Supplementary material to The Limit Points of (Optimistic) Gradient Descent in Min-Max Optimization

A Missing theorems and proofs

Proof of Lemma 2.1. Let $h(\mathbf{x}, \mathbf{y})$ be the update rule of the dynamics (3). It suffices to show that the Jacobian J_{GDA} of h is invertible and by the use of Inverse Function theorem, the claim follows. After straightforward calculations we get

$$J_{\rm GDA} = \begin{pmatrix} \mathbf{I}_n - \alpha \nabla_{\mathbf{xx}}^2 f & -\alpha \nabla_{\mathbf{xy}}^2 f \\ \alpha \nabla_{\mathbf{yx}}^2 f & \mathbf{I}_m + \alpha \nabla_{\mathbf{yy}}^2 f \end{pmatrix},\tag{8}$$

where the Hessian of f is given by

$$\nabla^2 f = \begin{pmatrix} \nabla^2_{\mathbf{x}\mathbf{x}}f & \nabla^2_{\mathbf{x}\mathbf{y}}f \\ \nabla^2_{\mathbf{y}\mathbf{x}}f & \nabla^2_{\mathbf{y}\mathbf{y}}f \end{pmatrix}.$$
 (9)

It suffices to show that the matrix below does not have an eigenvalue that is equal to $-1/\alpha$ (by just subtracting the identity matrix),

$$H_{\rm GDA} = \begin{pmatrix} -\nabla_{\mathbf{xx}}^2 f & -\nabla_{\mathbf{xy}}^2 f \\ \nabla_{\mathbf{yx}}^2 f & \nabla_{\mathbf{yy}}^2 f \end{pmatrix}.$$
 (10)

It is easy to see that

$$H_{\rm GDA} = \begin{pmatrix} -\mathbf{I}_n & \mathbf{0}_{n \times m} \\ \mathbf{0}_{m \times n} & \mathbf{I}_m \end{pmatrix} \left(\nabla^2 f \right).$$
(11)

If the function ∇f is L-Lipschitz, it follows that $\|\nabla^2 f\|_2 \leq L$ (Lemma 6 in [6]). Therefore by equation (11) we have that $\rho(H_{\text{GDA}}) \leq \|H_{\text{GDA}}\|_2 \leq \|\nabla^2 f\|_2 \leq L < \frac{1}{\alpha}$. The claim follows. \Box

Proof of Lemma 2.4. By definition of local min-max, it holds that $\nabla^2_{\mathbf{xx}} f$ is positive semi-definite and also $\nabla^2_{\mathbf{yy}} f$ is negative semi-definite. Hence the symmetric matrix below (matrix H_{GDA} is given by equation (10))

$$\frac{1}{2} \left(H_{\rm GDA} + H_{\rm GDA}^{\top} \right) = \left(\begin{array}{cc} -\nabla_{\mathbf{xx}}^2 f & \mathbf{0}_{n \times m} \\ \mathbf{0}_{m \times n} & \nabla_{\mathbf{yy}}^2 f \end{array} \right)$$

is negative semi-definite. We use the Ky Fan inequality which states that the sequence (in decreasing order) of the eigenvalues of $\frac{1}{2}(H_{\text{GDA}} + H_{\text{GDA}}^{\top})$ majorizes the real part of the sequence of the eigenvalues of H_{GDA} (see [5], page 4). By assumption that H_{GDA} has real eigenvalues we conclude that $\lambda_{\max}(H_{\text{GDA}}) \leq \frac{1}{2}\lambda_{\max}(H_{\text{GDA}} + H_{\text{GDA}}^{\top}) \leq 0$ since $H_{\text{GDA}} + H_{\text{GDA}}^{\top}$ is negative semi-definite. Therefore the spectrum of $I + \alpha H_{\text{GDA}}$ lies in [-1, 1] (since also $\alpha < 1/L$), thus $(\mathbf{x}^*, \mathbf{y}^*)$ is GDA-stable. \Box

Proof of Lemma 2.6. Let f(x, y) = xy. It is clear that critical point (0, 0) is a local min-max point. Computing the Jacobian of the update rule of dynamics (3) at point (0, 0) we get that

$$J_{\rm GDA} = \begin{pmatrix} 1 & -\alpha \\ \alpha & 1 \end{pmatrix},\tag{12}$$

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

For any $\alpha > 0$ we have that the eigenvalues of J_{GDA} are $1 \pm \alpha i$,¹ so they have magnitude greater than 1 (and is clear that H_{GDA} has complex eigenvalues). It is easy to see that $x_{t+1}^2 + y_{t+1}^2 = (1 + \alpha^2)(x_t^2 + y_t^2)$, i.e., inductively we have

$$x_t^2 + y_t^2 = (1 + \alpha^2)^t (x_0^2 + y_0^2),$$

hence GDA dynamics diverges.

