
Supplementary material to The Limit Points of
(Optimistic) Gradient Descent in Min-Max

Optimization

A Missing theorems and proofs

Proof of Lemma 2.1. Let h(x,y) be the update rule of the dynamics (3). It suffices to show that the
Jacobian JGDA of h is invertible and by the use of Inverse Function theorem, the claim follows. After
straightforward calculations we get

JGDA =

(
In − α∇2

xxf −α∇2
xyf

α∇2
yxf Im + α∇2

yyf

)
, (8)

where the Hessian of f is given by

∇2f =

(
∇2

xxf ∇2
xyf

∇2
yxf ∇2

yyf

)
. (9)

It suffices to show that the matrix below does not have an eigenvalue that is equal to −1/α (by just
subtracting the identity matrix),

HGDA =

(
−∇2

xxf −∇2
xyf

∇2
yxf ∇2

yyf

)
. (10)

It is easy to see that

HGDA =

(
−In 0n×m
0m×n Im

)(
∇2f

)
. (11)

If the function ∇f is L-Lipschitz, it follows that
∥∥∇2f

∥∥
2
≤ L (Lemma 6 in [6]). Therefore by

equation (11) we have that ρ(HGDA) ≤ ‖HGDA‖2 ≤
∥∥∇2f

∥∥
2
≤ L < 1

α . The claim follows.

Proof of Lemma 2.4. By definition of local min-max, it holds that∇2
xxf is positive semi-definite and

also ∇2
yyf is negative semi-definite. Hence the symmetric matrix below (matrix HGDA is given by

equation (10))
1

2

(
HGDA +H>GDA

)
=

(
−∇2

xxf 0n×m
0m×n ∇2

yyf

)
is negative semi-definite. We use the Ky Fan inequality which states that the sequence (in decreasing
order) of the eigenvalues of 1

2 (HGDA +H>GDA) majorizes the real part of the sequence of the eigen-
values of HGDA (see [5], page 4). By assumption that HGDA has real eigenvalues we conclude that
λmax(HGDA) ≤ 1

2λmax(HGDA+H
>
GDA) ≤ 0 sinceHGDA+H

>
GDA is negative semi-definite. Therefore

the spectrum of I + αHGDA lies in [−1, 1] (since also α < 1/L), thus (x∗,y∗) is GDA-stable.

Proof of Lemma 2.6. Let f(x, y) = xy. It is clear that critical point (0, 0) is a local min-max point.
Computing the Jacobian of the update rule of dynamics (3) at point (0, 0) we get that

JGDA =

(
1 −α
α 1

)
, (12)
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For any α > 0 we have that the eigenvalues of JGDA are 1 ± αi,1 so they have magnitude greater
than 1 (and is clear that HGDA has complex eigenvalues). It is easy to see that x2t+1 + y2t+1 =
(1 + α2)(x2t + y2t ), i.e., inductively we have

x2t + y2t = (1 + α2)t(x20 + y20),

hence GDA dynamics diverges.

Proof of Lemma 2.7. The proof follows the steps of the proof of Lemma 2.4. Similarly, using Ky
Fan inequality we know that for any eigenvalue λ of HGDA it holds that

Re(λ) ≤ 1

2
λmax(HGDA +H>GDA) ≤ 0.

Hence we conclude that Re(λ) < 0. Additionally, the corresponding eigenvalue of JGDA is 1 + αλ.
By choosing α < minλ{−Re(λ)

|λ|2 }, it is easy to see that |1 + αλ|2 = 1 + αRe(λ) + α2|λ|2 < 1 for
all the eigenvalues λ of HGDA, hence the eigenvalues of JGDA have magnitude less than one.

Proof of Lemma 3.1. It suffices to show that the Jacobian of g, denoted by JOGDA is invertible and
then by Inverse Function theorem the claim follows. After calculations the Jacobian boils down to
the following (we set F ′(x,y, z,w) = F (z,w,x,y)) :

JOGDA =

 In − 2α∇2
xxF −2α∇2

xyF α∇2
zzF

′ α∇2
zwF

′

2α∇2
yxF Im + 2α∇2

yyF −α∇2
wzF

′ −α∇2
wwF

′

In 0n×m 0n×n 0n×m
0m×n Im 0m×n 0m×m

 , (13)

Observe that for α = 0, the matrix JGDA is not invertible, as opposed to the case of GDA which is the
identity matrix In+m and hence is invertible. It is easy to see that for α = 0, then g(x,y, z,w) =
(x,y,x,y), namely it is not even 1− 1 (not even locally).

