoost per one iteration in Table 1.

Table 1: Computational complexity.
Procedure CalcGradient Build T Calc values btj Update M Calc ordered TS

Complexity
for iteration t O(s · n) O(|C| · n) O(n) O(s · n) O(NTS,t · n)

We first prove these asymptotics for the Ordered mode. For this purpose, we estimate the number
Npred of predictions Mr,j(i) to be maintained:

Npred = (s+ 1) ·
dlog2 ne∑
j=1

2j+1 < (s+ 1) · 2log2 n+3 = 8(s+ 1)n .

Then, obviously, the complexity of CalcGradient is O(Npred) = O(s · n). The complexity of leaf
values calculation is O(n), since each example i is included only in averaging operation in leaf
leaf0(i).

Calculation of the ordered TS for one categorical feature can be performed sequentially in the order of
the permutation by n additive operations for calculation of n partial sums and n division operations.

6

Table 2: Comparison of running times on Epsilon

time per tree

CatBoost Plain 1.1 s
CatBoost Ordered 1.9 s
XGBoost 3.9 s
LightGBM 1.1 s

Thus, the overall complexity of the procedure is O(NTS,t · n), where NTS,t is the number of TS
which were not calculated on the previous iterations. Since the leaf values ∆(i) calculated in line 15
of Function BuildTree can be considered as ordered TS, where gradients play the role of targets, the
complexity of building a tree T is O(|C| ·n), where C is the set of candidate splits to be considered at
the given iteration. Finally, for updating the supporting models (lines 22-23 in Function BuildTree),
we need to perform one averaging operation for each j = 1, . . . , dlog2 ne, and each maintained
gradient gradr′,j(p) is included in one averaging operation. Thus, the number of operations is
bounded by the number of the maintained gradients gradr′,j(p), which is equal to Npred = O(s · n).

To finish the proof, note that any component of the Plain mode is not less efficient than the same one
of the Ordered mode but, at the same time, cannot be more efficient than corresponding asymptotics
from Table 1.

C.2 Empirical analysis

It is quite hard to compare different boosting libraries in terms of training speed. Every algorithm has
a vast number of parameters which affect training speed, quality and model size in a non-obvious way.
Different libraries have their unique quality/training speed trade-off’s and they cannot be compared
without domain knowledge (e.g., is 0.5% of quality metric worth it to train a model 3-4 times slower?).
Plus for each library it is possible to obtain almost the same quality with different ensemble sizes
and parameters. As a result, one cannot compare libraries by time needed to obtain a certain level of
quality. As a result, we could give only some insights of how fast our implementation could train
a model of a fixed size. We use Epsilon dataset and we measure mean tree construction time one
can achieve without using feature subsampling and/or bagging by CatBoost (both Ordered and Plain
modes), XGBoost (we use histogram-based version, which is faster) and LightGBM. For XGBoost
and CatBoost we use the default tree depth equal to 6, for LightGBM we set leaves count to 64 to
have comparable results. We run all experiments on the same machine with Intel Xeon E3-12xx
2.6GHz, 16 cores, 64GB RAM and run all algorithms with 16 threads.

We set such learning rate that algorithms start to overfit approximately after constructing about 7000
trees and measure the average time to train ensembles of 8000 trees. Mean tree construction time
is presented in Table 2. Note that CatBoost Plain and LightGBM are the fastest ones followed by
Ordered mode, which is about 1.7 times slower, which is expected.

Finally, let us note that CatBoost has a highly efficient GPU implementation. The detailed description
and comparison of the running times are beyond the scope of the current article, but these experiments
can be found on the corresponding GitHub page.1

D Experimental setup

D.1 Description of the datasets

The datasets used in our experiments are described in Table 3.

1https://github.com/catboost/benchmarks/tree/master/gpu_training

7

https://github.com/catboost/benchmarks/tree/master/gpu_training

Table 3: Description of the datasets.

Dataset name Instances Features Description
Adult2 48842 15 Prediction task is to determine whether a person

makes over 50K a year. Extraction was done by
Barry Becker from the 1994 Census database. A
set of reasonably clean records was extracted us-
ing the following conditions: (AAGE>16) and
(AGI>100) and (AFNLWGT>1) and (HRSWK>0)

Amazon3 32769 10 Data from the Kaggle Amazon Employee chal-
lenge.