Proof of Lemma 2.7. The proof follows the steps of the proof of Lemma 2.4. Similarly, using Ky Fan inequality we know that for any eigenvalue λ of H_{GDA} it holds that

$$\operatorname{Re}(\lambda) \leq \frac{1}{2}\lambda_{\max}(H_{\operatorname{GDA}} + H_{\operatorname{GDA}}^{\top}) \leq 0.$$

Hence we conclude that $\operatorname{Re}(\lambda) < 0$. Additionally, the corresponding eigenvalue of J_{GDA} is $1 + \alpha \lambda$. By choosing $\alpha < \min_{\lambda} \{-\frac{\operatorname{Re}(\lambda)}{|\lambda|^2}\}$, it is easy to see that $|1 + \alpha \lambda|^2 = 1 + \alpha \operatorname{Re}(\lambda) + \alpha^2 |\lambda|^2 < 1$ for all the eigenvalues λ of H_{GDA} , hence the eigenvalues of J_{GDA} have magnitude less than one. \Box

Proof of Lemma 3.1. It suffices to show that the Jacobian of g, denoted by J_{OGDA} is invertible and then by Inverse Function theorem the claim follows. After calculations the Jacobian boils down to the following (we set $F'(\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{w}) = F(\mathbf{z}, \mathbf{w}, \mathbf{x}, \mathbf{y})$):

$$J_{\text{OGDA}} = \begin{pmatrix} \mathbf{I}_n - 2\alpha \nabla_{\mathbf{xx}}^2 F & -2\alpha \nabla_{\mathbf{xy}}^2 F & \alpha \nabla_{\mathbf{zz}}^2 F' & \alpha \nabla_{\mathbf{zw}}^2 F' \\ 2\alpha \nabla_{\mathbf{yx}}^2 F & \mathbf{I}_m + 2\alpha \nabla_{\mathbf{yy}}^2 F & -\alpha \nabla_{\mathbf{wz}}^2 F' & -\alpha \nabla_{\mathbf{ww}}^2 F' \\ \mathbf{I}_n & \mathbf{0}_{n \times m} & \mathbf{0}_{n \times m} & \mathbf{0}_{n \times m} \\ \mathbf{0}_{m \times n} & \mathbf{I}_m & \mathbf{0}_{m \times n} & \mathbf{0}_{m \times m} \end{pmatrix},$$
(13)

Observe that for $\alpha = 0$, the matrix J_{GDA} is not invertible, as opposed to the case of GDA which is the identity matrix \mathbf{I}_{n+m} and hence is invertible. It is easy to see that for $\alpha = 0$, then $g(\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{w}) = (\mathbf{x}, \mathbf{y}, \mathbf{x}, \mathbf{y})$, namely it is not even 1 - 1 (not even locally).

The null space of J_{OGDA} is the same as the null space of the following matrix H_{OGDA} (after row and column operations)

$$H_{\text{OGDA}} = \begin{pmatrix} \mathbf{0}_{n \times n} & \mathbf{0}_{n \times m} & \alpha \nabla_{\mathbf{zz}}^2 F' & \alpha \nabla_{\mathbf{zw}}^2 F' \\ \mathbf{0}_{m \times n} & \mathbf{0}_{m \times m} & -\alpha \nabla_{\mathbf{wz}}^2 F' & -\alpha \nabla_{\mathbf{ww}}^2 F' \\ \mathbf{I}_n & \mathbf{0}_{n \times m} & \mathbf{0}_{n \times n} & \mathbf{0}_{n \times m} \\ \mathbf{0}_{m \times n} & \mathbf{I}_m & \mathbf{0}_{m \times n} & \mathbf{0}_{m \times m} \end{pmatrix},$$
(14)

It is clear that under the assumption that the Hessian is invertible (see Assumption 1.7), we get that

$$\begin{pmatrix} \nabla_{\mathbf{zz}}^2 F' & \nabla_{\mathbf{zw}}^2 F' \\ -\nabla_{\mathbf{wz}}^2 F' & -\nabla_{\mathbf{ww}}^2 F' \end{pmatrix} \text{ is invertible}$$
(15)

and so is H_{OGDA} .