The null space of JOGDA is the same as the null space of the following matrix HOGDA (after row and
column operations)

HOGDA =

 0n×n 0n×m α∇2
zzF

′ α∇2
zwF

′

0m×n 0m×m −α∇2
wzF

′ −α∇2
wwF

′

In 0n×m 0n×n 0n×m
0m×n Im 0m×n 0m×m

 , (14)

It is clear that under the assumption that the Hessian is invertible (see Assumption 1.7), we get that(
∇2

zzF
′ ∇2

zwF
′

−∇2
wzF

′ −∇2
wwF

′

)
is invertible (15)

and so is HOGDA.

Proof of Lemma 3.4. A fixed point of the dynamics (4) is of the form (x,y,x,y) (see Remark 1.5).
The Jacobian of the update rule g becomes as follows:

JOGDA =

 In − 2α∇2
xxF −2α∇2

xyF α∇2
xxF α∇2

xyF
2α∇2

yxF Im + 2α∇2
yyF −α∇2

yxF −α∇2
yyF

In 0n×m 0n×n 0n×m
0m×n Im 0m×n 0m×m

 . (16)

We would like to find a relation between the eigenvalues of matrix (16) and matrix (8) (relate the
Jacobian of both dynamics GDA and OGDA). We start with the matrix

λI2m+2n−JOGDA =

 λIn − In + 2α∇2
xxF 2α∇2

xyF −α∇2
xxF −α∇2

xyF
−2α∇2

yxF λIm − Im − 2α∇2
yyF α∇2

yxF α∇2
yyF

−In 0n×m λIn 0n×m
0m×n −Im 0m×n λIm

 .

1We denote i :=
√
−1.
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The absolute value of the determinant of a matrix remains invariant under row/column operations
(add a multiple of a row/column to another row/column or exchange rows/columns). After such
operations, the determinant of the matrix above has determinant in absolute value equal to (we assume
that λ 6= 0)

det

 λIn − In + (2− 1/λ)α∇2
xxF (2− 1/λ)α∇2

xyF −α∇2
xxF −α∇2

xyF
(1/λ− 2)α∇2

yxF λIm − Im + (1/λ− 2)α∇2
yyF α∇2

yxF α∇2
yyF

0n×n 0n×m λIn 0n×m
0m×n 0m×m 0m×n λIm

 .

The determinant above is equal to λm+np(λ), where

p(λ) = det
(
λIn − In + (2− 1/λ)α∇2

xxF (2− 1/λ)α∇2
xyF

(1/λ− 2)α∇2
yxF λIm − Im + (1/λ− 2)α∇2

yyF

)
.

It is clear that λ = 1
2 is not an eigenvalue of JOGDA. Let qGDA(λ) be the characteristic polynomial of

JGDA (8, Jacobian of GDA dynamics at (x,y)). The characteristic polynomial qOGDA of JOGDA ends
up being equal to

det
(
λ2In − λIn + (2λ− 1)α∇2

xxF (2λ− 1)α∇2
xyF

−(2λ− 1)α∇2
yxF λ2Im − λIm − (2λ− 1)α∇2

yyF

)
.

Therefore

qOGDA(λ) = (2λ− 1)n+mqGDA

(
λ2 + λ− 1

2λ− 1

)
. (17)

Let r be an eigenvalue of matrix HGDA (10), i.e., r + 1 is an eigenvalue of JGDA. From relation (17)
it turns out that the roots of the polynomial

λ2 − λ(1 + 2r) + r = 0, (18)

are eigenvalues of the matrix JOGDA. For α < 1
2L it holds that |r| < 1

2 and it turns out that all the
roots of the quadratic equation (18) have magnitude at most one (see Mathematica code in Section
A.1 for a proof of the inequality).