Click Prediction4 399482 12 This data is derived from the 2012 KDD Cup. The
data is subsampled to 1% of the original num-
ber of instances, downsampling the majority class
(click=0) so that the target feature is reasonably
balanced (5 to 1). The data is about advertisements
shown alongside search results in a search engine,
and whether or not people clicked on these ads.
The task is to build the best possible model to pre-
dict whether a user will click on a given ad.

Epsilon5 400000 2000 PASCAL Challenge 2008.
KDD appetency6 50000 231 Small version of KDD 2009 Cup data.
KDD churn7 50000 231 Small version of KDD 2009 Cup data.
KDD Internet8 10108 69 Binarized version of the original dataset. The multi-

class target feature is converted to a two-class nom-
inal target feature by re-labeling the majority class
as positive (‘P’) and all others as negative (‘N’).
Originally converted by Quan Sun.

KDD upselling9 50000 231 Small version of KDD 2009 Cup data.
Kick prediction10 72983 36 Data from “Don’t Get Kicked!” Kaggle challenge.

D.2 Experimental settings

In our experiments, we evaluate different modifications of CatBoost and two popular gradient boosting
libraries: LightGBM and XGBoost. All the code needed for reproducing our experiments is published
on our GitHub11.

Train-test splits Each dataset was randomly split into training set (80%) and test set (20%). We
denote them as Dfull_train and Dtest.

We use 5-fold cross-validation to tune parameters of each model on the training set. Accordingly,
Dfull_train is randomly split into 5 equally sized parts D1, . . . , D5 (sampling is stratified by classes).
These parts are used to construct 5 training and validation sets: Dtrain

i = ∪j 6=iDj and Dval
i = Di

for 1 ≤ i ≤ 5.

Preprocessing We applied the following steps to datasets with missing values:

2https://archive.ics.uci.edu/ml/datasets/Adult
3https://www.kaggle.com/c/amazon-employee-access-challenge
4http://www.kdd.org/kdd-cup/view/kdd-cup-2012-track-2
5https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
6http://www.kdd.org/kdd-cup/view/kdd-cup-2009/Data
7http://www.kdd.org/kdd-cup/view/kdd-cup-2009/Data
8https://kdd.ics.uci.edu/databases/internet_usage/internet_usage.html
9http://www.kdd.org/kdd-cup/view/kdd-cup-2009/Data

10https://www.kaggle.com/c/DontGetKicked
11https://github.com/catboost/benchmarks/tree/master/quality_benchmarks

8

https://archive.ics.uci.edu/ml/datasets/Adult
https://www.kaggle.com/c/amazon-employee-access-challenge
http://www.kdd.org/kdd-cup/view/kdd-cup-2012-track-2
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
http://www.kdd.org/kdd-cup/view/kdd-cup-2009/Data
http://www.kdd.org/kdd-cup/view/kdd-cup-2009/Data
https://kdd.ics.uci.edu/databases/internet_usage/internet_usage.html
http://www.kdd.org/kdd-cup/view/kdd-cup-2009/Data
https://www.kaggle.com/c/DontGetKicked
https://github.com/catboost/benchmarks/tree/master/quality_benchmarks

• For categorical variables, missing values are replaced with a special value, i.e., we treat
missing values as a special category;

• For numerical variables, missing values are replaced with zeros, and a binary dummy feature
for each imputed feature is added.

For XGBoost, LightGBM and the raw setting of CatBoost (see Section G), we perform the following
preprocessing of categorical features. For each pair of datasets (Dtrain

i , Dval
i), i = 1, . . . , 5, and

(Dfull_train, Dtest), we preprocess the categorical features by calculating ordered TS (described
in Section 3.2 of the main text) on the basis of a random permutation of the examples of the first
(training) dataset. All the permutations are generated independently. The resulting values of TS are
considered as numerical features by any algorithm to be evaluated.

Parameter Tuning We tune all the key parameters of each algorithm by 50 steps of the se-
quential optimization algorithm Tree Parzen Estimator implemented in Hyperopt library12 (mode
algo=tpe.suggest) by minimizing logloss. Below is the list of the tuned parameters and their distribu-
tions the optimization algorithm started from:

XGBoost:

• ‘eta’: Log-uniform distribution [e−7, 1]

• ‘max_depth’: Discrete uniform distribution [2, 10]

• ‘subsample’: Uniform [0.5, 1]

• ‘colsample_bytree’: Uniform [0.5, 1]

• ‘colsample_bylevel’: Uniform [0.5, 1]

• ‘min_child_weight’: Log-uniform distribution [e−16, e5]