Proof of Lemma 3.4. A fixed point of the dynamics (4) is of the form $(\mathbf{x}, \mathbf{y}, \mathbf{x}, \mathbf{y})$ (see Remark 1.5). The Jacobian of the update rule *g* becomes as follows:

$$J_{\text{OGDA}} = \begin{pmatrix} \mathbf{I}_n - 2\alpha \nabla_{\mathbf{xx}}^2 F & -2\alpha \nabla_{\mathbf{xy}}^2 F & \alpha \nabla_{\mathbf{xx}}^2 F & \alpha \nabla_{\mathbf{xy}}^2 F \\ 2\alpha \nabla_{\mathbf{yx}}^2 F & \mathbf{I}_m + 2\alpha \nabla_{\mathbf{yy}}^2 F & -\alpha \nabla_{\mathbf{yx}}^2 F & -\alpha \nabla_{\mathbf{yy}}^2 F \\ \mathbf{I}_n & \mathbf{0}_{n \times m} & \mathbf{0}_{n \times n} & \mathbf{0}_{n \times m} \\ \mathbf{0}_{m \times n} & \mathbf{I}_m & \mathbf{0}_{m \times n} & \mathbf{0}_{m \times m} \end{pmatrix}.$$
(16)

We would like to find a relation between the eigenvalues of matrix (16) and matrix (8) (relate the Jacobian of both dynamics GDA and OGDA). We start with the matrix

$$\lambda \mathbf{I}_{2m+2n} - J_{\text{OGDA}} = \begin{pmatrix} \lambda \mathbf{I}_n - \mathbf{I}_n + 2\alpha \nabla_{\mathbf{xx}}^2 F & 2\alpha \nabla_{\mathbf{xy}}^2 F & -\alpha \nabla_{\mathbf{xx}}^2 F & -\alpha \nabla_{\mathbf{xy}}^2 F \\ -2\alpha \nabla_{\mathbf{yx}}^2 F & \lambda \mathbf{I}_m - \mathbf{I}_m - 2\alpha \nabla_{\mathbf{yy}}^2 F & \alpha \nabla_{\mathbf{yx}}^2 F & \alpha \nabla_{\mathbf{yy}}^2 F \\ -\mathbf{I}_n & \mathbf{0}_{n \times m} & \lambda \mathbf{I}_n & \mathbf{0}_{n \times m} \\ \mathbf{0}_{m \times n} & -\mathbf{I}_m & \mathbf{0}_{m \times n} & \lambda \mathbf{I}_m \end{pmatrix}$$

¹We denote $i := \sqrt{-1}$.

The absolute value of the determinant of a matrix remains invariant under row/column operations (add a multiple of a row/column to another row/column or exchange rows/columns). After such operations, the determinant of the matrix above has determinant in absolute value equal to (we assume that $\lambda \neq 0$)

$$\det \left(\begin{array}{ccc} \lambda \mathbf{I}_n - \mathbf{I}_n + (2 - 1/\lambda) \alpha \nabla^2_{\mathbf{x}\mathbf{x}} F & (2 - 1/\lambda) \alpha \nabla^2_{\mathbf{x}\mathbf{y}} F & -\alpha \nabla^2_{\mathbf{x}\mathbf{x}} F & -\alpha \nabla^2_{\mathbf{x}\mathbf{y}} F \\ (1/\lambda - 2) \alpha \nabla^2_{\mathbf{y}\mathbf{x}} F & \lambda \mathbf{I}_m - \mathbf{I}_m + (1/\lambda - 2) \alpha \nabla^2_{\mathbf{y}\mathbf{y}} F & \alpha \nabla^2_{\mathbf{y}\mathbf{x}} F & \alpha \nabla^2_{\mathbf{y}\mathbf{y}} F \\ \mathbf{0}_{n \times n} & \mathbf{0}_{n \times m} & \lambda \mathbf{I}_n & \mathbf{0}_{n \times m} \\ \mathbf{0}_{m \times n} & \mathbf{0}_{m \times m} & \mathbf{0}_{m \times n} & \lambda \mathbf{I}_m \end{array} \right).$$

The determinant above is equal to $\lambda^{m+n}p(\lambda)$, where

$$p(\lambda) = \det \left(\begin{array}{cc} \lambda \mathbf{I}_n - \mathbf{I}_n + (2 - 1/\lambda)\alpha \nabla^2_{\mathbf{x}\mathbf{x}}F & (2 - 1/\lambda)\alpha \nabla^2_{\mathbf{x}\mathbf{y}}F \\ (1/\lambda - 2)\alpha \nabla^2_{\mathbf{y}\mathbf{x}}F & \lambda \mathbf{I}_m - \mathbf{I}_m + (1/\lambda - 2)\alpha \nabla^2_{\mathbf{y}\mathbf{y}}F \end{array} \right).$$