Proof of Lemma 3.5. The easiest example is f(x, y) = xy. It is clear that the Jacobian of GDA
dynamics (3) is given by

J =

(
1 −α
α 1

)
, (19)

which has eigenvalues 1 ± αi (magnitude greater than one) and hence the critical point (0, 0) is
GDA-unstable. However, the Jacobian of OGDA dynamics (4) is given by

JOGDA =

 1 −2α 0 α
2α 1 −α 0
1 0 0 0
0 1 0 0

 , (20)

which has the four eigenvalues 1
2 (1 ±

√
1− 8α2 ± 4

√
4α4 − α2). For 0 < α < 1/2 all the four

eigenvalues have magnitude less than or equal to 1, hence (0, 0) is OGDA-stable (see mathematica
code A.2 for the inequality claim). Another example which is not bilinear (Assumption 1.7 is satisfied)
is the function 1

2x
2 + 1

2y
2 + 4xy (this is used in the example section).

Theorem A.1 (Center-stable manifold theorem, III.7 [7]). Let x∗ be a fixed point for the Cr local
diffeomorphism g : X → X . Suppose that E = Es ⊕ Eu, where Es is the span of the eigenvectors
corresponding to eigenvalues of magnitude less than or equal to one ofDg(x∗), and Eu is the span of
the eigenvectors corresponding to eigenvalues of magnitude greater than one of Dg(x∗)2. Then there
exists a Cr embedded disk W cs

loc of dimension dim(Es) that is tangent to Es at x∗ called the local
stable center manifold. Moreover, there exists a neighborhoodB of x∗, such that g(W cs

loc)∩B ⊂W cs
loc,

and ∩∞k=0g
−k(B) ⊂W cs

loc.
2Jacobian of function g.
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Proof of Theorem 2.2 and Theorem 3.2. It follows the general line of the papers [2, 4, 3, 6, 1]. We
assume that the update rule of GDA, OGDA dynamics is a diffeomorphism (as proved in Lemmas 2.1
and 3.1). The proof is generic and has appeared in [2]. Let A be the set of unstable critical points x∗
of a dynamical system with update rule a function g : X → X (in C2). For each x∗ ∈ A, there is
an associated open neighborhood Bx∗ promised by the Stable Manifold Theorem A.1. ∪x∗∈ABx∗

forms an open cover, and since X is second-countable we can extract a countable subcover, so that
∪x∗∈ABx∗ = ∪∞i=1Bx∗

i
.

Define W = {x0 : limk xk ∈ A} (stable set of A). Fix a point x0 ∈ W . Since xk → x∗ ∈ A, then
for some non-negative integer T and all t ≥ T , gt(x0) ∈ ∪x∗∈ABx∗ . Since we have a countable
sub-cover, gt(x0) ∈ Bx∗

i
for some x∗i ∈ A and all t ≥ T . This implies that gt(x0) ∈ ∩∞k=0 g

−k(Bx∗
i
)

for all t ≥ T . By Theorem A.1, Si , ∩∞k=0g
−k(Bx∗

i
) is a subset of the local center stable manifold

which has co-dimension at least one, and Si is thus measure zero.

Finally, gT (x0) ∈ Si implies that x0 ∈ g−T (Si). Since T is unknown we union over all non-
negative integers, to obtain x0 ∈ ∪∞j=0g

−j(Si). Since x0 was arbitrary, we have shown that W ⊂
∪∞i=1 ∪∞j=0 g

−j(Si). Using Lemma 1 of page 5 in [2] and that countable union of measure zero sets
is measure zero, W has measure zero.

A.1 Mathematica code for proving claim in Lemma 3.4

Reduce[Norm[r] < 1/2 && Norm[1 + r] < 1
&& (Norm[r + 1/2 - 1/2*Sqrt[4 r^2 + 1]] > 1
|| Norm[r + 1/2 + 1/2*Sqrt[4 r^2 + 1]] > 1), r, Complexes]

False

A.2 Mathematica code for proving claim in Lemma 3.5

Reduce[Abs[1/2 (1 + Sqrt[1 - 8 x^2 + 4 Sqrt[-x^2 + 4 x^4]])] > 1 &&
0 < x < 1/2]

False

Reduce[Abs[1/2 (1 - Sqrt[1 - 8 x^2 - 4 Sqrt[-x^2 + 4 x^4]])] > 1 &&
0 < x < 1/2]

False

Reduce[Abs[1/2 (1 + Sqrt[1 - 8 x^2 - 4 Sqrt[-x^2 + 4 x^4]])] > 1 &&
0 < x < 1/2]

False

Reduce[Abs[1/2 (1 - Sqrt[1 - 8 x^2 + 4 Sqrt[-x^2 + 4 x^4]])] > 1 &&
0 < x < 1/2]

False
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