• ‘alpha’: Mixed: 0.5 · Degenerate at 0 + 0.5 · Log-uniform distribution [e−16, e2]

• ‘lambda’: Mixed: 0.5 · Degenerate at 0 + 0.5 · Log-uniform distribution [e−16, e2]

• ‘gamma’: Mixed: 0.5 · Degenerate at 0 + 0.5 · Log-uniform distribution [e−16, e2]

LightGBM:

• ‘learning_rate’: Log-uniform distribution [e−7, 1]

• ‘num_leaves’ : Discrete log-uniform distribution [1, e7]

• ‘feature_fraction’: Uniform [0.5, 1]

• ‘bagging_fraction’: Uniform [0.5, 1]

• ‘min_sum_hessian_in_leaf’: Log-uniform distribution [e−16, e5]

• ‘min_data_in_leaf’: Discrete log-uniform distribution [1, e6]

• ‘lambda_l1’: Mixed: 0.5 · Degenerate at 0 + 0.5 · Log-uniform distribution [e−16, e2]

• ‘lambda_l2’: Mixed: 0.5 · Degenerate at 0 + 0.5 · Log-uniform distribution [e−16, e2]

CatBoost:

• ‘learning_rate’: Log-uniform distribution [e−7, 1]

• ‘random_strength’: Discrete uniform distribution over a set {1, 20}
• ‘one_hot_max_size’: Discrete uniform distribution over a set {0, 25}
• ‘l2_leaf_reg’: Log-uniform distribution [1, 10]

• ‘bagging_temperature’: Uniform [0, 1]

• ‘gradient_iterations’ : Discrete uniform distribution over a set {1, 10}
12https://github.com/hyperopt/hyperopt

9

https://github.com/hyperopt/hyperopt

Next, having fixed all other parameters, we perform exhaustive search for the number of trees in the
interval [1, 5000]. We collect logloss value for each training iteration from 1 to 5000 for each of the 5
folds. Then we choose the iteration with minimum logloss averaged over 5 folds.

For evaluation, each algorithm was run on the preprocessed training data Dfull_train with the tuned
parameters. The resulting model was evaluated on the preprocessed test set Dtest.

Versions of the libraries

• catboost (0.3)

• xgboost (0.6)

• scikit-learn (0.18.1)

• scipy (0.19.0)

• pandas (0.19.2)

• numpy (1.12.1)

• lightgbm (0.1)

• hyperopt (0.0.2)

• h2o (3.10.4.6)

• R (3.3.3)

E Analysis of iterated bagging

Based on the out-of-bag estimation [1], Breiman proposed iterated bagging [2] which simultaneously
constructsK models Fi, i = 1, . . . ,K, associated withK independently bootstrapped subsamplesDi.
At t-th step of the process, models F ti are grown from their predecessors F t−1i as follows. The
current estimate M t

j at example j is obtained as the average of the outputs of all models F t−1k such
that j /∈ Dk. The term hti is built as a predictor of the residuals rtj := yj −M t

j (targets minus current
estimates) on Di. Finally, the models are updated: F ti := F t−1i + hti. Unfortunately, the residuals
rtj used in this procedure are not unshifted (in terms of Section 4.1 of the main text), or unbiased
(in terms of iterated bagging), because each model F ti depends on each observation (xj , yj) by
construction. Indeed, although htk does not use yj directly, if j /∈ Dk, it still uses M t−1

j′ for j′ ∈ Dk,
which, in turn, can depend on (xj , yj).

Also note that computational complexity of this algorithm exceeds one of classic GBDT by factor
of K.

F Ordered boosting with categorical features

In Sections 3.2 and 4.2 of the main text, we proposed to use some random permutations σcat and
σboost of training examples for the TS calculation and for ordered boosting, respectively. Now, being
combined in one algorithm, should these two permutations be somehow dependent? We argue that
they should coincide. Otherwise, there exist examples xi and xj such that σboost(i) < σboost(j) and
σcat(i) > σcat(j). Then, the model Mσboost(j) is trained using TS features of, in particular, example
xi, which are calculated using yj . In general, it may shift the prediction Mσboost(j)(xj). To avoid
such a shift, we set σcat = σboost in CatBoost. In the case of the ordered boosting (Algorithm 1 in
the main text) with sliding window TS13 it guarantees that the prediction Mσ(i)−1(xi) is not shifted
for i = 1, . . . , n, since, first, the target yi was not used for training Mσ(i)−1 (neither for the TS
calculation, nor for the gradient estimation) and, second, the distribution of TS x̂i conditioned by the
target value is the same for a training example and a test example with the same value of feature xi.