It is clear that $\lambda = \frac{1}{2}$ is not an eigenvalue of J_{OGDA} . Let $q_{GDA}(\lambda)$ be the characteristic polynomial of J_{GDA} (8, Jacobian of GDA dynamics at (\mathbf{x}, \mathbf{y})). The characteristic polynomial q_{OGDA} of J_{OGDA} ends up being equal to

$$\det \left(\begin{array}{cc} \lambda^2 \mathbf{I}_n - \lambda \mathbf{I}_n + (2\lambda - 1)\alpha \nabla^2_{\mathbf{x}\mathbf{x}}F & (2\lambda - 1)\alpha \nabla^2_{\mathbf{x}\mathbf{y}}F \\ -(2\lambda - 1)\alpha \nabla^2_{\mathbf{y}\mathbf{x}}F & \lambda^2 \mathbf{I}_m - \lambda \mathbf{I}_m - (2\lambda - 1)\alpha \nabla^2_{\mathbf{y}\mathbf{y}}F \end{array} \right).$$

Therefore

$$q_{\text{OGDA}}(\lambda) = (2\lambda - 1)^{n+m} q_{\text{GDA}}\left(\frac{\lambda^2 + \lambda - 1}{2\lambda - 1}\right).$$
(17)

Let r be an eigenvalue of matrix H_{GDA} (10), i.e., r + 1 is an eigenvalue of J_{GDA} . From relation (17) it turns out that the roots of the polynomial

$$\lambda^2 - \lambda(1+2r) + r = 0, (18)$$

are eigenvalues of the matrix J_{OGDA} . For $\alpha < \frac{1}{2L}$ it holds that $|r| < \frac{1}{2}$ and it turns out that all the roots of the quadratic equation (18) have magnitude at most one (see Mathematica code in Section A.1 for a proof of the inequality).

Proof of Lemma 3.5. The easiest example is f(x, y) = xy. It is clear that the Jacobian of GDA dynamics (3) is given by

$$J = \begin{pmatrix} 1 & -\alpha \\ \alpha & 1 \end{pmatrix},\tag{19}$$

which has eigenvalues $1 \pm \alpha i$ (magnitude greater than one) and hence the critical point (0,0) is GDA-unstable. However, the Jacobian of OGDA dynamics (4) is given by

$$J_{\text{OGDA}} = \begin{pmatrix} 1 & -2\alpha & 0 & \alpha \\ 2\alpha & 1 & -\alpha & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix},$$
 (20)

which has the four eigenvalues $\frac{1}{2}(1 \pm \sqrt{1 - 8\alpha^2 \pm 4\sqrt{4\alpha^4 - \alpha^2}})$. For $0 < \alpha < 1/2$ all the four eigenvalues have magnitude less than or equal to 1, hence (0,0) is OGDA-stable (see mathematica code A.2 for the inequality claim). Another example which is not bilinear (Assumption 1.7 is satisfied) is the function $\frac{1}{2}x^2 + \frac{1}{2}y^2 + 4xy$ (this is used in the example section).

Theorem A.1 (Center-stable manifold theorem, III.7 [7]). Let x^* be a fixed point for the C^r local diffeomorphism $g: \mathcal{X} \to \mathcal{X}$. Suppose that $E = E_s \oplus E_u$, where E_s is the span of the eigenvectors corresponding to eigenvalues of magnitude less than or equal to one of $Dg(x^*)$, and E_u is the span of the eigenvectors corresponding to eigenvalues of magnitude greater than one of $Dg(x^*)^2$. Then there exists a C^r embedded disk W_{loc}^{cs} of dimension $dim(E^s)$ that is tangent to E_s at x^* called the local stable center manifold. Moreover, there exists a neighborhood B of x^* , such that $g(W_{loc}^{cs}) \cap B \subset W_{loc}^{cs}$, and $\bigcap_{k=0}^{\infty} g^{-k}(B) \subset W_{loc}^{cs}$.

²Jacobian of function g.

Proof of Theorem 2.2 and Theorem 3.2. It follows the general line of the papers [2, 4, 3, 6, 1]. We assume that the update rule of GDA, OGDA dynamics is a diffeomorphism (as proved in Lemmas 2.1 and 3.1). The proof is generic and has appeared in [2]. Let A be the set of unstable critical points x^* of a dynamical system with update rule a function $g : \mathcal{X} \to \mathcal{X}$ (in C^2). For each $x^* \in A$, there is an associated open neighborhood B_{x^*} promised by the Stable Manifold Theorem A.1. $\bigcup_{x^* \in A} B_{x^*}$ forms an open cover, and since \mathcal{X} is second-countable we can extract a countable subcover, so that $\bigcup_{x^* \in A} B_{x^*} = \bigcup_{i=1}^{\infty} B_{x^*_i}$.