13Ordered TS calculated on the basis of a fixed number of preceding examples (both for training and test
examples).

10

G Experimental results

Comparison with baselines In Section 6 of the main text we demonstrated that the strong setting of
CatBoost, including ordered TS, Ordered mode and feature combinations, outperforms the baselines.
Detailed experimental results of that comparison are presented in Table 4.

Table 4: Comparison with baselines: logloss / zero-one loss, relative increase is presented in the
brackets.

CatBoost LightGBM XGBoost

Adult 0.2695 / 0.1267 0.2760 (+2.4%) / 0.1291 (+1.9%) 0.2754 (+2.2%) / 0.1280 (+1.0%)
Amazon 0.1394 / 0.0442 0.1636 (+17%) / 0.0533 (+21%) 0.1633 (+17%) / 0.0532 (+21%)
Click 0.3917 / 0.1561 0.3963 (+1.2%) / 0.1580 (+1.2%) 0.3962 (+1.2%) / 0.1581 (+1.2%)
Epsilon 0.2647 / 0.1086 0.2703 (+1.5%) / 0.114 (+4.1%) 0.2993 (+11%) / 0.1276 (+12%)
Appetency 0.0715 / 0.01768 0.0718 (+0.4%) / 0.01772 (+0.2%) 0.0718 (+0.4%) / 0.01780 (+0.7%)
Churn 0.2319 / 0.0719 0.2320 (+0.1%) / 0.0723 (+0.6%) 0.2331 (+0.5%) / 0.0730 (+1.6%)
Internet 0.2089 / 0.0937 0.2231 (+6.8%) / 0.1017 (+8.6%) 0.2253 (+7.9%) / 0.1012 (+8.0%)
Upselling 0.1662 / 0.0490 0.1668 (+0.3%) / 0.0491 (+0.1%) 0.1663 (+0.04%) / 0.0492 (+0.3%)
Kick 0.2855 / 0.0949 0.2957 (+3.5%) / 0.0991 (+4.4%) 0.2946 (+3.2%) / 0.0988 (+4.1%)

In this section, we empirically show that our implementation of GBDT provides state-of-the-art
quality and thus is an appropriate basis for building CatBoost by adding different improving options
including the above-mentioned ones. For this purpose, we compare with baselines a raw setting of
CatBoost which is as close to classical GBDT [3] as possible. Namely, we use CatBoost in GPU mode
with the following parameters: – – boosting–type Plain – – border–count 255 – – dev–bootstrap–type
DiscreteUniform – – gradient–iterations 1 – – random–strength 0 – – depth 6. Besides, we tune
the parameters dev–sample–rate, learning–rate, l2–leaf–reg instead of the parameters described in
paragraph “Parameter tuning” of Section D.2 by 50 steps of the optimization algorithm. Further, for
all the algorithms, all categorical features are transformed to ordered TS on the basis of a random
permutation (the same for all algorithms) of training examples at the preprocessing step. The resulting
TS are used as numerical features in the training process. Thus, no CatBoost options dealing with
categorical features are used. As a result, the main difference of the raw setting of CatBoost compared
with XGBoost and LightGBM is using oblivious trees as base predictors.

Table 5: Comparison with baselines: logloss / zero-one loss (relative increase for baselines).

Raw setting of CatBoost LightGBM XGBoost

Adult 0.2800 / 0.1288 -1.4% / +0.2% -1.7% / -0.6%
Amazon 0.1631 / 0.0533 +0.3% / 0% +0.1% / -0.2%
Click 0.3961 / 0.1581 +0.1% / -0.1% 0% / 0%
Appetency 0.0724 / 0.0179 -0.8% / -1.0% -0.8% / -0.4%
Churn 0.2316 / 0.0718 +0.2% / +0.7% +0.6% / +1.6%
Internet 0.2223 / 0.0993 +0.4% / +2.4% +1.4% / +1.9%
Upselling 0.1679 / 0.0493 -0.7% / -0.4% -1.0% / -0.2%
Kick 0.2955 / 0.0993 +0.1% / -0.4% -0.3% / -0.2%
Average -0.2% / +0.2% -0.2% / +0.2%

For the baselines, we take the same results as in Table 4. As we can see from Table 5, in average, the
difference between all the algorithms is rather small: the raw setting of CatBoost outperforms the
baselines in terms of zero-one loss by 0.2% while they are better in terms of logloss by 0.2%. Thus,
taking into account that a GBDT model with oblivious trees can significantly speed up execution at
testing time [4], our implementation of GBDT is very reasonable choice to build CatBoost on.

Ordered and Plain modes In Section 6 of the main text we showed experimentally that Ordered
mode of CatBoost significantly outperforms Plain mode in the strong setting of CatBoost, including
ordered TS and feature combinations. In this section, we verify that this advantage is not caused by
interaction with these and other specific CatBoost options. For this purpose, we compare Ordered
and Plain modes in the raw setting of CatBoost described in the previous paragraph.

11

In Table 6, we present relative results w.r.t. Plain mode for two modifications of Ordered mode. The
first one uses one random permutation σboost for Ordered mode generated independently from the
permutation σcat used for ordered TS. Clearly, discrepancy between the two permutations provides
target leakage, which should be avoided. However, even in this setting Ordered mode considerably
outperforms Plain one by 0.5% in terms of logloss and by 0.2% in terms of zero-one loss in average.
Thus, advantage of Ordered mode remains strong in the raw setting of CatBoost.

Table 6: Ordered vs Plain modes in raw setting: change of logloss / zero-one loss relative to Plain
mode.

Ordered, σboost independent of σcat Ordered, σboost = σcat

Adult -1.1% / +0.2% -2.1% / -1.2%
Amazon +0.9% / +0.9% +0.8% / -2.2%
Click 0% / 0% 0.1% / 0%
Appetency -0.2% / 0.2% -0.5% / -0.3%
Churn +0.2% / -0.1% +0.3% / +0.4%
Internet -3.5% / -3.2% -2.8% / -3.5%
Upselling -0.4% / +0.3% -0.3% / -0.1%
Kick -0.2% / -0.1% -0.2% / -0.3%
Average -0.5% / -0.2% -0.6% / -0.9%

In the second modification, we set σboost = σcat, which remarkably improves both metrics: the
relative difference with Plain becomes (in average) 0.6% for logloss and 0.9% for zero-one loss. This
result empirically confirms the importance of the correspondence between permutations σboost and
σcat, which was theoretically motivated in Section F.

Feature combinations To demonstrate the effect of feature combinations, in Figure 1 we present the
relative change in logloss for different numbers cmax of features allowed to be combined (compared
to cmax = 1, where combinations are absent). In average, changing cmax from 1 to 2 provides an
outstanding improvement of 1.86% (reaching 11.3%), changing from 1 to 3 yields 2.04%, and further
increase of cmax does not influences the performance significantly.

-12

-10

-8

-6

-4

-2

 0

 2

 1 2 3 4 5

re
la

tiv
e

ch
an

ge
 in

 lo
gl

os
s,

 %

complexity of combinations

Adult
Amazon

Click prediction
KDD appetency

KDD churn
KDD internet

KDD upselling
Kick prediction

Figure 1: Relative change in logloss for a given allowed complexity compared to the absence of
feature combinations.

Number of permutations The effect of the number s of permutations on the performance of
CatBoost is presented in Figure 2. In average, increasing s slightly decreases logloss, e.g., by 0.19%
for s = 3 and by 0.38% for s = 9 compared to s = 1.

References
[1] L. Breiman. Out-of-bag estimation, 1996.

12

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1 2 3 4 5 6 7 8 9 10

re
la

tiv
e

ch
an

ge
 in

 lo
gl

os
s,

 %

number of permutations

Adult
Amazon

Click prediction
KDD appetency

KDD churn
KDD internet

KDD upselling
Kick prediction

Figure 2: Relative change in logloss for a given number of permutations s compared to s = 1,

[2] L. Breiman. Using iterated bagging to debias regressions. Machine Learning, 45(3):261–277,
2001.

[3] J. H. Friedman. Greedy function approximation: a gradient boosting machine. Annals of statistics,
pages 1189–1232, 2001.

[4] Y. Lou and M. Obukhov. Bdt: Gradient boosted decision tables for high accuracy and scoring
efficiency. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 1893–1901. ACM, 2017.

13

	Proof of Theorem 1
	Proof for the case D1 = D2
	Proof for independently sampled D1 and D2

	Formal description of CatBoost algorithm
	Time complexity analysis
	Theoretical analysis
	Empirical analysis

	Experimental setup
	Description of the datasets
	Experimental settings

	Analysis of iterated bagging
	Ordered boosting with categorical features
	Experimental results