Define $W = \{x_0 : \lim_k x_k \in A\}$ (stable set of A). Fix a point $x_0 \in W$. Since $x_k \to x^* \in A$, then for some non-negative integer T and all $t \ge T$, $g^t(x_0) \in \bigcup_{x^* \in A} B_{x^*}$. Since we have a countable sub-cover, $g^t(x_0) \in B_{x_i^*}$ for some $x_i^* \in A$ and all $t \ge T$. This implies that $g^t(x_0) \in \bigcap_{k=0}^{\infty} g^{-k}(B_{x_i^*})$ for all $t \ge T$. By Theorem A.1, $S_i \triangleq \bigcap_{k=0}^{\infty} g^{-k}(B_{x_i^*})$ is a subset of the local center stable manifold which has co-dimension at least one, and S_i is thus measure zero.

Finally, $g^T(x_0) \in S_i$ implies that $x_0 \in g^{-T}(S_i)$. Since T is unknown we union over all non-negative integers, to obtain $x_0 \in \bigcup_{j=0}^{\infty} g^{-j}(S_i)$. Since x_0 was arbitrary, we have shown that $W \subset \bigcup_{i=1}^{\infty} \bigcup_{j=0}^{\infty} g^{-j}(S_i)$. Using Lemma 1 of page 5 in [2] and that countable union of measure zero sets is measure zero, W has measure zero.

A.1 Mathematica code for proving claim in Lemma 3.4

```
Reduce[Norm[r] < 1/2 && Norm[1 + r] < 1
&& (Norm[r + 1/2 - 1/2*Sqrt[4 r<sup>2</sup> + 1]] > 1
|| Norm[r + 1/2 + 1/2*Sqrt[4 r<sup>2</sup> + 1]] > 1), r, Complexes]
```

False

A.2 Mathematica code for proving claim in Lemma 3.5

Reduce [Abs [1/2 (1 + Sqrt[1 - 8 x² + 4 Sqrt[-x² + 4 x⁴]))] > 1 & 0 < x < 1/2]

False

Reduce [Abs $[1/2 (1 - Sqrt[1 - 8 x^2 - 4 Sqrt[-x^2 + 4 x^4]])] > 1 \&\& 0 < x < 1/2]$

False

Reduce [Abs $[1/2 (1 + Sqrt[1 - 8 x^2 - 4 Sqrt[-x^2 + 4 x^4]])] > 1 \&\& 0 < x < 1/2]$

False

Reduce[Abs[1/2 (1 - Sqrt[1 - 8 x² + 4 Sqrt[-x² + 4 x⁴]))] > 1 && 0 < x < 1/2]

False

References

[1] Chi Jin, Yuchen Zhang, Sivaraman Balakrishnan, Martin J. Wainwright, and Michael I. Jordan. Local maxima in the likelihood of gaussian mixture models: Structural results and algorithmic consequences. In Advances in Neural Information Processing Systems 29: Annual Conference on Neural Information Processing Systems 2016, December 5-10, 2016, Barcelona, Spain, pages 4116–4124, 2016.

- [2] Jason D. Lee, Ioannis Panageas, Georgios Piliouras, Max Simchowitz, Michael I. Jordan, and Benjamin Recht. First-order methods almost always avoid saddle points. *CoRR*, abs/1710.07406, 2017.
- [3] Jason D. Lee, Max Simchowitz, Michael I. Jordan, and Benjamin Recht. Gradient descent only converges to minimizers. In *Proceedings of the 29th Conference on Learning Theory, COLT* 2016, New York, USA, June 23-26, 2016, pages 1246–1257, 2016.
- [4] Ruta Mehta, Ioannis Panageas, and Georgios Piliouras. Natural selection as an inhibitor of genetic diversity: Multiplicative weights updates algorithm and a conjecture of haploid genetics. In *Innovations in Theoretical Computer Science, ITCS*, 2015.
- [5] Mohammad Sal Moslehian. Ky fan inequalities. CoRR, abs/1108.1467, 2011.
- [6] Ioannis Panageas and Georgios Piliouras. Gradient descent only converges to minimizers: Nonisolated critical points and invariant regions. In 8th Innovations in Theoretical Computer Science Conference, ITCS 2017, January 9-11, 2017, Berkeley, CA, USA, pages 2:1–2:12, 2017.
- [7] Michael Shub. *Global Stability of Dynamical Systems*. Springer Science & Business Media, 1987.